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Abstract. In this paper we have shown how a tensor product of an in�nite di-

mensional representation within a certain distinguished class of in�nite dimensional

irreducible representations of sp(2n; C ) with the de�ning representation decomposes.

Further we have proved a theorem on complete reducibility of a k�fold tensor prod-

uct of the de�ning representation (tensored) with a member of the distinguished

class.

1. Introduction

The main aim of the paper is to study a distinguished class of irreducible in�nite

dimensional representations of the symplectic algebra C

n

(so called bounded modules)

and tensor products of elements in this class with the de�ning representation. The

motivation for such a study is coming from a study of invariant di�erential operators on

manifolds with a given parabolic structure. Invariant operators in question are acting

on vector bundles associated to �nite dimensional representations of suitable parabolic

subgroups of a semisimple Lie group G. In the case G = Spin (n) a particular role is

played by operators acting on bundles on Spin manifolds associated to spinor-tensor

representations.

On a class of manifolds with a projective contact structure ([3]), the corresponding

vector bundles are associated to representations of symplectic group. But there are no

analogues of spinor representations among �nite dimensional modules.

It was suggested by Kostant (see [6]) that certain in�nite dimensional representations

form a suitable analogue of spinor representations of the orthogonal Lie algebra D

n

in this case. They were used, for example, in a de�nition of a symplectic version

of the Dirac operator by K. Habermann (see [4]). These two in�nite dimensional

representations are modules of the metaplectic group (a double cover of the symplectic

group), they are called the Segal-Shale-Weil representations. By analogy with the

orthogonal case, it is interesting to understand the structure of tensor product of

these spinor representations with �nite dimensional modules. It leads to the family of

bounded representations introduced in [1].
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In the second section, we shall review basic facts about the symplectic algebra

and we shall introduce its spinor representations. Then we shall present some result

on decomposition of tensor products of �nite and in�nite dimensional representation

proved by B. Kostant ([7]) in the third section. In the fourth section, tensor products

of spinor modules and �nite dimensional representations are described following [2],

which leads to a de�nition of a distinguished class of bounded representations. The

�fth section contains new results on the decomposition of bounded modules with the

de�ning representations and its powers.

2. Spinor representations of sp(2n; C )

Let us recall �rst some basic facts on the symplectic algebra C

n

= sp(2n; C ): This

algebra consists of 2n� 2n matrices over complex numbers of the form

A =

�

A

1

A

2

A

3

A

4

�

where A

1

= �A

T

4

; A

2

= A

T

2

and A

3

= A

T

3

: The Cartan algebra h of C

n

consists of all

diagonal 2n � 2n matrices. If �

i

denotes the projection onto the (i; i) element of the

matrix, then the set of all roots � equals

� = f�(�

i

� �

j

); 1 � i < j � ng [ f�2�

i

; i = 1; : : : ; ng :

The set of all simple roots � equals

� = f�

1

= �

1

� �

2

; : : : ; �

n�1

= �

n�1

� �

n

; �

n

= 2�

n

g :

The Chevalley basis of C

n

is given by

X

�

i

��

j

= E

i;j

� E

n+j;n+i

; 1 � i < j � n ;

X

2�

i

= E

i;n+i

; i = 1; : : : ; n

X

�

i

+�

j

= E

i;n+j

�E

j;n+i

; 1 � i < j � n ;

Y

�

= X

T

�

; � 2 � ;

H

i

= E

i;i

�E

j;j

+ E

n+j;n+j

� E

n+i;n+i

; i = 1; : : : ; n� 1 ;

H

n

= E

n;n

� E

2n;2n

;

where E

i;j

is a matrix having 1 at the place (i; j).

