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Abstract
For a symplectic manifold admitting a metaplectic structure (a symplectic ana-
logue of the Riemannian spin structure), we construct a sequence consisting of
differential operators using a symplectic torsion-free affine connection. All but
one of these operators are of first order. The first order ones are symplectic
analogues of the twistor operators known from Riemannian spin geometry. We
prove that under the condition the symplectic Weyl curvature tensor field of the
symplectic connection vanishes, the mentioned sequence forms a complex. This
gives rise to a new complex for the so called Ricci type symplectic manifolds,
which admit a metaplectic structure.
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erators.

1 Introduction

In the paper, we shall introduce a sequence of differential operators acting on
symplectic spinor valued exterior differential forms over a symplectic manifold
(M,ω) admitting the so called metaplectic structure. To define these operators,
we make use of a symplectic torsion-free affine connection ∇ on (M,ω). Under
certain condition on the curvature of the connection ∇, described bellow, we
prove that the mentioned sequence forms a complex.

Let us say a few words about the metaplectic structure. The symplectic
group Sp(2l,R) admits a non-trivial two-fold covering, the so called metaplectic
group. We shall denote it by Mp(2l,R) and its Lie algebra by g. A metaplec-
tic structure on a symplectic manifold (M2l, ω) is a notion parallel to a spin
∗E-mail address: krysl@karlin.mff.cuni.cz
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structure on a Riemannian manifold. In particular, one of its part is a principal
Mp(2l,R) bundle (q : Q →M,Mp(2l,R)).

For a symplectic manifold admitting a metaplectic structure, one can con-
struct the so called symplectic spinor bundle S → M, introduced by Bertram
Kostant in 1974. The symplectic spinor bundle S is the vector bundle asso-
ciated to the metaplectic structure (q : Q → M,Mp(2l,R)) on M via the so
called Segal-Shale-Weil representation of the metaplectic group Mp(2l,R). See
Kostant [11] for details.

The Segal-Shale-Weil representation is an infinite dimensional unitary rep-
resentation of the metaplectic group Mp(2l,R) on the space of all complex
valued square Lebesgue integrable functions L2(Rl). Because of the infinite di-
mension, the Segal-Shale-Weil representation is not so easy to handle. It is
known, see, e.g., Kashiwara, Vergne [10], that the gC-module structure of the
underlying Harish-Chandra module of this representation is equivalent to the
space C[x1, . . . , xl] of polynomials in l variables, on which the Lie algebra gC '
sp(2l,C) acts via the so called Chevalley homomorphism,1 see Britten, Hooper,
Lemire [1]. Thus, the infinitesimal structure of the Segal-Shale-Weil representa-
tion can be viewed as the complexified symmetric algebra (

⊕∞
i=0�iRl)⊗R C '

C[x1, . . . , xl] of the Lagrangian subspace (Rl, 0) of the canonical symplectic vec-
tor space R2l ' (Rl, 0) ⊕ (0,Rl). This shows that the situation is completely
parallel to the complex orthogonal case, where the spinor representation can
be realized as the exterior algebra of a maximal isotropic subspace. An inter-
ested reader is referred to Weil [20], Kashiwara, Vergne [10] and also to Britten,
Hooper, Lemire [1] for details. For some technical reasons, we shall be using the
so called minimal globalization of the underlying Harish-Chandra module of the
Segal-Shale-Weil representation, which we will call metaplectic representation
and denote it by S. The elements of S will be called symplectic spinors.

Now, let us consider a symplectic manifold (M,ω) together with a symplec-
tic torsion-free affine connection ∇ on it. Such connections are usually called
Fedosov connections. Because the Fedosov connection is not unique for a choice
of (M,ω) (in the contrary to Riemannian geometry), it seems natural to add the
connection to the studied symplectic structure and investigate triples (M,ω,∇)
consisting of a symplectic manifold (M,ω) and a Fedosov connection ∇. Such
triples are usually called Fedosov manifolds and they were used in the defor-
mation quantization. See, e.g., Fedosov [6]. Let us recall that in Vaisman [18],
the space of the so called symplectic curvature tensors was decomposed wr. to
Sp(2l,R). For l = 1, the module of symplectic curvature tensors is irreducible,
while for l ≥ 2, it decomposes into two irreducible submodules. These modules
are usually called symplectic Ricci and symplectic Weyl modules, respectively.
This decomposition translates to differential geometry level giving rise to the
symplectic Ricci and symplectic Weyl curvature tensor fields, which add up to
the curvature tensor field of ∇. See Vaisman [18] and also Gelfand, Retakh,
Shubin [4] for a comprehensive treatment on Fedosov manifolds.

1The Chevalley homomorphism is a Lie algebra monomorhism of the complex symplectic
Lie algebra sp(2l, C) into the Lie algebra of the associative algebra of polynomial coefficients
differential operators acting on C[x1, . . . , xl].
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Now, let us suppose that a Fedosov manifold (M,ω,∇) admits a meta-
plectic structure (q : Q → M2l,Mp(2l,R)). Let S → M be the symplectic
spinor bundle associated to (q : Q̃ → M,Mp(2l,R)) and let us consider the
space Ω•(M,S) of exterior differential forms with values in S, i.e., Ω•(M,S) :=
Γ(M,Q×ρ (

∧•(R2l)∗⊗S)), where ρ is the obvious tensor product representation
of Mp(2l,R) on

∧•(R2l)∗⊗S. In Krýsl [14], the Mp(2l,R)-module
∧•(R2l)∗⊗S

was decomposed into irreducible submodules. The elements of
∧•(R2l)∗⊗S are

specific examples of the so called higher symplectic spinors. For i = 0, . . . , 2l,
let us denote the so called Cartan component of the tensor product

