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Abstract
For a Fedosov manifold (symplectic manifold equipped with a symplectic

torsion-free affine connection ∇) admitting a metaplectic structure, we shall
investigate two sequences of first order differential operators acting on sections
of certain bundles over this manifold. The operators are symplectic analogues
of the twistor operators known from Riemannian spin geometry. Therefore we
call the mentioned sequences symplectic twistor sequences. These sequences are
complexes if the connection ∇ is of Ricci type. We shall prove that the so called
truncated parts of these complexes are elliptic. This establishes a background
for a future analytic study.

Math. Subj. Class.: 22E46, 53C07, 53C80, 58J05
Key words: Fedosov manifolds, Segal-Shale-Weil representation, Kostant’s

spinors, elliptic complexes

1 Introduction

In this article, we prove the ellipticity of certain parts of the so called symplectic
twistor complexes. These parts will be defined later in this text. The symplectic
twistor complexes are two sequences of first order differential operators defined
over Ricci type Fedosov manifolds admitting a metaplectic structure. From
reasons clarified bellow in this paper, we shall call these complexes left and right
symplectic twistor complexes. The mentioned parts of these complexes will be
called left and right truncated symplectic twistor complexes, respectively.

Now, let us say a few words about the Fedosov manifolds. Formally speaking,
a Fedosov manifold is a triple (M2l, ω,∇) where (M2l, ω) is a 2l dimensional
symplectic manifold and ∇ is an affine torsion-free symplectic connection. By
torsion-free and symplectic, one means T∇(X,Y ) := ∇XY −∇YX− [X,Y ] = 0
for all vector fields X,Y ∈ X(M), and ∇ω = 0, respectively. Connections
satisfying these two properties are usually called Fedosov connections in the
∗E-mail address: krysl@karlin.mff.cuni.cz
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honor of Boris Fedosov who used them to obtain a deformation quantization for
symplectic manifolds. (See Fedosov [4].) Let us also mention that in contrary to
torsion-free Riemannian connections, the Fedosov connections are not unique.
We refer an interested reader to Tondeur [19] and Gelfand, Retakh, Shubin [5]
for more information.

To formulate the result on the ellipticity of the truncated symplectic twistor
complexes, one should know some basic facts on the structure of the curvature
of a Fedosov connection. In Vaisman [21], one can find a proof of a theorem
saying that the curvature tensor field of a Fedosov connection splits into two
parts if l ≥ 2, namely into the symplectic Ricci and symplectic Weyl curvature
tensor fields. If l = 1, only the symplectic Ricci curvature tensor field occurs.
Fedosov manifolds with zero symplectic Weyl curvature tensor fields are usually
called of Ricci type. (See Vaisman [21] and Cahen, Schwachhöfer [2].)

After introducing the underlying geometric structure, let us start describing
the fields on which the differential operators from the symplectic twistor com-
plexes act. The fields are certain exterior differential forms with values in the so
called symplectic spinor bundle. The symplectic spinor bundle is an associated
vector bundle to the metaplectic bundle. We shall introduce the metaplectic
bundle briefly now. Because the first homotopy group of the symplectic group
Sp(2l,R) is isomorphic to Z, there exists a connected two-fold covering of this
group. The covering space is called metaplectic group, and it is usually denoted
by Mp(2l,R). Let us fix an element of the isomorphism class of all connected
2 : 1 coverings of Sp(2l,R) and denote it by λ. In particular, the mapping
λ : Mp(2l,R) → Sp(2l,R) is a Lie group representation. A metaplectic struc-
ture on a symplectic manifold (M2l, ω) is a notion parallel to that one of a spin
structure known from Riemannian geometry. In particular, one of its part is a
principal Mp(2l,R)-bundle Q covering twice the bundle of symplectic repers P
on (M,ω). This principal Mp(2l,R)-bundle is the mentioned metaplectic bun-
dle and we will suppose this bundle to be chosen, and keep denote it by Q
throughout this section.

As we have already said, the fields we shall be interested in, are certain exte-
rior differential forms on M2l with values in the symplectic spinor bundle. The
symplectic spinor bundle is a vector bundle over M associated to the chosen
principal Mp(2l,R)-bundle Q via an ’analytic derivate’ of the Segal-Sahle-Weil
representation. The Segal-Shale-Weil representation, denoted by L̃ in this text,
is a faithful unitary representation of the metaplectic group Mp(2l,R) on the
vector space L2(L) of complex valued square Lebesgue integrable functions de-
fined on a Lagrangian subspace L of the (standard) symplectic vector space
(R2l, ω0). For technical reasons, we shall use the so called Casselman-Wallach
globalization V∞(HC(L2(L))) of the underlying Harish-Chandra (g, K̃)-module
of the Segal-Shale-Weil representation. (Here, g̃ is the Lie algebra of the sym-
plectic group G and K̃ is a maximal compact group in the metaplectic group G̃.)
We shall denote the resulting representation by by L and call it the metaplectic
representation. Thus L : Mp(V, ω0) → Aut(S), where S := V∞(HC(L2(L))).
We always consider the vector space S to be equipped with the action of the
group Mp(2l,R) and call its symplectic spinors. Let us mention that S decom-
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poses into two irreducible Mp(2l,R)-submodules S+ and S−, i.e., S = S+⊕S−.
In the following paragraph, we shall briefly explain why the elements of S are
called (symplectic) spinors. To our knowledge, the term symplectic spinor was
first used by B. Kostant [10].

It is known that the infinitesimal mp(2l,R)-module structure of the under-
lying Harish–Cha-ndra (g, K̃)-module of S is equivalent to the space of poly-
nomials C[x1, . . . , xl] on which the Lie algebra mp(2l,R) acts by the so called
Dixmier representation of the symplectic Lie algebra sp(2l,R) ' mp(2l,R). (The
Dixmier representation is an injective Lie algebra homomorphism of the Lie al-
gebra mp(2l,C) into the Lie algebra End(C[x1, . . . , xl]).) Because C[x1, . . . , xl] '⊕∞

k=0 S
k(LC) (the symmetric power of the complexification of the Lagrangian

subspace L), we see that the situation is parallel (”super-symmetric”) to the
case of so(2l,C), for which spinors can be considered as elements of the exterior
power of a maximal isotropic subspace in C2l wr. to the bilinear form defining
the Lie algebra so(2l,C). Besides the super-symmetry, the fact that the meta-
plectic representation does not descend to a representation of the symplectic
group gives a further justification for the use of the term ’spinor’ in this case.
See Howe [6] and Shale [17] for related information. In the latter reference, one
can find a use of symplectic spinors, i.e., elements in S, in a quantization of
boson fields.