The algebra C

n

has a very useful realisation consisting of di�erential operators on

C [x

1

; : : : ; x

n

]: It is shown in [5] that the Lie algebra generated by fx

i

@

i+1

; x

i+1

@

i

; i =

1; : : : ; n � 1g [ f@

2

1

; (x

1

)

2

g (where @

i

is the partial di�erentiation in x

i

; i = 1; : : : ; n)

is isomorphic to the algebra C

n

via the isomorphism  : C

n

!End(C [x

1

; : : : ; x

n

]);

de�ned by

 (X

�

i

��

i+1

) = x

n�i

@

n�i+1

; i = 1; : : : ; n� 1 ;

 (X

�(�

i

��

i+1

)

) = x

n�i+1

@

n�i

; i = 1; : : : ; n� 1

 (X

2�

n

) = �

1

2

@

2

1

;

 (X

�2�

n

) =

1

2

(x

1

)

2

:
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The requirement that the basis f�

i

g

n

i=1

is an orthonormal basis de�nes the inner prod-

uct ( ; ) on h: Using the standard notation

�� =

2�

(�;�)

;

the fundamental weights f!g

n

i=1

are de�ned as the basis dual to the basis f ��

i

g

n

i=1

, i.e.

(!

i

; ��

j

) = �

ij

.

There is a very close analogy between representations of C

n

= sp(2n; C ) and D

n

=

so(2n; C ): Finite dimensional representations of C

n

have their counterpart in tensor

representations of D

n

(i.e., representations of D

n

with highest weights consisting from

integers). On the other hand, there is no �nite dimensional representation of C

n

similar

to spinor representations of D

n

.

It was suggested by Kostant ([6]) that a proper analogy of spinor representations of

orthogonal groups are certain in�nite-dimensional representations of symplectic groups

called the Segal-Shale-Weil representations. They both share the property that they

are representations of the double cover of the corresponding groups. The analogy can

be nicely seen using the following realisation of these representations.

Consider �rst the orthogonal algebras so(2n; C ) and choose a maximal isotropic

subspace V subspace of C

2n

; it has dimension n. Spinor representations of D

n

can be

realized on the Grassmann algebra S=

V

�

(V ) = �

n

i=1

V

i

(V ). It decomposes into two

parts S= S

+

�S

�

; where S

+

= �

j22Z

V

j

(V ) and S

�

= �

j22Z+1

V

j

(V ); the so called

half-spinor representations.

In the case of symplectic algebra, there is a similar construction. Consider the

de�ning representation C

2n

of so(2n; C ) with the corresponding symplectic form and

choose again a maximal isotropic subspace V ' C

n

. The in�nite dimensional space

C [x

1

; : : : ; x

n

] = �

1

i=1

�

i

(C

n

) is a representation of C

n

as described above (using the

isomorphism  ). It also decomposes as �

1

i=1

�

i

(C

n

) = S

+

�S

�

: As in the orthogonal

case, the �rst representation is the direct sum of even dimensional symmetric powers

and the second one of the odd dimensional ones. This is a nice example of a super-

symmetry, where the space of polynomials in n commuting variables (the symplectic

case) has as an analogy the space of polynomials in n anticommuting variables (the

orthogonal case). This analogy explains why spinor representations for C

n

are in�nite

dimensional.

Finite dimensional representations of D

n

can be all realized as spinor-tensors, i.e.,

as submodules of tensor products of one of two spinor representations with a tensor

representation. Consequently, an analogue of these �nite-dimensional representations

of D

n

is a class of in�nite dimensional representations of C

n

consisting of submodules

of tensor products of one of two in�nite dimensional spinor representations of C

n

with

a �nite dimensional representation of C

n

. This is a class of representations we are

going to study in the paper.

3. Tensor products of finite and infinite dimensional representations

In this section we shall review some basic facts on tensor products of �nite and

in�nite dimensional representations, details can be found in [7]. Let g be a complex
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semisimple Lie algebra, h its Cartan subalgebra and U(g) its universal enveloping alge-

bra. Let us choose a space �

+

of positive roots and the corresponding decomposition

g = n

�

� h� n

+

; where n

�

are nilpotent subalgebras.