∧i(R2l)∗⊗S
by Eimi . (For i = 0, . . . , 2l, the numbers mi will be specified in the text.) For
i = 0, . . . 2l − 1, we introduce an operator Ti acting between the sections of
the vector bundle E imi associated to Eimi and the sections of the vector bun-
dle E i+1,mi+1associated to Ei+1,mi+1 . In a parallel to the Riemannian case, we
shall call these operators symplectic twistor operators. These operators are first
order differential operators and they are defined using the symplectic torsion-
free affine connection ∇ as follows. First, the connection ∇ induces a covariant
derivative ∇S on the bundle S → M in the usual way. Second, the covariant
derivative ∇S determines the associated exterior covariant derivative, which we
denote by d∇

S

. For i = 0, . . . , 2l − 1, we define the symplectic twistor opera-
tor Ti as the restriction of d∇

S

to Γ(M, E imi) composed with the projection to
Γ(M, E i+1,mi+1), i = 0, . . . , 2l − 1.

Because we would like to derive a condition under which Ti+1Ti = 0, i =
0, . . . , 2l− 1, we should focus our attention to the curvature tensor RΩ•(M,S) :=
d∇

S

d∇
S

of d∇
S

acting on the space Ω•(M,S). The curvature RΩ•(M,S) depends
only on the curvature of the symplectic connection ∇, which consists of the
symplectic Ricci and symplectic Weyl curvature tensor fields. In the paper,
we will analyze the action of the symplectic Ricci curvature tensor field on
symplectic spinor valued exterior differential forms and especially on Γ(M, E imi),
i = 0, . . . , 2l − 2. We shall prove that the symplectic Ricci curvature tensor
field when restricted to Γ(M, E imi) maps this submodule into at most three
Mp(2l,R)-submodules sitting in symplectic spinor valued forms of degree i+ 2,
i = 0, . . . , 2l − 2. These submodules will be explicitly described. This will help
us to prove that Ti+1Ti = 0 (i = 0, . . . , l − 2) and Ti+1Ti = 0 (i = l, . . . , 2l − 2)
assuming the symplectic Weyl curvature tensor field vanishes. In this way, we
will obtain two complexes. Unfortunately, one can not expect TlTl−1 = 0 in
general. This will influence the way, how we construct one complex of the two
complexes introduced above. Let us notice that similar complex was investigated
in Severa [16] in the case of spheres equipped with the conformal structure of
their round metrics.

The reader interested in applications of the symplectic spinor fields in the-
oretical physics is referred to Green, Hull [5], where the symplectic spinors are
used in the context of 10 dimensional super string theory. In Reuter [15], sym-
plectic spinors are used in the theory of the so called Dirac-Kähler fields.

In the second section, some basic facts on the metaplectic representation
and higher symplectic spinors are recalled. In this section, we also intro-
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duce several mappings acting on the graded space
∧•(R2l)∗ ⊗ S, derive some

(super - ) commutation relations between them and determine a superset of
the image of two of them, which are components of the ”infinitesimal version”
of the symplectic Ricci curvature tensor field. In the section 3, basic proper-
ties of torsion-free symplectic connections and their curvature tensor field are
mentioned and the metaplectic structure is introduced. In the subsection 3.1.,
the theorem on the complex consisting of the symplectic twistor operators is
presented and proved.

2 Metaplectic representation, higher symplectic
spinors and basic notation

To fix a notation, let us recall some notions from symplectic linear algebra.
Let us consider a real symplectic vector space (V, ω) of dimension 2l, i.e., V
is a 2l dimensional real vector space and ω is a non-degenerate antisymmetric
bilinear form on V. Let us choose two Lagrangian subspaces2 L,L′ ⊆ V such that
L ⊕ L′ = V. It follows that dim(L) = dim(L′) = l. Throughout this article, we
shall use a symplectic basis {ei}2li=1 of V chosen in such a way that {ei}li=1 and
{ei}2li=l+1 are respective bases of L and L′. Because the definition of a symplectic
basis is not unique, let us fix one which shall be used in this text. A basis {ei}2li=1

of V is called symplectic basis of (V, ω) if ωij := ω(ei, ej) satisfies ωij = 1 if and
only if i ≤ l and j = i+ l; ωij = −1 if and only if i > l and j = i− l and finally,
ωij = 0 in other cases. Let {εi}2li=1 be the basis of V∗ dual to the basis {ei}2li=1.

For i, j = 1, . . . , 2l, we define ωij by
∑2l
k=1 ωikω

jk = δji , for i, j = 1, . . . , 2l.
Notice that not only ωij = −ωji, but also ωij = −ωji, i, j = 1, . . . , 2l.

As in the orthogonal case, we would like to rise and lower indices. Because
the symplectic form ω is antisymmetric, we should be more careful in this case.
For coordinates Kab...c...d

rs...t...u of a tensor K over V, we denote the expression
ωicKab...c...d

rs...t by Kab...
i
...d

rs...t
and Kab...c

rs...t...uωti by Kab...c
rs...

i
...u and

similarly for other types of tensors and also in the geometric setting when we
will be considering tensor fields over a symplectic manifold (M,ω).

Let us denote the symplectic group of (V, ω) by G, i.e., G := Sp(V, ω) '
Sp(2l,R). Because the maximal compact subgroup K of G is isomorphic to the
unitary group K ' U(l) which is of homotopy type Z, there exists a nontrivial
two-fold covering G̃ of G. See, e.g., Habermann, Habermann [8] for details.
This two-fold covering is called metaplectic group of (V, ω) and it is denoted by
Mp(V, ω). Let us remark that Mp(V, ω) is reductive in the sense of Vogan [19].
In the considered case, we have G̃ ' Mp(2l,R). For a later use, let us reserve
the symbol λ for the mentioned covering. Thus λ : G̃ → G is a fixed member
of the isomorphism class of all nontrivial 2 : 1 covering homomorphisms of G.
Because λ : G̃ → G is a homomorphism of Lie groups and G is a subgroup of
the general linear group GL(V) of V, the mapping λ is also a representation of
the metaplectic group G̃ on the vector space V. Let us define K̃ := λ−1(K).