After we have introduced the Segal-Shale-Weil and metaplectic representa-
tions, let us describe the mentioned fields on which the operators from the sym-
plectic twistor complexes act more precisely. The underlying algebraic structure
of the symplectic spinor valued exterior differential forms is the vector space of
symplectic spinor valued exterior forms, i.e., the vector space E =

∧•(R2l)∗⊗S.
We are considering the Grothendieck tensor product topology on E. Obviously,
this vector space is equipped with the following tensor product representation ρ
of the metaplectic group Mp(2l,R). Thus, for r = 0, . . . , 2l, g ∈ Mp(2l,R) and
α ⊗ s ∈

∧r(R2l)∗ ⊗ S, we set ρ(g)(α ⊗ s) := λ(g)∗∧rα ⊗ L(g)s and extend this
prescription linearly. With this notation in mind, the symplectic spinor valued
exterior differential forms are sections of the vector bundle E associated to the
chosen principal Mp(2l,R)-bundle Q via ρ, i.e., E := Q×ρ E.

Now, we shall restrict our attention to the mentioned specific symplectic
spinor valued exterior differential forms. For each r = 0, . . . , 2l, there exists a
distinguished irreducible submodule of

∧r(R2l)∗ ⊗ S± which we denote by Er±.
Actually, the submodules Er± are the Cartan components of

∧r(R2l)∗⊗S±, i.e.,
their highest weight is the largest one of the highest weights of all irreducible
constituents of

∧r(R2l)∗⊗S± wr. to the classical choices. For r = 0, . . . , 2l, we
set Er := Er+⊕Er− and Er := Q×ρEr. Further, let us denote the corresponding
Mp(2l,R)-equivariant projection from

∧r(R2l)∗ ⊗ S onto Er by pr. We denote
the lift of the projection pr to the associated structures by the same symbol,
i.e., pr : Γ(M,Q×ρ (

∧r R2l ⊗ S))→ Γ(M, Er).
Now, we are in a position to define the subject of our investigation, namely

the symplectic twistor complexes. Let us consider a Fedosov manifold (M,ω,∇)
and suppose that (M,ω) admits a metaplectic structure. Let d∇

S

be the exterior
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covariant derivative associated to ∇. For each r = 0, . . . , 2l, let us restrict the as-
sociated exterior covariant derivative d∇

S

to Γ(M, Er) and compose the restric-
tion with the projection pr+1. The resulting operator will be called symplectic
twistor operator and we will denote it by Tr. In this way, we obtain two se-

quences, namely 0 −→ Γ(M, E0) T0−→ Γ(M, E1) T1−→ · · · Tl−1−→ Γ(M, E l) −→ 0 and

0 −→ Γ(M, E l) Tl−→ Γ(M, E l+1)
Tl+1−→ · · · T2l−1−→ Γ(M, E2l) −→ 0. It is known, see

Krýsl [12], that these sequences are complexes provided the Fedosov manifold
(M2l, ω,∇) is of Ricci type. These two complexes are the mentioned symplectic
twistor complexes. Let us notice, that we did not choose the full sequence of all
symplectic spinor valued exterior differential forms and the exterior covariant
derivative acting between them because for a Ricci type Fedosov manifold, this
sequence would not form a complex in general.

As we have mentioned, we shall prove that some parts of these two complexes
are elliptic. To obtain these parts, one should remove the last (the zero) term
and the second last term from the first complex and the first (the zero) term from
the second complex. The complexes obtained in this way will be called left and
right truncated symplectic twistor complex according whether we have removed
the bundles from the first symplectic twistor complex or from the second one,
respectively. Let us mention that by an elliptic complex, we mean a complex
of differential operators such that its associated symbol sequence is an exact
sequence of the sheaves in question. (We shall make this definition more precise
in the text. See Schulze et al. [16] for details.)

Let us make some remarks on the methods we used to prove the ellipticity of
the symplectic twistor complexes. We decided to use the so called Schur-Weyl-
Howe correspondence, which we refer to as Howe correspondence for simplicity
and which assigns to each representation of a Lie group G the so called dual
partner and certain representation of this partner. In general, the Howe duality
helps us to treat the representations of the group we started with. In the case of
GL(V) acting on V⊗k via the tensor product of its defining representation, the
dual pair is the symmetric group Sk on k letters acting on V⊗k by permuting
the positions of vectors constituting the appropriate k-tensor. The presence of
the symmetric group, combinatorial in its nature, leads to several combinatorial
tools which are well known in the representation theory of the general linear
group GL(V), e.g., to the concept of Young diagrams. The Howe type corre-
spondence in our case, i.e., for the metaplectic group Mp(2l,R) acting on the
space E of symplectic spinor valued exterior forms, leads to the ”smallest” sim-
ple super Lie algebra, namely to the ortho-symplectic super Lie algebra osp(1|2)
and certain representation on E. We decided to use the Howe type correspon-
dence mainly because the spaces Er can be characterized via the mentioned
representation of osp(1|2) easily. See R. Howe [6] for more information on the
Howe type correspondence in general [6]. Let us also mention that we have used
the Cartan lemma on exterior differential forms in the proof of the ellipticity.

For other examples of elliptic complexes, we refer the reader, e.g., to Hotta
[8], Schmid [14] or [15] and Stein and Weiss [18]. Let us mention that the proofs
of the ellipticity of the deRham and Dolbeault complexes are also based on
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a use of the Cartan lemma only. Roughly said, this is mainly because of the
relatively simple representation theory of the orthogonal (deRham case) and
unitary groups (Dolbeault case) on exterior forms and their complexification,
respectively. See, e.g., Wells [24].

In the second section, we recall some basic facts from symplectic linear alge-
bra, mention facts on symplectic spinors and symplectic spinor valued exterior
forms and its decomposition into irreducible submodules. In the third chapter,
basic facts on Fedosov manifolds and their curvature are mentioned and the
symplectic twistor complexes are introduced. In the fourth chapter, the sym-
bol sequence of the symplectic twistor complexes is computed, several lemmas
of technical character are derived and finally, the ellipticity of the truncated
symplectic twistor complexes is proved.

2 Symplectic spinor valued forms

In this section, we set a notation, recall some facts from symplectic linear al-
gebra, give a definition the metaplectic group and introduce the basic object
of our study, namely the space of symplectic spinor valued exterior forms. In
the whole text the Einstein summation convention is used, not mentioning it
explicitly.