Denote by Z the center of the universal enveloping algebra U(g) and by Z

0

the set

of all characters � : Z ! C : Consider a a representation � : g! End(V); where V is

a �nite or in�nite dimensional complex vector space. Assume that � admits a central

character � : h 2 Z

0

, i.e., �(X)v = �(X)v for all v 2 V and X 2 Z. This is the case,

e.g., if � is irreducible.

There is a map

h

0

! Z

0

given by � 7! �

�

, where �

�

(u) = f

u

(�), u 2 Z. The element f

u

is the unique element

of the universal enveloping algebra U(h) of the algebra h, for which

u� f

u

2 Un

+

;

where n

+

is the nilpotent subalgebra of g and Un

+

is the left ideal generated by n

+

.

Let W denote the Weyl group of the algebra g and let ~� denote the a�ne action of

a Weyl group element � 2 W on the space of weights, i.e.,

~�(�) = �(�+ �) � � ;

where

� =

1

2

X

�2�

+

� 2 h

0

:

It is well known that the map h

0

! Z

0

sending �! �

�

is an epimorphism and �

�

= �

�

if and only if � and � are conjugate with respect to the action ~�.

Let us consider a representation �

�

: g !End(V

�

) of the algebra g on a �nite

dimensional complex vector space V

�

with the highest weight � 2 h

0

:

The main result needed from [7] is the following theorem.

Theorem 1. Let f�

1

; : : : ; �

k

g denotes the set of all weights of the representation �

�

and

Y

i

= fy 2 V
V

�

;uy = �

�+�

i

(u)y; u 2 Zg ; i = 1; : : : ; k :

Assume that the characters �

�+�

i

are all distinct. Then

V
V

�

=

k

M

i=1

Y

i

:

Moreover, if Y

i

is not zero, then Y

i

is the maximal submodule of V
 V

�

admitting

�

�+�

i

.

4. Completely pointed modules

In this paragraph we review some basic facts on bounded and completely pointed

modules from [2]. More details can be found there. The set of bounded modules is

a set of in�nite dimensional representations of C

n

, which is an analogue of the set of

�nite-dimensional representations of D

n

with half-integer highest weights.

Let g be a complex simple Lie algebra and h its Cartan subalgebra. Let us consider

an h-diagonalisable g-module V, i.e., V=

L

�2wt(V)

V

�

, where wt(V)� h

0

is the space

of all weights of the module V. We say that it is a module with bounded multiplicities
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if and only if there is a k 2 N such that dimV

�

� k for all � 2 wt(h). The minimal

k is called the order of the module. The module is called completely pointed provided

the order of this module is 1. The bounded modules have some nice properties. For

example, it is known that a simple complex Lie algebra has an in�nite dimensional

irreducible module with bounded multiplicities if and only if it is a either a special

linear algebra or a symplectic algebra.

In the paper, we shall consider irreducible highest weight modules. For any weight

� 2 h

0

; we shall denote by L(�) the unique irreducible module with highest weight

�. Every such module can be realized as a quotient of the Verma module with the

highest weight �: The spinor representations (or the Segal-Shale-Weil representations)

belong to this class. It is easy to compute that the weight of a constant polynomial

is �

+

= �

1

2

!

n

and the weight of the monomial x

1

is �

�

= !

n�1

�

3

2

!

n

. Hence S

+

'

L(�

+

) and S

�

' L(�

�

). Both these representations are completely pointed (di�erent

monomials have di�erent weights). It can be shown that the opposite claim is also

true. If a highest weight module L(�) is a completely pointed C

n

module, then � = �

+

or �

�

(see [1]).

The following key facts describe the structure of the tensor product of a spinor

representations with a �nite dimensional module (for details see [1, 2]).