2maximal isotropic wr. to ω
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Obviously, K̃ is a maximal compact subgroup of G̃. Further, one can easily see
that K̃ ' Ũ(l) := {(g, z) ∈ U(l)×C×|det(g) = z2} and thus in particular, K̃ is
connected. The Lie algebra g̃ of G̃ is isomorphic to the Lie algebra g of G and
we will identify them. One has g = sp(V, ω) ' sp(2l,R).

Now let us recall some notions from representation theory which we shall
need in this paper. From the point of view of this article, these notions are
rather of a technical character. Let R(G̃) be the category the object of which
are complete, locally convex, Hausdorff topological spaces with a continuous
linear G̃-action, such that the resulting representation is admissible and of finite
length; the morphisms are continuous G̃-equivariant linear maps between the
objects. Let HC(g, K̃) be the category of Harish-Chandra (g, K̃)-modules and
let us consider the forgetful Harish-Chandra functor HC : R(G̃) → HC(g, K̃).
It is well known that there exists an adjoint functor mg : HC(g, K̃) → R(G̃)
to the Harish-Chandra functor HC. This functor is usually called the minimal
globalization functor and its existence is a deep result in representation theory.
For details and for the existence of the minimal globalization functor mg, see
Kashiwara, Schmid [9] or Vogan [19].

From now on, we shall restrict ourselves to the case l ≥ 2 not alway men-
tioning it explicitly. The case l = 1 should be handled separately (though
analogously) because the shape of the root system of sp(2,R) ' sl(2,R) is dif-
ferent from that one of of the root system of sp(2l,R) for l ≥ 2. As usual, we
shall denote the complexification of g by gC. Obviously, gC ' sp(2l,C).

Further, for any Lie group G and a principal G-bundle (p : P →M,G) over a
manifold M, we shall denote the vector bundle associated to this principal bun-
dle via a representation σ : G→ Aut(W) of G on W by W, i.e., W = G ×σ W.
Let us also mention that we shall often use the Einstein summation convention
for repeated indices (lower and upper) without mentioning it explicitly.

2.1 Metaplectic representation and symplectic spinors

There exists a distinguished infinite dimensional unitary representation of the
metaplectic group G̃ which does not descend to a representation of the symplec-
tic group G. This representation, called Segal-Shale-Weil,3 plays an important
role in geometric quantization of Hamiltonian mechanics, see, e.g., Woodhouse
[21]. We shall not give a definition of this representation here and refer the
interested reader to Weil [20] or Habermann, Habermann [8].

The Segal-Shale-Weil representation, which we shall denote by U, is a com-
plex infinite dimensional unitary representation of G̃ on the space of complex
valued square Lebesgue integrable functions defined on the Lagrangian subspace
L, i.e.,

U : G̃→ U(L2(L)),

where U(W) denotes the group of unitary operators on a Hilbert space W. In

3The names oscillator or metaplectic representation are also used in the literature. We
shall use the name Segal-Shale-Weil in this text, and reserve the name metaplectic for certain
representation arising from the Segal-Shale-Weil one.
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order to be precise, let us refer to the space L2(L) as to the Segal-Shale-Weil
module. It is known that the Segal-Shale-Weil module belongs to the category
R(G̃). (See Kashiwara, Vergne [10] for details and Segal-Shale-Weil representa-
tion in general.) It is easy to see that the Segal-Shale-Weil representation splits
into two irreducible Mp(2l,R)-submodules L2(L) ' L2(L)+ ⊕ L2(L)−. The
first module consists of even and the second one of odd complex valued square
Lebesgue integrable functions on the Lagrangian subspace L. Let us remark that
a typical construction of the Segal-Shale-Weil representation is based on the so
called Schrödinger representation of the Heisenberg group of (V = L ⊕ L′, ω)
and a use of the Stone-von Neumann theorem.

For technical reasons, we shall need the minimal globalization of the under-
lying Harish-Chandra (g, K̃)-module HC(L2(L)) of the introduced Segal-Shale-
Weil module. We shall call this minimal globalization metaplectic representation
and denote it by meta, i.e.,

meta : G̃→ Aut(mg(HC(L2(L)))),

where mg is the minimal globalization functor (see this section and the refer-
ences therein). For our convenience, let us denote the module mg(HC(L2(L)))
by S. Similarly we define S+ and S− to be the minimal globalizations of the
underlying Harish-Chandra (g, K̃)-modules of the modules L2(L)+ and L2(L)−.
Accordingly to L2(L) ' L2(L)+⊕L2(L)−, we have S ' S+⊕S−. We shall call
the Mp(V, ω)-module S the symplectic spinor module and its elements symplec-
tic spinors. For the name ”spinor”, see Kostant [11] or the Introduction.

Further notion related to the symplectic vector space (V = L⊕ L′, ω) is the
so called symplectic Clifford multiplication of elements of S by vectors from V.
For i = 1, . . . , l and a symplectic spinor f ∈ S, we define

(ei.f)(x) := ıxif(x) and

(ei+l.f)(x) :=
∂f

∂xi
(x),

where x =
∑l
i=1 x

iei ∈ L and ı =
√
−1 denotes the imaginary unit Extending

this multiplication R-linearly, we get the mentioned symplectic Clifford multi-
plication. Let us mention that the multiplication and the differentiation make
sense for any f ∈ S because of the ”analytic” interpretation of the minimal
globalization. (See Vogan [19] for details.) Let us remark that in the physical
literature, the symplectic Clifford multiplication is usually called Schrödinger
quantization prescription.