2.1 Symplectic group and its action on exterior forms

In order to set the notation, let us start recalling some simple results from sym-
plectic linear algebra. Let (V, ω0) be a real symplectic vector space of dimension
2l, l ≥ 1. Let us choose two Lagrangian subspaces L and L′, such that V ' L⊕L′
1. It is easy to check that dim L = dim L′ = l. Let us choose an adapted sym-
plectic basis {ei}2li=1 of (V ' L ⊕ L′, ω0), i.e., {ei}2li=1 is a symplectic basis of
(V, ω0) and {ei}li=1 ⊆ L and {ei}2li=l+1 ⊆ L′. The basis dual to the basis {ei}2li=1

will be denoted by {εi}2li=1, i.e., for i, j = 1, . . . , 2l we have εj(ei) = ιeiε
j = δji ,

where ιvα for an element v ∈ V and an exterior form α ∈
∧•V∗, denotes the

contraction of the form α by the vector v. Further for i, j = 1, . . . , 2l, we set
ωij := ω0(ei, ej) and define ωij , i, j = 1, . . . , 2l, by the equation ωijωkj = δki for
all i, k = 1, . . . , 2l. (Here the summation convention was used.) Let us remark
that not only ωij = −ωji, but also ωij = −ωji for i, j = 1, . . . , 2l.

As in the Riemannian case, we would like to rise and lower indices of tensor
coordinates. In the symplectic case, one should be more careful because of the
anti-symmetry of ω0. For coordinates Kab...c...d

rs...t...u of a tensor K over V, we
denote the expression ωicKab...c...d

rs...t by Kab...
i
...d

rs...t
and Kab...c

rs...t...uωti by
Kab...c

rs...
i
...u and similarly for other types of tensors and also in the geometric

setting when we will be considering tensor fields over a symplectic manifold
(M,ω). Further, one can also define an isomorphism ] : V∗ → V, α 7→ α], by

1Let us recall that by Lagrangian, we mean maximal isotropic wr. to ω0
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the formula
α(w) = ω0(α], w) for each α ∈ V∗ and w ∈ V.

For α = αiε
i and j = 1, . . . , 2l, we get αj = α(ej) = ω0((α])iei, ej) = ωij(α])i =

(α])j which implies α] = (α])iei = αiei. Thus, we see that the isomorphism ]
is realized by rising of indices via the form ω0.

Now, let us introduce the groups we will be dealing with. Let us denote the
symplectic group of (V, ω0) by G, i.e., G := Sp(V, ω0) ' Sp(2l,R). Because the
homotopy group of G = Sp(V, ω0) is Z, there exists a connected 2 : 1 (necessarily
non-universal) covering of G by a Lie group G̃, the so called metaplectic group;
here denoted by G̃ := Mp(V, ω0) ' Mp(2l,R). Denote by λ : G̃ → G the
mentioned two-fold covering.

2.2 Segal-Shale-Weil representation and symplectic spinor valued
forms

The Segal-Shale-Weil representation is a distinguished representation of the
metaplectic group G̃ = Mp(V, ω0).2 As we have mentioned in the Introduction,
this representation is unitary, faithful and does not descend to a representa-
tion of the symplectic group. Its underlying vector space is the vector space
of complex valued square Lebesgue integrable functions L2(L) defined on the
Lagrangian subspace L. To set a notation, let us denote the Segal-Shale-Weil
representation by L̃, i.e.,

L̃ : G̃→ U(L2(L)),

where U(H) denotes the unitary group of a Hilbert space H. Let us set S :=
V∞(HC(L2(L))), where V∞ is the Casselma-Wallach globalization functor and
HC be the forgetful Harish-Chandra functor. We shall denote the result-
ing Casselman-Wallach globalization of the Segal-Shale-Weil representation by
L and call it the metaplectic representation and the elements of S symplec-
tic spinors. It is well known that S splits into two irreducible Mp(V, ω0)-
submodules S+ and S−. Thus, we have S = S+ ⊕ S−. See Weil [23] and
Kashiwara, Vergne [9] for more detailed information on the Segal-Shale-Weil
representation and Casselman [3] on this type of globalization.

Now, we may define the so called symplectic Clifford multiplication · : V ×
S → S. For s ∈ S, x = xjej ∈ L, xj ∈ R, j = 1, . . . , 2l and i = 1, . . . , l, let us
set

ei.s(x) := ıxis(x) and

ei+l.s(x) :=
∂s

∂xi
(x).

In physics, this mapping (up to a constant multiple) is usually called the canon-
ical quantization.

2The names oscillator and metaplectic are also used in the literature. See, e.g., Howe [6].
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Let us remark that the definition is correct because of an interpretation of
the Casselman-Wallach (also called smooth) globalization See, e.g., Vogan [22]
for details on this interpretation.

For each v, w ∈ V and s ∈ S, one can easily derive the following commutation
relation

v.w.s− w.v.s = −ıω0(v, w)s. (1)

(For a proof, see, e.g., Habermann, Habermann [7].) We shall use this relation
repeatedly and almost always without mentioning its use.

Now, we prove that the symplectic Clifford multiplication by a fixed non-zero
vector v ∈ V is injective as a mapping from S→ S. We shall use the equivariance
of the symplectic Clifford multiplication, i.e., the fact L(g)(v.s) = [λ(g)v].L(g)s
which hold for each g ∈ G̃, v ∈ V and s ∈ S. (See Habermann, Habermann [7].)
Thus, let us suppose that s ∈ S and 0 6= v ∈ V are given such that v.s = 0.
Because the action of the symplectic group G on V − {0} is transitive and λ
is a covering, there exists an element g ∈ G̃ such that λ(g)v = e1. Applying
L(g) on the equation v.s = 0, we get L(g)(v.s) = 0. Using the above mentioned
equivariance of the symplectic Clifford multiplication, we get 0 = L(g)(v.s) =
[λ(g)v].(L(g)s) = e1.(L(g)s). Denoting L(g)s =: ψ and using the definition of
the symplectic Clifford multiplication, we get x1ψ = 0, which implies ψ(x) = 0
for each x = (x1, . . . , xl) ∈ L such that x1 6= 0. By continuity of ψ, we get ψ = 0.
Because L is a group representation, we get s = 0 from 0 = ψ = L(g)s, i.e., the
injectivity of the symplectic Clifford multiplication.

