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Foreword

This course offers a brief introduction to most commonly used statistical methods in medical
research.

The first part of the course focuses on statistical methods in epidemiology. It starts with
a summary of basic epidemiological terminology and an overview of descriptive methods for
estimating disease incidence. The most important epidemiological study designs, case-control
and cohort studies, are introduced and discussed. Classical methods for the analysis of these
designs are briefly summarized. However, the main focus is on approaches based on regression
models, in particular logistic regression and loglinear models.

In the second part, we give a short summary of diagnostic methods. This part provides
basic terminology for statistical properties of diagnosticmethods and explains a few descriptive
approaches to their estimation.

The final part is devoted to randomized clinical trials. A short overview of the drug de-
velopment process is provided. Then focus shifts to randomized Phase III trials. It is explained
how these trials are planned and what is the role of the statistician at the planning stage (choice
of the primary outcome, selection of study population, enrollment considerations, randomiza-
tion methods, statistical analysis plan and sample size calculation). A few variants of the basic
study design are discussed. This part is concluded by a universal approach to power and sample
size calculation and brief summary of group sequential testing methods.

In this course, it is assumed that the student is familiar with a relatively wide range of
statistical theory: apart from introductory statistics we rely on sufficient familiaritywith linear
regression, generalized linear models, and parametric and non-parametric survival analysis
methods. These methods are not explained in this course. It is shown how they are used to
analyze common medical data problems. When needed, the standard methods are extended
to handle more general problems (censoring with left truncation, analysis of aggregated data,
analysis of non-standard sampling designs). Thus this course is not self-containing – it relies
on relatively wide and thorough training in data analysis methods and practice.
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1. Descriptive Epidemiology

1.1. Subject of epidemiology

Epidemiology is an interdisciplinary branch of medicine that describes and investigates the
occurrence of a disease in a human population and studies potential risk factors that cause the
development of the disease or protective factors that prevent it. The disease of interest need
not be infectious, as the name “epidemiology” might suggest, but it may be any kind of disease
such as cancer, cardiovascular disease, type I diabetes or dental carries.

Causes of diseases and means to protect oneself against disease have been always a topic
of human interest. For thousands of years, people were using various naive methods for pro-
tection against disease, without any understanding how and why diseases develop. It is not
surprizing that these methods were rarely effective and frequently harmful.

The first written records about successful use of rational logical thinking about disease
occurrence leading to correct conclusions are only a few hundred years old. In 1670, anAlsatian
physician Louis Thuillier correctly determined that the cause of the terrible condition called
St. Anthony’s fire, now known as ergotism, was Claviceps purpurea∗ fungus that infects rye
and other cereals. St. Anthony’s fire was common in Alsatia at Thuillier’s time and he made a
correct conclusion about its cause by taking records of its occurrence in different conditions
over many years and carefully considering all factors that might explain where and when the
disease was most frequent.

Another commonly cited example is John Snow’s investigation of cholera outbreak in
London in 1854. Hemade amap of the neighborhoodwhere cholera cases appeared andmarked
on it each individual death. He figured out that the victims were clustered around a water
pump on Broad Street and concluded that they got sick of the water drawn from that pump.
He demanded that the pump be closed; when it happened, the outbreak receded. Later, it was
found out that the Broad Street pump was built next to an old cesspit fromwhich infected feces
contaminated the drinking water.

Both Thuillier and Snow did not understand the real mechanism causing the disease (poi-
sonous alkaloids of Claviceps purpurea in Thuillier’s case, bacterium Vibrio cholerae in Snow’s
case). However, both were able to use observations of occurrence of disease to get very close
to the real cause and to draw correct conclusions. Today, there are still many diseases for
which the real causes are not known or are too complex to understand. The only way to dis-
cover which environmental/genetic/lifestyle factors affect the disease is to conduct empirical

∗ Česky paličkovice nachová neboli námel
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1. Descriptive Epidemiology

studies where observations of occurrence of disease are analyzed by statistical methods. Thus,
statistics is the core part of epidemiology.

1.2. Disease prevalence and incidence

Let us think about a population of individuals and a disease that they might get. Some of those
individuals might be immune to the disease temporarily or permanently. The individuals that
are not immune are called susceptible. Any of the susceptible individuals might get the disease
at some moment and become a case∗. They could stay in the diseased category for some time.
In the end some would die of the disease, and some would recover. Those who recover may
enter the susceptible population again or become immune for a period of time or permanently.

Let us consider this framework to define prevalence† of the disease. Prevalence is the
proportion of the whole population that has the disease, or more precisely, the probability of
having the disease. The proportion is then an estimate of the probability. We can talk about
point prevalence, where we look at the disease at a particular fixed time and count all cases who
had the disease at that time, or prevalence over period, where we count all subjects who had the
disease at any time during the period. We can condition the prevalence on being susceptible
(leaving the unsusceptible out of the population) or we can calculate prevalence regardless of
susceptibility.

Statistically, prevalence analyses involve just a simple binary outcome (1 = disease/case
and 0 = no disease/control). Classical statistical methods for binary outcomes are sufficient to
conduct analyses of prevalence if data on disease status are available.