The following lemma is an easy consequence of the definition of the sym-
plectic Clifford multiplication.

Lemma 1: For v, w ∈ V and s ∈ S, we have

v.(w.s)− w.(v.s) = −ıω(v, w)s.

Proof. See Habermann, Habermann [8], pp. 11. �
Sometimes, we shall write v.w.s instead of v.(w.s) for v, w ∈ V and a sym-

plectic spinor s ∈ S and similarly for higher number of multiplying elements.
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Further instead of ei.ej .s, we shall write eij .s simply and similarly for expressions
with higher number of multiplying elements, e.g., eijk.s abbreviates ei.ej .ek.s.

2.2 Higher symplectic spinors

In this subsection, we shall present a result on a decomposition of the tensor
product of the metaplectic representation meta : G̃ → Aut(S) with the wedge
power of the representation λ∗ : G̃→ GL(V∗) of G̃ (dual to the representation
λ) into irreducible summands. Let us reserve the symbol ρ for the mentioned
tensor product representation of G̃, i.e.,

ρ : G̃→ Aut(
•∧

V∗ ⊗ S)

ρ(g)(α⊗ s) := λ(g)∗∧rα⊗meta(g)s

for r = 0, . . . , 2l, g ∈ G̃, α ∈
∧r V∗, s ∈ S and extend it linearly. For definite-

ness, let us equip the tensor product
∧•V∗⊗S with the so called Grothendieck

tensor product topology. See Vogan [19] and Treves [17] for details on this
topological structure. In a parallel to the Riemannian case, we shall call the
elements of

∧• V∗ ⊗ S higher symplectic spinors.
Let us introduce the following subsets of the set of pairs of non-negative

integers. We define

Ξ := {(i, j) ∈ N0 × N0|i = 0, . . . , l; j = 0, . . . , i} ∪
∪ {(i, j) ∈ N0 × N0|i = l + 1, . . . , 2l, j = 0, . . . , 2l − i},

Ξ+ := Ξ− {(i, i)|i = 0, . . . , l} and
Ξ− := Ξ− {(i, 2l − i)|i = l, . . . , 2l}.

For each (i, j) ∈ Ξ, a gC-module Eij± was introduced in Krýsl [14]. These
modules are irreducible infinite dimensional highest modules over sp(V, ω)C and
they are described via their highest weights in the mentioned article. In the
next theorem, the module of symplectic spinor valued exterior forms

∧• V∗⊗S
is decomposed into irreducible submodules.

Theorem 2: For l ≥ 2, the following decomposition into irreducible
Mp(V, ω)-submodules

i∧
V∗ ⊗ S± '

⊕
j,(i,j)∈Ξ

Eij±, i = 0, . . . , 2l, holds.

The modules Eij± are determined, as objects in the category R(G̃), by the fact
that first they are submodules of the corresponding tensor product and second
the gC-structure of HC(Eij±) is isomorphic to Eij±.

Proof. See Krýsl [14] or Krýsl [12]. �
In the Figure 1, the decomposition in the case l = 3 is displayed. In the ith

column of the Figure 1, when counted from zero, the summands of
∧i V∗ ⊗ S,
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i = 0, . . . , 6, are written. The meaning of the arrows at the figure will be
explained later.

Remark: Let us mention that for any (i, j), (i, k) ∈ Ξ, j 6= k, we have
Eij± 6' Eik± (as gC-modules) for all combinations of ± on the left hand as well
as on the right hand side. Using this fact, we have that for i = 0, . . . , 2l the
G̃-modules

∧i V∗ ⊗ S± are multiplicity free. Moreover for (i, j), (k, j) ∈ Ξ, we
have Eij± ' Ekj∓ . These facts will be crucial in the paper.

For our convenience, let us set Eij± := {0} for (i, j) ∈ Z× Z− Ξ and Eij :=
Eij+ ⊕Eij−.

E0,0 //

""FFFFFFFF E1,0 //

""FFFFFFFF E2,0 //

""FFFFFFFF E3,0 //

""FFFFFFFF E4,0 //

""FFFFFFFF E5,0 // E6,0

E1,1

<<xxxxxxxx
//

""FFFFFFFF E2,1 //

""FFFFFFFF

<<xxxxxxxx
E3,1 //

""FFFFFFFF

<<xxxxxxxx
E4,1 //

<<xxxxxxxx
E5,1

<<xxxxxxxx

E2,2 //

<<xxxxxxxx

""FFFFFFFF E3,2

<<xxxxxxxx
// E4,2

<<xxxxxxxx

E3,3

<<xxxxxxxx

Figure 1.
Now, we shall introduce four operators which help us to describe the action

of the symplectic Ricci curvature tensor field acting on symplectic spinor valued
exterior differential forms. For r = 0, . . . , 2l, α⊗ s ∈

∧r V∗ ⊗ S and σ ∈ �2V∗,
we set

X :
r∧

V∗ ⊗ S→
r+1∧

V∗ ⊗ S, X(α⊗ s) :=
2l∑
i=1

εi ∧ α⊗ ei.s,

Y :
r∧

V∗ ⊗ S→
r−1∧

V∗ ⊗ S, Y (α⊗ s) :=
2l∑

i,j=1

ωijιei
α⊗ ej .s,

Σσ :
r∧

V∗ ⊗ S→
r+1∧

V∗ ⊗ S, Σσ(α⊗ s) :=
2l∑

i,j=1

σijε
j ∧ α⊗ ei.s and

Θσ :
r∧

V∗ ⊗ S→
r∧

V∗ ⊗ S, Θσ(α⊗ s) :=
2l∑

i,j=1

α⊗ σijeij .s

and extend it linearly. Here σij := σ(ei, ej), i, j = 1, . . . , 2l, and the contraction
of an exterior form α ∈

∧•V∗ by a vector v ∈ V is denoted by ιvα.
Remark:

1) One easily finds out that the operators are independent of the choice of
a symplectic basis {ei}2li=1. The operators X and Y are used to prove the
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Howe correspondence for Mp(V, ω) acting on
∧•V∗⊗S via the represen-

tation ρ. See Krýsl [12] for details.