Having defined the Segal-Shale-Weil representation and the symplectic Clif-
ford multiplication, we shall introduce (the algebraic and analytic version of)
the basic geometric structure we are be interested in. Namely, we introduce the
space E of symplectic spinor valued exterior forms, i.e., the space

∧• V∗⊗S. We
shall consider this space to be equipped with the Grothendieck tensor product
topology, cf., e.g., Tréves [20].

The metaplectic group G̃ := Mp(V, ω0) acts on E by the representation

ρ : G̃→ Aut(E) defined by the formula

ρ(g)(α⊗ s) := (λ(g)∗)∧rα⊗ L(g)s,

where α ∈
∧r V∗, s ∈ S, r = 0, . . . , 2l, and it is extended by linearity also to

non-homogeneous elements.
For a vector v ∈ V and a homogeneous symplectic spinor valued exterior

form ψ := α ⊗ s, we set ιvψ := ιvα ⊗ s and v.ψ := α ⊗ v.s and extend the
definition by linearity to non-homogeneous elements.

Now, we shall describe the decomposition of E into irreducible Mp(V, ω0)-
submodules. For i = 0, . . . , l, let us set mi := i, and for i = l + 1, . . . 2l, we set
mi := 2l − i, and define the set Ξ of pairs of non-negative integers

Ξ := {(i, j) ∈ N0 × N0|i = 0, . . . , 2l, j = 0, . . . ,mi}.
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One can say the set Ξ has a shape of a triangle if visualized in a 2-plane. (See the
Figure 1. bellow). We use this set for parameterizing the irreducible submodules
of E.

In Krýsl [11] for each (i, j) ∈ Ξ, two irreducible G̃-modules Eij± were uniquely
defined via the highest weights of their underlying Harish-Chandra module and
the fact that they are irreducible submodules of

∧i V∗⊗S±. For our convenience
for each (i, j) ∈ Z × Z \ Ξ, let us put Eij± := 0, and for each (i, j) ∈ Z × Z, we
define Eij := Eij+ ⊕ Eij−. In general, all objects equipped with one index or a
tuple of indices are supposed to be zero if the index is out of the range 1, ..., 2l
or the tuple is out of the set Ξ, respectively.

In the following theorem, the decomposition of E into irreducible G̃-sub–
modules is described.

Theorem 1: For r = 0, . . . , 2l, the following decomposition into irreducible
G̃-modules

r∧
V∗ ⊗ S± '

⊕
j,(r,j)∈Ξ

Erj± holds.

Proof. See Krýsl [11]. �
Whereas it is not necessary to provide the reader with a prescription for the

highest weights of the G̃-modules Eij±, the following remark on the multiplicity
structure of the module E will be crucial. This remark follows from the pre-
scriptions for the highest weights of the infinitesimal structure of the underlying
Harish–Chandra modules of Eij± in Krýsl [13] easily.

Remark:

1. For any (r, j), (r, k) ∈ Ξ such that j 6= k, we have

Erj± 6' Erk±

(any combination of ± at both sides of the preceding relation is allowed).
Thus in particular,

∧r V∗ ⊗ S is multiplicity-free for each r = 0, . . . , 2l.

2. Moreover, it is known that Erj± ' Esj∓ for each (r, j), (s, j) ∈ Ξ. One
cannot change the order of + and − at precisely one side of the preceding
isomorphism without changing its trueness.

3. From the preceding two items, one gets immediately that there are no
submodules of

∧i V∗ ⊗ S isomorphic to Ei+1,i+1
± for each i = 0, . . . , l − 1.

In the next figure (Figure 1.), one can see the decomposition structure of∧•V∗ ⊗ S± in the case of l = 3. For i = 0, . . . , 6, the ith column constitutes of
the irreducible modules in which the S±-valued exterior forms of form-degree i
decompose.
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E00
± E10

± E20
± E30

± E40
± E50

± E60
±

E11
± E21

± E31
± E41

± E51
±

E22
± E32

± E42
±

E33
±

Figure 1. Decomposition of
∧• V∗ ⊗ S± for l = 3.

In the next theorem, the decomposition of V∗ ⊗Eij , (i, j) ∈ Ξ, is described.
Let us remind the reader that due to our convention Eij = 0 for (i, j) ∈ Z×Z\Ξ.

Theorem 2: For (i, j) ∈ Ξ, we have

(V∗ ⊗Eij) ∩ (
i+1∧

V∗ ⊗ S) ' Ei+1,j−1 ⊕Ei+1,j ⊕Ei+1,j+1.

Proof. See the proof of the Theorem 4 in Krýsl [13]. �
Remark: In the mentioned Theorem 4, a superset of the image of an ex-

terior covariant derivative was determined. The problem of determining this
superset was reduced to the question of determining (V∗⊗Eij)∩ (

∧i+1 V∗⊗S)
immediately. The intersection computed there is identical to the right-hand side
of the isomorphism in the Theorem 2 of this paper.

2.3 Operators related to a Howe type correspondence.

In this section, we will introduce five operators acting on the space E of sym-
plectic spinor valued exterior forms. These operators are related to the so called
Howe type correspondence for the metaplectic group Mp(V, ω0) acting on E via
the representation ρ introduced above.

For r = 0, . . . , 2l and α⊗ s ∈
∧r V∗ ⊗ S, we set

F+ :
r∧

V∗ ⊗ S→
r+1∧

V∗ ⊗ S, F+(α⊗ s) :=
ı

2

2l∑
i=1

εi ∧ α⊗ ei.s,

F− :
r∧

V∗ ⊗ S→
r−1∧

V∗ ⊗ S, F−(α⊗ s) :=
1
2

2l∑
i=1

ωijιeiα⊗ ej .s

and extend them linearly.
Next, we shall define the operators H,E+ and E−. For r = 0, . . . , 2l, we set

H :
r∧

V∗ ⊗ S→
r∧

V∗ ⊗ S, H := 2{F+, F−} and
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E± :
r∧

V∗ ⊗ S→
r±2∧

V∗ ⊗ S, E± := ±2{F±, F±},

where {, } denotes the anti-commutator in the associative algebra End(E).
In the next lemma, we sum-up some known facts on the operators F±,

E± and H which we shall need in the proof of the ellipticity of the truncated
symplectic twistor complexes.

Lemma 3:

1. The operators F±, E± and H are G̃-equivariant.

2. For i = 0, . . . , l, the operator F−|Eimi = 0.

3. For α⊗ s ∈
∧•V∗ ⊗ S, we have

E−(α⊗ s) =
ı

2
ωijιeiιejα⊗ s. (2)

4. The associative algebra
EndG̃(E) := {A ∈ End(E)|Aρ(g) = ρ(g)A for all g ∈ G̃} is generated
by F+ and F− and the projections p±, where p± : S → S± are the
G̃-equiavariant projections.