Theorem 2. Let � =

P

n

i=1

�

i

!

i

be a dominant integral weight of C

n

and let L(�) be

the corresponding irreducible �nite dimensional highest weight module. Let

T

+

�

=

n

� �

n

X

i=1

d

i

�

i

; d

i

2Z

�0

;

n

X

i=1

d

i

2 2Z; 0 � d

i

� �

i

;

i = 1; : : : ; n� 1; 0 � d

n

� 2�

n

+ 1

o

T

�

�

=

n

� �

n

X

i=1

d

i

�

i

; d

j

+ �

n;j

2Z

�0

;

n

X

i=1

d

i

2 2Z; 0 � d

i

� �

i

;

i = 1; : : : ; n� 1; 0 � d

n

� 2�

n

+ 1

o

:

Then

L(�

�

)
 L(�) =

M

�2T

�

�

L(�

�

+ �) :

Let us denote by A the following set of weights.

A =

n

n

X

i=1

�

i

!

i

; �

i

� 0; �

i

2Z; i = 1; : : : ; n� 1; �

n

2Z+

1

2

; �

n�1

+ 2�

n

+ 3 > 0

o

and

A = fL(�); � 2 A g :

Theorem 3. The following conditions are equivalent

1. L(�) 2 A

2. L(�) is a direct summand in the decomposition of L(�) 
 L(�

1

2

!

n

) for some

dominant integral �

3. L has bounded multiplicities.
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Let shall write the set A as a union of two subsets A = A

+

� A

�

, where

A

+

=

n

� 2 A ; � = �

+

+

n

X

i=1

m

i

�

i

;

n

X

i=1

m

i

2 2Z

o

;

A

�

=

n

� 2 A ; � = �

�

+

n

X

i=1

m

i

�

i

;

n

X

i=1

m

i

2 2Z

o

:

Weights from the set A + � (i.e. we consider weights from A shifted by �) are all

included in two Weyl chambers only { the union of the dominant Weyl chamber and

its image under the re
ection with respect to �

n

.

All that can be nicely illustrated in the case of C

2

: At the next picture, we can

see the corresponding two Weyl chambers in the Cartan-Stiefel diagram of C

2

below.

Elements of A are shifted by �; elements of A

+

are denoted by dots and elements of

A

�

by squares.

�

2

�

1

= !

1

!

2

5. Tensor products with the defining representation

In this section, we are going to study tensor products of any bounded module

with the de�ning representation L(!

1

). We show that these products are completely

reducible and that there are no multiplicities in the decomposition. By induction, we

get complete reducibility also for a product with powers of L(!

1

). These are exactly

facts needed for future applications in a study of invariant di�erential operators on

projective contact manifolds (see [3]).

Theorem 4. Let � 2 A and let �(!

1

) = f��

i

; i = 1; : : : ; ng denote the set of all

weights of the de�ning representation L(!

1

).
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Then L(�)
 L(!

1

) is completely reducible and

L(�)
 L(!

1

) =

M

�2A

�

L(�)

where A

�

� f� = � + �;� 2 A ; � 2 �(!

1

)g.

Proof. Suppose that L(�) is a direct summand in the decomposition of some

L(�

1

2

!

n

)
 L(�)

for some integral dominant � (the other case can be treated in a same way). Thus

L(�)
L(!

1

) � (L(�

1

2

!

n

)
L(�))
L(!

1

) = L(�

1

2

!

n

)
 (L(�)
L(!

1

)) and therefore

we know that direct summands in L(�) 
 L(!

1

) are in A. We shall prove that the

characters �

�+�

and �

�+�

are distinct for any �; � 2 �(!

1

). This is equivalent to

the fact that � + � and � + � are not conjugated. This can be seen as follows: Let

� + � 2 W

1

and � + � 2 W

2

where W

1

, W

2

are two Weyl neighbour chambers. This

chambers are described in the f�

i

g

n

i=1

basis as follows

W

1

=

n

n

X

i=1

�

i

�

i

; �

1

> : : : > �

n

> 0

o

;

W

2

=

n

n

X

i=1

�

i

�

i

; �

1

> : : : > �

n�1

> ��

n

> 0

o

:

This two Weyl chambers are mapped to each other by the re
ection in the plane

orthogonal to �

n

. From the structure of the set �(!