2) The symmetric tensor σ is an infinitesimal version of a part of the curva-
ture of a Fedosov connection. This part is called symplectic Ricci curva-
ture tensor field and will be introduced bellow. The operators Σσ and Θσ

will help us to describe the action of the symplectic Ricci curvature tensor
field acting on symplectic spinor valued exterior differential forms.

In what follows, we shall write ιeij
α instead of ιei

ιej
α, i, j = 1, . . . , 2l, and

similarly for higher number of contracting elements.
Using the Lemma 1, it is easy to compute that

X2(α⊗ s) = − ı
2
ωijε

i ∧ εj ∧ α⊗ s and Y 2(α⊗ s) =
ı

2
ωijιeijα⊗ s (1)

for any element α⊗ s ∈
∧•V∗ ⊗ S.

In order to be able to use the operators X and Y in a geometric setting and
some further reasons, we shall need the following

Lemma 3:

1) The operators X, Y are G̃-equivariant wr. to the representation ρ of G̃.

2) For (i, j) ∈ Ξ−, the operator X is an isomorphism if restricted to Eij .
For (i, j) ∈ Ξ+, the operator Y is an isomorphism if restricted to Eij .

Proof. For the G̃-equivariance of X and Y, see Krýsl [13]. The fact that the
mentioned restrictions are isomorphisms is proved in Krýsl [12]. �

In the next lemma, four relations are proved which will be used later in order
to determine a superset of the image of a restriction of the symplectic Ricci
curvature tensor field acting on symplectic spinor valued exterior differential
forms. Often, we shall write Σ and Θ simply instead of the more explicit Σσ

and Θσ. The symmetric tensor σ is assumed to be chosen. The symbol {, }
denotes the anticommutator on End(

∧• V∗ ⊗ S).
Lemma 4: The following relations

{Σ, X} = 0, (2)[
{Σ, Y }, Y 2

]
= 0, (3)

[X,Θ] = 2ıΣ and (4)[
Θ, Y 2

]
= 0 (5)

hold on
∧•V∗ ⊗ S.

Proof. We shall prove these identities for α ⊗ s ∈
∧i V∗ ⊗ S, i = 0, . . . , 2l

only. The statement then follows by linearity of the considered operators.
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1) Let us compute

(XΣ + ΣX)(α⊗ s) = X(σijεj ∧ α⊗ eiφ) + Σ(εi ∧ α⊗ ei.s)
= σijε

k ∧ εj ∧ α⊗ eki.s+ σjkε
k ∧ εi ∧ α⊗ eji.s

= σikε
j ∧ εk ∧ α⊗ eji.s+ σikε

k ∧ εj ∧ α⊗ eij .s
= σikε

j ∧ εk ∧ α⊗ (eji − eij).s
= −ıσikωjiεj ∧ εk ∧ α⊗ s
= ıσjkε

j ∧ εk ∧ α⊗ s
= 0,

where we have renumbered indices, used the Lemma 1 and the fact that
σ is symmetric. In what follows, we shall use similar procedures without
mentioning it explicitly.

2) Let us compute

P (α⊗ s) := {Σ, Y }(α⊗ s)
= Y (σijεj ∧ α⊗ ei.s) + Σ(ωijιei

α⊗ ej .s)
= σijω

klιek
(εj ∧ α)⊗ eli.s+ ωijσklε

l ∧ ιei
α⊗ ekj .s

= σijω
kl(δjkα− ε

j ∧ ιek
α)⊗ eli.s+ ωijσklε

l ∧ ιeiα⊗ ekj .s
= σilα⊗ eli.s− σijωklεj ∧ ιek

α⊗ eli.s+ ωijσklε
l ∧ ιei

α⊗ ekj .s
= σilα⊗ eli.s− σklωijεl ∧ ιei

α⊗ ejk.s+ ωijσklε
l ∧ ιei

α⊗ ekj .s
= σilα⊗ eli.s− ıωijωkjσklεl ∧ ιei

α⊗ s
= σilα⊗ eli.s− ıσijεj ∧ ιei

α⊗ s.

Now, we use the derived prescription for P and the equation (1) to com-
pute[

P, 2ıY 2
]

(α⊗ s) = 2ıPY 2(α⊗ s)− 2ıY 2P (α⊗ s)
=− P (ωijιeij

α⊗ s)− 2ıY 2(σijα⊗ eji.s− ıσijεj ∧ ιei
α⊗ s)

=− ωijσklιeij
α⊗ elk.s+ ıωijσklε

l ∧ ιekij
α⊗ s

+ σijωklιekl
α⊗ eij .s− ıσijωklιekl

(εj ∧ ιei
α)⊗ s

=− ωijσklιeij
α⊗ ekl.s+ ıωijσklε

l ∧ ιekij
α⊗ s

+ σijωklιekl
α⊗ eji.s− ıωklσij(δjl ιeki

α− δjkιeli
α+ εj ∧ ιekli

α)⊗ s
=− ωijσklιeij

α⊗ ekl.s+ ıωijσklε
l ∧ ιekij

α⊗ s
+ σklωijιeij

α⊗ ekl.s− ıωijσklεl ∧ ιeijk
α⊗ s

= 0.
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3) Due to the definition of Θ, we have

[X,Θ] (α⊗ s) = εk ∧ α⊗ σijekij .s− εi ∧ α⊗ σjkejki.s
= εk ∧ α⊗ σijekij .s− εk ∧ α⊗ σijeijk.s
= σijεk ∧ α⊗ (eikj .s− ıωkiej .s− eijk.s)
= σijεk ∧ α⊗ (eijk.s− ıωkjei.s− ıωkiej .s− eijk.s)
= 2ıΣ(α⊗ s).