Proof. See Krýsl [11]. �
According to the third item of the preceding lemma, we see that the operator

E− acts on the form-part of a symplectic spinor valued exterior form only.
Because of that, we will make no difference between E−(α⊗ s) and E−(α)⊗ s
and we will write E−α⊗s instead of any of the previous two expressions briefly.

Now, let us prove a lemma of a technical character. We shall use it when we
will be proving the ellipticity of the truncated symplectic twistor complexes.

Lemma 4: For each r = 0, . . . , 2l, (i, j) ∈ Ξ, v ∈ V and α⊗ s ∈
∧r V∗ ⊗ S

the following relations

[E+, E−] = H, [E−, F+] = −F−, (3)

H(α⊗ s) =
1
2

(r − l)α⊗ s, (4)

F−F+
|Eij =

1
4

(
1 + i− j

2
)IdEij for i+ j odd, (5)

F−F+
|Eij =

1
4

(
i+ j

2
− l)IdEij for i+ j even, (6)

{F+, ιv}(α⊗ s) =
ı

2
α⊗ v.s and [F−, v.](α⊗ s) =

ı

2
ιvα⊗ s (7)

hold.
Proof. See Krýsl [11] for a proof of the relations in the rows (3), (4), (5) and

(6). Let us suppose we are given an element v = viei ∈ V, vi ∈ R, i = 1, . . . , 2l,
and a homogeneous element α ⊗ s ∈

∧j V∗ ⊗ S, j = 0, . . . , 2l. First, let us
prove the first relation in the row (7). Using the definition of F+, we may write
{F+, ιv}(α⊗s) = F+(ιvα⊗s)+ ı

2 ιv(ε
i∧α⊗ei.s) = ı

2 [εi∧ιvα⊗ei.s+viα⊗ei.s−εi∧
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ιvα⊗ei.s] = ı
2α⊗v.s. Thus, the first relation of (7) follows by linearity. Now, let

us prove the second relation at the row (7). Using the definition of F− and the
commutation relation (1), we get F−(α⊗v.s) = 1

2 (ωijιeiα⊗ej .v.s) = 1
2ω

ijιeiα⊗
(v.ej .s− ıω0(ej , v)s) = v.F−(α⊗ s) + ı

2ω
ijιeiα⊗ vjs = v.F−(α⊗ s) + ı

2 ιvα⊗ s.
Thus, the second relation at the row (7) is proved. �

Remark: The operators F±, E± and H satisfy the commutation and anti-
commutation relations identical to that one which are satisfied by the usual
generators of the ortho-symplectic super Lie algebra osp(1|2). One can say that
the super-Lie algebra osp(1|2) is a Howe dual partner to the metaplectic group
Mp(V, ω0) acting on E via ρ. See the Introduction and the references therein
for more on the Howe type correspondence.

3 Symplectic twistor complex

In this section, we define the notion of a Fedosov manifold, recall some infor-
mations on its curvature, introduce the symplectic analogue of a spin structure,
namely the metaplectic structure) and define the symplectic twistor complex.

Let (M,ω) be a symplectic manifold. Let us consider an affine torsion-
free symplectic connection ∇ on (M,ω) and denote the induced connection on
Γ(M,

∧2
T ∗M) also by ∇. Let us recall that by torsion-free and symplectic, we

mean T (X,Y ) := ∇XY −∇YX − [X,Y ] = 0 for all X,Y ∈ X(M) and ∇ω = 0
These connections are usually called Fedosov connections. See the Introduction
and the references therein for an application of these connections. The curvature
tensor R∇ of a Fedosov connection is defined in the classical way, i.e., formally
by the same formula as in the Riemannian geometry. It is known, see, e.g.,
Vaisman [21], that R∇ splits into two parts, namely into the symplectic Ricci
and Weyl curvature tensors fields σ̃∇ and W∇. Let us display the definitions of
these two curvature parts. In what follows whenever indices are not quantified
and we are not summing over them, we suppose the appropriate predicate holds
for all these indices from the set {1, . . . , 2l}. For each m ∈ M, we choose an
open neighborhood U 3 m such that there exists an adapted symplectic frame
{ei}2li=1 on it. Coordinates of a tensor field are always meant with respect to
the chosen frame. For the coordinates of the symplectic Ricci and symplectic
Weyl tensor fileds, we have (see Vaisman [21])

σij := Rkikj ,

2(l + 1)σ̃∇ijkl := ωilσjk − ωikσjl + ωjlσik − ωjkσil + 2σijωkl and

W∇ := R∇ − σ̃∇.

Let us call a Fedosov manifold of Ricci type, if W∇ = 0.
Remark: Because the Ricci curvature tensor field is symmetric (see Vais-

man [21]), a possible symplectic scalar curvature does not exist because σijωij
is zero.

Example: It is easy to see that each Riemann surface equipped with its
volume form as the symplectic form and with the Levi-Civita connection is a

11



Fedosov manifold of Ricci type. Further for any l ≥ 1, the Fedosov manifold
(CPl, ωFS ,∇) is also a Fedosov manifold of Ricci type. Here, ωFS is the Kähler
form associated to the Fubini-Study metric and to the standard complex struc-
ture on CPl, and ∇ is the Levi-Civita connection associated to the Fubini-Study
metric.

Now, let us introduce the metaplectic structure the definition of which we
have sketched briefly in the Introduction. The metaplectic structure is a sym-
plectic analogue of the notion of a spin structure in the Riemannian geometry.
For a symplectic manifold (M2l, ω) of dimension 2l, let us denote the bundle of
symplectic reperes in TM by P and the foot-point projection of P onto M by
p. Thus (p : P →M,G), where G ' Sp(2l,R), is a principal G-bundle over M .
As in the subsection 2.1., let λ : G̃→ G be a member of the isomorphism class
of the non-trivial two-fold coverings of the symplectic group G. In particular,
G̃ ' Mp(2l,R). Further, let us consider a principal G̃-bundle (q : Q → M, G̃)
over the chosen symplectic manifold (M,ω). We call the pair (Q,Λ) metaplectic
structure if Λ : Q → P is a surjective bundle homomorphism on M and if the
following diagram,

Q× G̃

Λ×λ

��

// Q

Λ

��

q

��@
@@

@@
@@

@

M

P ×G // P
p

>>}}}}}}}}

with the horizontal arrows being respective actions of the displayed groups,
commutes. See, e.g., Habermann, Habermann [7] and Kostant [10] for details on
metaplectic structures. Let us only remark, that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and complex projective spaces
CP2k+1, k ∈ N0.