1

) it is evident that � 2 A

�

implies

that �+� 2 A

�

for each � 2 �(!

1

): Thus the di�erence (�+�)� (�+�) =

P

n

i=1

m

i

�

i

,

where

P

n

i=1

m

i

2 2Z. Two elements � + � 2 W

1

and � + � 2 W

2

are conjugated (by

the re
ection in the plane orthogonal to �

n

) when their di�erence is (�+�)� (�+�) =

(2k + 1)�

n

{ a contradiction.

At the picture of the Cartan-Stiefel diagram for C

2

, we can see that if � + � and

�+ � are conjugated by the re
ection in the plane orthogonal to �

2

then one of them

is represented by a dot and the second one by a square. But � + � and � + � for

�; � 2 �(!

1

) ere both represented either by dots or by squares.

Now, we use the theorem on decomposition of direct product of a �nite and in�nite

representation to conclude that � = �+ �; for some � 2 �(!

1

).

Consider the representation 


k

L(!

1

)
V for some V2 A. We know that L(!

1

)
V

is completely reducible and its direct summands are inA. Let us label these summands

by integers, denoting its chosen position in the direct sum. Tensoring L(!

1

) 
 V =

�

n

1

b

1

=1

V

b

1

by L(!

1

) we obtain an direct sum again since each V

b

1

, b

1

= 1; : : : ; n

1

is in

A and therefore decomposes when tensored by L(!

1

) due to the previous Theorem 4.

We denote the b

2

therm of the direct sum V

b

1

by V

(b

1

;b

2

)

. Continuing in this process

(or by induction) we obtain L(!

1

)




k


V= �

b

1

;::: ;b

k

V

(b

1

;::: ;b

k

)

. Thus we have proved

Corollary. The representation of L(!

1

)




k


V is completely reducible and decomposes

as

L(!

1

)




k


V= �

b

1

;::: ;b

k

V

(b

1

;::: ;b

k

)

:
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Example. In this example we shall denote a module L(�) with highest weight �

simply by (�) written in the basis of fundamental weights and we shall describe the

set A

�

for � = (10 : : : 01 �

3

2

).

We know that

(0 : : : 01 �

3

2

)
 (10 : : : 0) = (0 : : : 0�

1

2

)� (10 : : : 01�

3

2

) :

We also know that

(10 : : : 0)
 (10 : : : 0) = (20 : : : 0)� (010 : : : 0) � (0) :

We can decompose the following tensor products using the prescription of the above

theorem to obtain that

(0 : : : 01 �

3

2

)
 (20 : : : 0) = (20 : : : 01 �

3

2

)� (10 : : : 01�

3

2

)� (0 : : : 01�

3

2

)

(0 : : : 01 �

3

2

)
 (010 : : : 0) = (010 : : : 01�

3

2

)� (10 : : : 0�

1

2

)

(0 : : : 01 �

3

2

)
 (0) = (0 : : : 01 �

3

2

)

We also know that

(0 : : : 0 �

1

2

)
 (10 : : : 0) = (0 : : : 01 �

3

2

)� (1 : : : 0�

1

2

) :

From this we can deduce that:

(10 : : : 01 �

3

2

)
 (10 : : : 0) = (20 : : : 01 �

3

2

)� (0 : : : 01 �

3

2

)�

� (010 : : : 01 �

3

2

)� (10 : : : 0 �

1

2

) :

Hence we can see here that in this case, the set A

�

is given by

A

�

= f� = � + �; � 2 A ; � 2 �(!

1

)g :

Many other examples lead to the same result, hence we conjecture that the same

fact will be true in general.
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