4) This relation follows easily from the definition of Θ and the relation (1).
�

In the next proposition, a superset of the image of Σ and Θ restricted to
Eij , for (i, j) ∈ Ξ, is determined.

Proposition 5: For (i, j) ∈ Ξ, we have

Σ|Eij : Eij → Ei+1,j−1 ⊕Ei+1,j ⊕Ei+1,j+1 and

Θ|Eij : Eij → Ei+1,j−1 ⊕Ei+1,j ⊕Ei+1,j+1.

Proof.

1) For i = 0, . . . , l, let us choose an element ψ = α ⊗ s ∈ Eii. Using the
relation (3), we have 0 = [P, Y 2]ψ = (PY 2 − Y 2P )ψ = (ΣY 3 + Y ΣY 2 −
Y 2ΣY +Y 3Σ)ψ. Because Y is G̃-equivariant (Lemma 3 item 1), decreasing
the form degree of ψ by one and there is no summand isomorphic to
Eii+ or Eii− in

∧i−1 V∗ ⊗ S (Remark bellow the Theorem 2), Y ψ = 0.
Using this equation, we see that the first three summands in the above
expression for [P, Y 2] are zero. Therefore we have 0 = Y 3Σψ. Because
Y is injective on Eij for (i, j) ∈ Ξ+ (Lemma 3 item 2), we see that
Σψ ∈ Ei+1,i−1 ⊕Ei+1,i ⊕Ei+1,i+1.

Now, let us consider a general (i, j) ∈ Ξ and ψ ∈ Eij . Let us take an
element ψ′ ∈ Ejj such that ψ = X(i−j)ψ′. This element exists because
according to Lemma 3 item 2, the operator X is an isomorphism when
restricted to Eij for (i, j) ∈ Ξ−. Because of the relation (2), we have
Σψ = ΣX(i−j)ψ′ = ±X(i−j)Σψ′. From the previous item, we know that
Σψ′ ∈ Ej+1,j−1⊕Ej+1,j ⊕Ej+1,j+1. Because X is G̃-equivariant (Lemma
3 item 1) and the only summands in

∧i+1 V∗⊗S isomorphic to Ej+1,j−1⊕
Ej+1,j⊕Ej+1,j+1 are those described in the formulation of this proposition
(see the Remark bellow the Theorem 2), the statement follows.

2) For i = 0, . . . , l, let us consider an element ψ = α ⊗ s ∈ Eii. Using
the relation (5), we have 0 = [Θ, Y 2]ψ = ΘY 2ψ + Y 2Θψ. Using similar
reasoning to that one in the first item, we get Y ψ = 0. Using the expression
for [Θ, Y 2] above, we get Y 2Θψ = 0 and consequently, Θψ ∈ Eii⊕Ei,i−1.
Now, let us suppose ψ ∈ Eij for (i, j) ∈ Ξ. There exists an element
ψ′ ∈ Ejj such that ψ = X(i−j)ψ′ (Lemma 3 item 2). Using the relations
(4) and (2), we have Θψ = ΘX(i−j)ψ′ = X(i−j)Θψ′ if i − j is even and
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(X(i−j)Θ − 2ıX(i−j−1)Σ)ψ′ if i − j is odd. Using the fact Σ|Eij : Eij →
Ei+1,j−1 ⊕ Ei+1,j ⊕ Ei+1,j+1, the statement follows by similar lines of
reasoning as in the first item. �

3 Metaplectic structures and symplectic curva-
ture tensors

After we have finished the algebraic part of the paper, let us start describing the
geometric structure we shall be investigating. We begin with a recollection of
results of Vaisman in [18] and of Gelfand, Retakh and Shubin in [4]. Let (M,ω)
be a symplectic manifold and ∇ be a symplectic torsion-free affine connection.
By symplectic and torsion-free, we mean ∇ω = 0 and T (X,Y ) := ∇XY −
∇YX − [X,Y ] = 0 for all X,Y ∈ X(M), respectively. Such connections are
usually called Fedosov connections. In what follows, we shall call the triple
(M,ω,∇) Fedosov manifolds.

To fix our notation, let us recall the classical definition of the curvature
tensor R∇ of the connection ∇, we shall be using here. Let

R∇(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ X(M).
Let us choose a local symplectic frame {ei}2li=1 over an open subset U ⊆M.

We shall often write expressions in which indices i, j, k, l e.t.c. occur. We will
implicitly mean i, j, k, l are running from 1 to 2l without mentioning it explicitly.
We set

Rijkl := ω(R(ek, el)ej , ei).

Let us mention that we are using the convention of Vaisman [18] which is dif-
ferent from that one used in Habarmann, Habermann [8].

From the symplectic curvature tensor field R∇, we can build the symplectic
Ricci curvature tensor field σ∇ defined by the classical formula

σ∇(X,Y ) := Tr(V 7→ R∇(V,X)Y )

for each X,Y ∈ X(M) (the variable V denotes a vector field on M). For the
chosen frame and i, j = 1, . . . , 2l, we set

σij := σ∇(ei, ej).