Let us denote the vector bundle associated to the introduced principal G̃-
bundle (q : Q → M, G̃) via the metaplectic representation L by S. Thus, we
have S = Q×L S. We shall call this associated vector bundle symplectic spinor
bundle. The sections φ ∈ Γ(M,S) will be called symplectic spinor fields. Let
us put E := Q ×ρ E. For r = 0, . . . , 2l we define Er := Q ×ρ Er, where Er

abbreviates Ermr . The sections Γ(M, E) will be called symplectic spinor valued
exterior differential forms. (For the notion of differentiability of sections with
values in Fréchet bundles we use the metrizability of the fibers.)

Because the operators E±, F± and H are G̃-equivariant (see the Lemma 3
item 1), they lift to operators acting on sections of the corresponding associated
vector bundles. The same is true about the projections pij , (i, j) ∈ Z× Z, and
p± because they are projections onto G̃-submodules. We shall use the same
symbols as for the defined operators as for their ”lifts” to the associated vector
bundle structure.

Now, we shall make a use of the Fedosov connection. The Fedosov connection
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∇ determines the associated principal bundle connection Z on the principal
bundle (p : P → M,G). This connection lifts to a principal bundle connection
on the principal bundle (q : Q → M, G̃) and defines the associated covariant
derivative on the symplectic bundle S, which we shall denote by ∇S , and call
it the symplectic spinor covariant derivative. See Habermann, Habermann [7]
for details. The symplectic spinor covariant derivative ∇S induces the exterior
symplectic spinor derivative d∇

S

acting on Γ(M, E). For r = 0, . . . , 2l, we have
d∇

S

: Γ(M,Q×ρ (
∧r V∗ ⊗ S)→ Γ(M,Q×ρ (

∧r+1 V∗ ⊗ S)).
Now, we can define the symplectic twistor operators. For r = 0, . . . , 2l, we

set
Tr : Γ(M, Er)→ Γ(M, Er+1), Tr := pr+1,mr+1d∇

S

|Γ(M,Er)

and call these operators symplectic twistor operators. Informally, one can say
that the operators are going on the edge of the triangle at the Figure 1. Let
us notice that F−(∇S − T0) is, up to a nonzero scalar multiple, the so called
symplectic Dirac operator introduced by K. Habermann. See, e.g., Habermann,
Habermann [7].

In the next theorem, we state the result on the two introduced symplectic
twistor sequences.

Theorem 5: Let l ≥ 2 and (M2l, ω,∇) be a Fedosov manifold of Ricci type
admitting a metaplectic structure. Then

0 −→ Γ(M, E00) T0−→ Γ(M, E11) T1−→ · · · Tl−1−→ Γ(M, E ll) −→ 0 and

0 −→ Γ(M, E ll) Tl−→ Γ(M, E l+1,l+1)
Tl+1−→ · · · T2l−1−→ Γ(M, E2l,2l) −→ 0

are complexes.
Proof. See Krýsl [12]. �

4 Ellipticity of the symplectic twistor complex

In this section, we prove the ellipticity of the truncated symplectic twistor com-
plexes. Let us recall that by an elliptic complex of differential operators we
mean a complex of differential operators such that the associated complex of
symbols of the differential operators is an exact sequence of sheaves. (Let us
notice that given a smooth vector bundle V over a smooth manifold M, then we
are always considering the associated sheaf of smooth sections of this bundle.)
See, e.g., Wells [24] and Schulze et al. [16] for more details on ellipticity.

We start with a simple lemma in which the symbol of the exterior covari-
ant symplectic spinor derivative associated to a Fedosov manifold admitting a
metaplectic structure is computed.

Lemma 6: Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic
structure, S → M the corresponding symplectic spinor bundle and d∇

S

the
exterior covariant derivative. Then for each ξ ∈ Γ(M,T ∗M) and α ⊗ φ ∈
Γ(M, E), the symbol σξ of d∇

S

is given by

σξ(α⊗ φ) := ξ ∧ α⊗ φ.

13



Proof. For f ∈ C∞(M), ξ ∈ Γ(M,T ∗M) and α⊗s ∈ Γ(M, E), let us compute
d∇

S

(fα⊗s)−fd∇S (α⊗s) = df ∧α⊗s+fd∇
S

(α⊗s)−fd∇S (α⊗s) = df ∧α⊗s.
Using this computation, we get the statement of the lemma. �

Due to the previous lemma and the definition of the symplectic twistor
operators, we get that for each i = 0, . . . , 2l and ξ ∈ Γ(M,T ∗M), the symbol σξi
of the symplectic twistor operator Ti is given by the formula

σξi (α⊗ s) := pi+1,mi+1(ξ ∧ α⊗ s)

for each α⊗ s ∈ Γ(M, E i).
In order to prove the ellipticity of the symplectic twistor complexes, i.e., the

exactness of the sequence of sheaves

0 −→ Γ(M, E0)
σξ0−→ Γ(M, E1)

σξ1−→ · · ·
σξl−2−→ Γ(M, E l−1) and

Γ(M, E l)
σξl−→ Γ(M, E l+1)

σξl+1−→ · · ·
σξ2l−1−→ Γ(M, E2l) −→ 0,

for any ξ ∈ Γ(M,T ∗M) \ {0}, we need to compare the kernels and the images
of the symbols maps. Therefore, we prove the following statement, in which the
projections pii are more specified. From now on, we shall denote the projections
pii onto Ei by pi simply. (We will make no use of the projections from E onto∧i V∗ ⊗ S or of their lifts to associated structures.)

Lemma 7: For i = 0, . . . , l − 1, ξ ∈ V∗ and α⊗ s ∈ Ei, we have

pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s+ βF+(α⊗ ξ].s) + γ(E+ιξ]α⊗ s), (8)

where β = 2
i−l and γ = ı

i−l .
Proof. We split the proof into four parts.

1. In this item, we prove that for a fixed i ∈ {0, . . . , l} and any k = 0, . . . , i,
there exists αik ∈ C such that

pi =
i∑

k=0

αik(F+)k(F−)k

with αi0 = 1 for each i = 0, . . . , l. Because for each i = 0, . . . , l, the
projections pi are G̃-equivariant morphisms, they can be expressed as
(finite) linear combinations of the elements of the vector space EndG̃(E).
Due to the Lemma 3 item 4 (cf. also Krýsl [11]), we know that the complex
associative algebra EndG̃(E) is (finitely) generated by F+ and F− and the
projections p±. It is easy to see that the projections p± can be omitted
from any expression for pi and thus, each projection pi can be expressed
just using F+ and F−. Due to the defining relation H = 2{F+, F−}
and the relation (4) on the values of H on homogeneous elements, one
can order the operators F+ and F− in the expression for pi and put the
operators F+ to the left-hand and the operators F− to the right-hand. In
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this way, we express pi as a linear combination of the expressions of type
(F+)a(F−)b for a, b ∈ N0.

Since the projection pi does not change the form degree of a symplectic
spinor valued exterior form and F− and F+ decreases and increases the
form degree by one, respectively, the relation a = b follows. Because the
operator F− decreases the form degree by one, for k > i, the summands
(F+)k(F−)k actually do not occur in the expression for the projection pi

written above. Thus,

pi =
i∑

k=0

αik(F+)k(F−)k (9)

for some αik ∈ C, k = 0, . . . , i.

Now, we shall prove the equation αi0 = 1, i = 0, . . . , l. By evaluating the
left-hand side of (9) on an element φ ∈ Ei we get φ, whereas at the right-
hand side the only summand which remains is the zeroth one. (The other
summands vanish because F− is G̃-equivariant, decreases the form degree
by one and there is no summand in

∧i−1 V∗ ⊗ S isomorphic to Ei+ or to
Ei−. See the Remark item 3 bellow the Theorem 1.)

2. Now, suppose ξ ∈ V∗ and α⊗s ∈ Ei, i = 0, . . . , l−1. Due to the Theorem
2, we know that φ := ξ ∧ α ⊗ s ∈ Ei+1,i−1 ⊕ Ei+1,i ⊕ Ei+1,i+1. Applying
pi+1 on the element φ, only the zeroth, first, and second summand in the
expression pi+1φ =

∑i+1
k=0 α

i+1
k (F+)k(F−)kφ. (For k > 2, the kth sum-

mand vanishes in the expression for pi+1φ because F− is G̃-equivariant,
decreases the form degree by one and there is no summand in

∧i−2 V∗⊗S
isomorphic to Ei+1,i−1

± or Ei+1,i
± or Ei+1,i+1

± . See the Remark bellow the
Theorem 1.)

3. Due to the previous item, we already know that for the element φ = ξ∧α⊗s
chosen above, we get

pi+1φ =
2∑
k=0

αi+1
k (F+)k(F−)kφ.

Using the relations (4) and (2), may write

pi+1(ξ ∧ α⊗ s) =
= ξ ∧ α⊗ s+ αi+1

1 F+F−(ξ ∧ α⊗ s) + αi+1
2 (F+)2(F−)2(ξ ∧ α⊗ s)

= ξ ∧ α⊗ s+ αi+1
1

1
2
F+ωij [(ιeiξ)α⊗ ej .s− ξ ∧ ιeiα⊗ ej .s]−

αi+1
2 E+ ı

32
ωijιeiιej (ξ ∧ α⊗ s)

= ξ ∧ α⊗ s− αi+1
1

1
2
F+[α⊗ ξ].s+ 2ξ ∧ F−(α⊗ s)]−

−αi+1
2 E+ ı

32
ωijιei(ξjα⊗ s− ξ ∧ ιejα⊗ s)
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Because α⊗ s ∈ Ei, we get F−(α⊗ s) = 0 by Lemma 3 item 2. Using this
equation, we may write

pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s− αi+1
1

2
F+(α⊗ ξ].s)

− ıα
i+1
2

32
E+(2ξiιeiα⊗ s+

2αi+1
2

ı
ξ ∧ E−α⊗ s).

The last summand in this expression vanishes due to the Lemma 3 item
2 because E− = −4F−F− and α⊗ s ∈ Ei.

Summing-up, we have

pi+1φ = ξ ∧ α⊗ s− αi+1
1

1
2
F+(α⊗ ξ].s)− αi+1

2

ı

16
E+ιξ]α⊗ s,

which is the formula of the form written in the statement of the lemma.

4. In this item, we shall determine the numbers β, γ ∈ C. This can be done
in at least two different ways. The first one relies on the evaluation of
pi+1 (obtained in the preceding item) on an element φ ∈ Ei+1,i. After a
straightforward but tedious computation, we get αi+1

1 = 4/(l−i) just using
the formulas (4), (5) and (6). Evaluating pi+1 on an element φ ∈ Ei+1,i−1,
we get αi+1

2 = 16/(l− i) using the same method. The second possibility is
to use the identities and the idempotence (pi+1)2 = pi+1. Thus, comparing
the last written formula of the preceding item and the Eqn. (8), we get
β = 2/(i− l) and γ = ı/(i− l).

�
Remark: For i = l, . . . , 2l, ξ ∈ V∗ and α ⊗ s ∈ Ei, the formula for pi+1

reads simply
pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s

because of the Theorem 2 and the Remark 3 bellow the Theorem 1.
Now, using the Lemmas 3, 4, 6 a 7, we are able to prove the ellipticity of

the symplectic twistor complexes.
Theorem 8: Let (M,ω,∇) be a Fedosov manifold of Ricci type admitting

a metaplectic structure. Then the truncated symplectic twistor complexes

0 −→ Γ(M, E0) T0−→ Γ(M, E1) T1−→ · · · Tl−2−→ Γ(M, E l−1) and

Γ(M, E l) Tl−→ Γ(M, E l+1)
Tl+1−→ · · · T2l−1−→ Γ(M, E2l) −→ 0

are elliptic.
Proof.

1. First, we prove that the sequences mentioned in the formulation of the
theorem are complexes. For i = 0, . . . , l − 2, l, . . . , 2l − 1, ψ ∈ Γ(M, E i)
and a differential 1-form ξ ∈ Γ(M,T ∗M), we may write 0 = pi+1(0) =
pi+1((ξ ∧ ξ) ∧ ψ) = pi+1(ξ ∧ Id(ξ ∧ ψ)) = pi+1(ξ ∧

∑mi+1
j=0 pi+1,j(ξ ∧ ψ)).