Further, let us define

2(l + 1)σ̃∇ijkl := ωilσjk − ωikσjl + ωjlσik − ωjkσil + 2σijωkl, (6)

σ̃∇(X,Y, Z, V ) := σ̃ijklX
iY jZkV l and

W∇ := R∇ − σ̃∇ (7)

for local vector fields X = Xiei, Y = Y jej , Z = Zkek and V = V lel. We will
call the tensor field σ̃ the extended symplectic Ricci curvature tensor field and
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W∇ the symplectic Weyl curvature tensor field. These tensor fields were already
introduced in Vaisman [18]. We shall often drop the index ∇ in the previous
expressions. Thus, we shall often write W, σ and σ̃ instead of W∇, σ∇ and σ̃∇,
respectively.

In the next lemma, the symmetry of σ is stated.
Lemma 6: The symplectic Ricci curvature tensor field σ is symmetric.
Proof. See Vaisman [18]. �
Let us start describing the geometric structure with help of which the action

of the symplectic twistor operators are defined. This structure, called meta-
plectic, is a precise symplectic analogue of the notion of a spin structure in
the Riemannian geometry. For a symplectic manifold (M2l, ω) of dimension 2l,
let us denote the bundle of symplectic reperes in TM by P and the foot-point
projection of P onto M by p. Thus (p : P → M,G), where G ' Sp(2l,R), is a
principal G-bundle over M . As in the subsection 2, let λ : G̃→ G be a member
of the isomorphism class of the non-trivial two-fold coverings of the symplec-
tic group G. In particular, G̃ ' Mp(2l,R). Further, let us consider a principal
G̃-bundle (q : Q → M, G̃) over the symplectic manifold (M,ω). We call a pair
(Q,Λ) metaplectic structure if Λ : Q → P is a surjective bundle homomorphism
over the identity on M and if the following diagram,

Q× G̃

Λ×λ

��

// Q

Λ

��

q

��@
@@

@@
@@

@

M

P ×G // P
p

>>}}}}}}}}

with the horizontal arrows being respective actions of the displayed groups,
commutes. See, e.g., Habermann, Habermann [8] and Kostant [11] for details on
metaplectic structures. Let us only remark, that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and complex projective spaces
CP2k+1, k ∈ N0.

Let us denote the vector bundle associated to the introduced principal G̃-
bundle (q : Q → M, G̃) via the representation meta on S by S. We shall
call this associated vector bundle symplectic spinor bundle. Thus, we have
S = Q ×meta S. The sections φ ∈ Γ(M,S), will be called symplectic spinor
fields. Let us denote the space of symplectic valued exterior differential forms
Γ(M,Q×ρ (

∧• V∗ ⊗ S)) by Ω•(M,S) and call it the space of symplectic spinor
valued forms simply. Further for (i, j) ∈ Z× Z, we define the associated vector
bundles E ij by the prescription E ij := Q×ρ Eij .

Because the operators X,Y are G̃-equivariant (Lemma 3 item 1), they lift
to operators acting on sections of the corresponding associated vector bundles.
We shall use the same symbols as for the defined operators as for their ”lifts”
to the associated vector bundle structure. Because for each i = 0, . . . 2l, the
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decomposition
∧i V∗ ⊗ S '

⊕
j,(i,j)∈Ξ Eij is multiplicity free (see the Remark

bellow the Theorem 2), there exist uniquely defined projections pij : Ωi(M,S)→
Γ(M, E ij), (i, j) ∈ Z× Z.

Now, let us suppose that (M,ω) is equipped with a Fedosov connection ∇.
The connection ∇ determines the associated principal bundle connection Z on
the principal bundle (p : P →M,G). This connection lifts to a principal bundle
connection on the principal bundle (q : Q → M, G̃) and defines the associated
covariant derivative on the symplectic bundle S, which we shall denote by ∇S
and call it the symplectic spinor covariant derivative. See Habermann, Haber-
mann [8] for details. The symplectic spinor covariant derivative induces the
exterior symplectic spinor derivative d∇

S

acting on Ω•(M,S). The curvature
tensor field RΩ•(M,S) acting on the symplectic spinor valued forms is given by
the classical formula

RΩ•(M,S) := d∇
S

d∇
S

.

In the next theorem, a superset of the image of d∇
S

restricted to Γ(M, E ij),
(i, j) ∈ Ξ, is determined.

Theorem 7: Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic
structure. Then for the exterior symplectic spinor derivative d∇

S

, we have

d∇
S

|Γ(M,Eij) : Γ(M, E ij)→ Γ(M, E i+1,j−1 ⊕ E i+1,j ⊕ E i+1,j+1),

where (i, j) ∈ Ξ.
Proof. See Krýsl [14]. �
Remark: From the proof of the theorem, it is easy to see that it can be

extended to the case (M,ω) is presymplectic and the symplectic connection ∇
has a non-zero torsion. For l = 3 and any (i, j) ∈ Ξ, the mappings d∇

S

restricted
to Γ(M, E ij) are displayed as arrows at the Figure 1 above. (The exterior
covariant derivative d∇

S

maps Γ(M, E ij) into the three ”neighbor” subspaces.)

3.1 Curvature tensor on symplectic spinor valued forms
and the complex of symplectic twistor operators

Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic structure (Q,Λ).
In the next lemma, the action of RS := d∇

S ◦ ∇S on the space of symplectic
spinors fields is described using just the symplectic curvature tensor field R of
∇.

Lemma 8: Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic
structure. Then for a symplectic spinor field φ ∈ Γ(M,S), we have

RSφ =
ı

2
Rijklε

k ∧ εl ⊗ ei.ej .φ.