Due to the Theorem 2, we know that the last written expression equals
pi+1(ξ ∧ pi(ξ ∧ ψ)) = σξi+1σ

ξ
i (ψ) and thus σξi+1σ

ξ
i = 0.
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2. Second, we prove the relation Ker(σξi ) ⊆ Im(σξi−1)3 for each 0 6= ξ ∈ X(M)
and i = 0, . . . , l − 2 (recall σξ−1 = 0 due to our convention). Suppose a
homogeneous element α⊗ s ∈ Γ(M, E i) is given such that σξi (α⊗ s) = 0.
(At the end of this item, we will treat the general non-homogeneous case.)
Due to the paragraph bellow the Lemma 6 we know that 0 = σξi (α⊗ s) =
pi+1(ξ ∧ α⊗ s). Thus, we shall find an element ψ ∈ Γ(M, E i−1) such that
pi(ξ ∧ ψ) = α⊗ s.
Using formula (8) for the projection (Lemma 7), we may rewrite the equa-
tion pi+1(ξ ∧ α⊗ s) = 0 into

ξ ∧ α⊗ s+ βF+(α⊗ ξ].s) + γE+ιξ]α⊗ s = 0. (10)

Applying the operator E− (in the form of the formula (2)) on the both
sides of the previous equation and using the first commutation relation in
the row (3) from Lemma 4, we get

ı

2
ωijιeiιej (ξ ∧ α)⊗ s+ βE−F+(α⊗ ξ].s)+

+γ(E+E− − 2H)ιξ]α⊗ s = 0

Using the graded Leibniz property of ιξ] , the relation (4) for the values of
H on homogeneous elements and the second relation in the row (3) from
Lemma 4, we obtain

ı

2
(−2ιξ] − 2ıξ ∧ E−)(α⊗ s) + βF+E−(α⊗ ξ].s)− βF−(α⊗ ξ].s)+

+γE+E−ιξ]α⊗ s+ γ(l − i+ 1)ιξ]α⊗ s = 0.

Because E− = ı
2ω

ijιeiιej (formula (2)), the operator E− commutes with
the operator of the symplectic Clifford multiplication (by the vector field
ξ]), and also with the contraction ιξ] . Using these two facts, we get

ı

2
(−2ιξ] − 2ıξ ∧ E−)(α⊗ s) + βF+ξ].E−(α⊗ s)− βF−(α⊗ ξ].s)+

+γE+ιξ]E
−α⊗ s+ γ(l − i+ 1)ιξ]α⊗ s = 0.

Because F−(α⊗s) = 0 (Lemma 3 item 2) and thus, E−α⊗s(= 4F−F−(α⊗
s)) = 0. Thus, we obtain the identity

−ıιξ]α⊗ s− βF−(α⊗ ξ].s) + γ(l − i+ 1)ιξ]α⊗ s = 0.

Substituting the second relation in the row (7) into the previous equation
and using the fact F−(α⊗ s) = 0 again, we get

−ıιξ]α⊗ s− βξ].F−(α⊗ s)− β ı
2
ιξ]α⊗ s+

3Basically, the closure is with respect to the Grothendieck tensor product topology.

17



+γ(l − i+ 1)ιξ]α⊗ s = 0.

Using the prescription for the numbers β and γ (Lemma 7) and the already
twice used relation F−(α⊗s) = 0, we get (−ı+γ(l− i+1)−β ı2 )ιξ]α⊗s =
−2ıιξ]α⊗ s = 0 from which the equation

ιξ]α⊗ s = 0 (11)

follows.

Substituting this relation into the prescription for the projection pi (Eqn.
(10)), we get for i = 0, . . . , l − 2 the equation

0 = pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s+ βF+(α⊗ ξ].s). (12)

Applying the contraction operator ιξ] to the previous equation and using
first formula in the row (7) from Lemma 4, we obtain

0 = −ξ ∧ ιξ]α⊗ s− βF+ιξ](α⊗ ξ].s) + β
ı

2
α⊗ ξ].(ξ].s).

Using the fact that the contraction and symplectic Clifford multiplication
commute, we get

0 = −ξ ∧ ιξ]α⊗ s− βF+ξ].(ιξ]α⊗ s) + β
ı

2
α⊗ ξ].(ξ].s).

Substituting the Eqn. (11) into the previous equation, we obtain

α⊗ ξ].(ξ].s) = 0.

Using the definition of F+, multiplying the equation (12) by ξ] and using
the equation ιξ]α⊗ s = 0 (Eqn. (11) again), we get

0 = ξ ∧ α⊗ ξ].s+ β
ı

2
εi ∧ α⊗ ξ].ei.ξ].s,

0 = ξ ∧ α⊗ ξ].s+ β
ı

2
εi ∧ α⊗ (ei.ξ].ξ].− ıω0(ξ], ei)ξ].)s.

Substituting the identity α ⊗ ξ].ξ].s = 0 into the previous equation, we
obtain

0 = (1 +
1
2
β)ξ ∧ α⊗ ξ.]s.

If i = 0, . . . , l − 2, the coefficient 1 + β/2 6= 0, and thus by dividing, we
get ξ ∧ α ⊗ ξ].s = 0. Because the symplectic Clifford multiplication by a
non-zero vector is injective (see the subsection 2.2), we have 0 = ξ∧α⊗ s.
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All the computations in this item could have been done for a general
φ ∈ Γ(M, E i) because of linearity. But for a better understanding, we were
separating the form and the spinorial parts. Thus, we have ξ ∧ φ = 0. Let
{αk}rik=1 be a local frame of exterior differential i forms. We may write
φ = akjα

k ⊗ sj for some smooth functions akj on M and local symplectic
spinor fields sj , k, j = 1, . . . , rk. Because the operator ξ∧ acts only on
the form-part of E, we get that ξ ∧ akjαk = 0. Using the Cartan lemma
on exterior forms, we get for each j = 1, . . . , rk, the existence of exterior
differential i − 1 forms βj such that akjαk = ξ ∧ βj . Now, we can write
akjα

k ⊗ sj = pi(akjαk ⊗ sj) = pi(ξ ∧ βj ⊗ sj) = σξi−1(βj ⊗ sj). Thus, we
see that the element ψ := βj ⊗ sj is the desired preimage of φ.

3. Now, we prove that Ker(σξi ) ⊆ Im(σξi−1) for i = l + 1, . . . , 2l, 0 6= ξ ∈
Γ(M,T ∗M). Let φ ∈ Ker(σξi ), then 0 = pi+1(ξ ∧ φ) = ξ ∧ φ. As in the
last paragraph of the previous item, we get the existence of a symplectic
spinor valued exterior differential (i− 1) form ψ such that φ = ξ ∧ ψ.

�
In the future, we would like to interpret the reduced cohomology groups,

make further conclusions following from the proved ellipticity. Eventually, one
can search for an application of symplectic twistor complexes in representation
theory.
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