Proof. See Habermann, Habermann [8] pp. 42. �.
For our convenience, let us set mi := i for i = 0, . . . , l and mi := 2l − i for

i = l+ 1, . . . , 2l. Now, we can define the symplectic twistor operators, which we
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shall need to introduce the mentioned complex. For i = 0, . . . , 2l − 1, we set

Ti : Γ(M, E imi)→ Γ(M, E i+1,mi+1), Ti := pi+1,mi+1d∇
S

|Γ(M,Eimi )

and call these operators symplectic twistor operators. Informally, one can say
that the operators are going on the edge of the triangle at the Figure 1. Let
us notice that Y (∇S − T0) is, up to a nonzero scalar multiple, the so called
symplectic Dirac operator introduced by K. Habermann in [7].

Theorem 9: Let (M2l, ω,∇) be a Fedosov manifold admitting a metaplectic
structure. If l ≥ 2 and the symplectic Weyl tensor field W∇ = 0, then

0 −→ Γ(M, E00) T0−→ Γ(M, E11) T1−→ · · · Tl−1−→ Γ(M, E ll) −→ 0 and

0 −→ Γ(M, E ll) Tl−→ Γ(M, E l+1,l+1)
Tl+1−→ · · · T2l−1−→ Γ(M, E2l,2l) −→ 0

are complexes.
Proof.

1) In this item, we prove that for an element ψ ∈ Ω•(M,S),

RΩ•(M,S)ψ =
ı

l + 1
(ıX2Θσ −XΣσ)ψ.

For ψ = α⊗ φ ∈ Ω•(M,S), we can write

RΩ•(M,S)(α⊗φ) = d∇
S

d∇
S

(α⊗φ) = d∇
S

(dα⊗φ+ (−1)deg(α)α∧∇Sφ)

= d2α⊗ φ+ (−1)deg(α)+1dα ∧∇Sφ+ (−1)deg(α)dα ∧∇Sψ+

(−1)deg(α)(−1)deg(α)α ∧ d∇
S

∇Sφ = α ∧ ı

2
Rijklε

k ∧ εl ⊗ eij .φ

=
ı

2
Rijklε

k ∧ εl ∧ α⊗ eij .φ,

where we have used the Lemma 8. Using this computation, the definition
of the symplectic Weyl curvature tensor fieldW∇ (Eqn. (7)), the definition
of the extended symplectic Ricci curvature tensor field σ̃ (Eqn. (6)) and
the assumption W∇ = 0, we get

− 4(l + 1)ıRΩ•(M,S)(α⊗ φ) = 2(l + 1)Rijklεk ∧ εl ∧ α⊗ eij .φ
= 2(l + 1)(W ij

kl + σ̃ijkl)εk ∧ εl ∧ α⊗ eij .s
= 2(l + 1)σ̃ijklεk ∧ εl ∧ α⊗ eij .s
= (ωilσjk − ωikσj l + ωj lσ

i
k − ωjkσil + 2σijωkl)εk ∧ εl ∧ α⊗ eij .φ

= (4ωilσjkεk ∧ εl ∧ α⊗ eij .φ+ 2σijωkl)εk ∧ εl ∧ α⊗ eij .φ
= 4ıX2(α⊗ σijeij .φ)− 4X(σjkεk ∧ α⊗ ej .φ) = (4ıX2Θσ − 4XΣσ)ψ,

where we have used the relation (1) in the second last step. Extending
the result by linearity, we get the statement of this item for arbitrary
ψ ∈ Ω•(M,S).
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2) Using the derived formula for RΩ•(M,S), the Proposition 5, the G̃-equi-
variance of X (Lemma 3 item 1) and the decomposition structure of∧• V∗⊗S (see the Remark bellow the Theorem 2), we see that for (i, j) ∈ Ξ
and an element ψ ∈ Γ(M, E ij), the section RΩ•(M,S)ψ ∈ Γ(M, E i+2,j−1 ⊕
E i+2,j ⊕ E i+2,j+1). Thus especially, pi+2,mi+2RΩ•(M,S)ψ = 0 for
i = 0, . . . , l − 2, l, . . . , 2l − 2 and ψ ∈ Γ(M, E imi). For i = 0, . . . , l − 2,
we get

0 = pi+2,i+2RΩ•(M,S) = pi+2,i+2d∇
S

d∇
S

= pi+2,i+2d∇
S

(pi+1,0 + . . .+ pi+1,i+1)d∇
S

= pi+2,i+2d∇
S

pi+1,0d∇
S

+ . . .+ pi+2,i+2d∇
S

pi+1,i+1d∇
S

= Ti+1Ti,

where we have used the Theorem 7 in the last step. Similarly, one proceeds
in the case i = l, . . . , 2l − 2.

�
Corollary 10. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic

structure. If l ≥ 2 and the symplectic Weyl tensor field W∇ = 0, then

0 −→ Γ(M, E00) T0−→ · · · Tl−2−→ Γ(M, E l−1,l−1)
TlTl−1−→

TlTl−1−→ Γ(M, E l+1,l+1)
Tl+1−→ · · · T2l−1−→ Γ(M, E2l,2l) −→ 0

is a complex.
Proof. Follows easily from the Theorem 9. �
The question of the existence of a symplectic connection with vanishing sym-

plectic Weyl curvature tensor field was treated, e.g., in Cahen, Gutt, Rawnsley
[2]. These connections are called connections of Ricci type. For instance it is
known that if a compact simply connected symplectic manifold (M,ω) admits
a connection of Ricci type, then (M,ω) is affinely symplectomorphic to a PnC
with the symplectic form, given by the standard complex structure and the
Fubini-Study metric, and the Levi-Civita connection of this metric. Let us refer
an interested reader to the paper of Cahen, Gutt, Schwachhöfer [3], where also
a relation of symplectic connections to contact projective geometries is treated.

Further research could be devoted to the investigation and the interpretation
of the cohomology of the introduced complex and to the investigation of analytic
properties of the introduced symplectic twistor operators.
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