A more interesting measure of disease occurrence is incidence‡ . Incidence is the rate of
occurrence of new cases of the disease in the population of interest. Thus, for incidencewe only
take into account the first time the subject gets the disease (over lifetime or within a defined
period of interest). It is not important what happens after the subject gets the disease for the
first time. Incidence is a better measure to investigate causes of the disease than prevalence.
One of the disadvantages of prevalence is that it is affected by duration of the disease. Hence
changes in duration (caused, e.g., by better treatments) affect prevalence even if the true causes
of the disease remain the same and act in the same way. Differences and changes in prevalence
are generally hard to interpret. Incidence does not share this drawback. For these reasons we
focus primarily on statistical methods for incidence analysis.

Mortality§ is a special case of incidence when disease occurrence is replaced by the oc-
currence of death. One can consider either overall mortality (death from any cause) or cause-
specific mortality (death from a particular disease). Mortality analyses follow the same frame-
work as incidence analyses.

∗ Česky případ † Česky prevalence ‡ Česky incidence § Česky úmrtnost
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1. Descriptive Epidemiology

1.3. Incidence as hazard for le�-truncated survival data

For investigating incidence, we can simplify our framework. Assign to each subject three latent
random variables (�,) ,�) that fully describe the subject’s history of getting (or not getting)
the disease. Their meaning is:

• � is the entry time, i.e., the time when the subject becomes susceptible and enters the
observation,

• ) is the time when the subjects gets the disease for the first time

• � is the exit time, i.e., the time when the subject leaves observation because of death or
other reasons.

All of these variables are measured on the same time scale. Time 0 usually means birth
(then all the variables are ages at particular events) or it can be some otherwell definedmoment,
specific calendar time etc. The three latent variables determinewhat is observed for the subject.

• If � ≤ ) ≤ �, the subject is a case with observed occurrence of the disease at the time) .
• If � ≤ � < ) , the subject is a control with no observed occurrence of the disease.
• If � < � or ) < �, the subject is not observed at all.

The continuous non-negative random variable ) is the time of the first occurrence of
the disease and the incidence is in fact the hazard function of this variable. So we can define
incidence more formally as

_(C) = lim
ℎց0

1

ℎ
P
[
C ≤ ) < C + ℎ

��) ≥ C
]
.

for any C ≥ 0. Incidence can be investigated by the methods for censored failure time data
(survival analysis) with ) being the failure time and � being the censoring time. However,
standard methods for censored data assume that each subject is observed from time 0.

Thus, we need to extend the survival analysis methods to allow random entry times � as
well. The fact that the subject is unobserved if min(),�) < � is called left truncation and we
have a combination of right-censored and left-truncated data.

Introduce an event indicator

X =

{
1 if � ≤ ) ≤ �,
0 if � ≤ � < ) .

Thus, a subject is a case if X = 1 and a control if X = 0. Extend the follow-up indicator (at-risk
process) to take entry times into account as well:

. (C) = 1(� ≤ C, C ≤ min(�,) )).

The follow-up indicator starts at 0 at the time 0, jumps to 1 at the entry time and stays at 1
until disease or censoring occurs. Then it drops back to zero.
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1. Descriptive Epidemiology

Finally, the process counting the number of observed occurrences of the disease is

# (C) = 1() ≤ C, � ≤ ) ≤ �).

We need to extend the independent censoring condition to handle random entry times.
We do it by assuming that the usual form of the compensator applies to the current situation.
In particular,

" (C) = # (C) −
∫ C

0
. (B)_(B) 3B is an FC -martingale, (1.1)

where FC = f{# (B), . (B), 0 ≤ B ≤ C}. A sufficient condition to guarantee the validity of (1.1) is
that the pair (�,�) is independent of ) .

Under this condition, the counting process theory used in right-censored data also holds
for left-truncated data. The definitions and properties of nonparametric estimators and tests
(Nelson-Aalen, Kaplan-Meier, logrank statistics, Cox model) all work, the only difference being
the modified definition of the at-risk process . (C).

Suppose the population consists of = independent subjects that are observed for occur-
rence of disease. Each subject has associated a triplet of latent variables (�8,)8 ,�8), 8 = 1, . . . , =.
The data observed on the 8-th subject can be summarized by a pair of processes #8 (C) = 1()8 ≤
C, �8 ≤ )8 ≤ �8 ) and .8 (C) = 1(�8 ≤ C, C ≤ min(�8,)8)). Let *8 (C) =

∫ C
0
.8 (B) 3B be the duration

of follow-up of the 8-th subject over the interval (0, C).
Let us introduce notation we will use in the following sections. Let

# (C) =
=∑

8=1

#8 (C)

be the number of cases observed by the time C ,

. (C) =
=∑

8=1

.8 (C)

the number of subjects that are followed at the time C , and

* (C) =
=∑

8=1

*8 (C)

the total follow-up time for the whole population over the interval (0, C).

1.4. Empirical incidence estimates

If individual data are available, the cumulative incidence Λ(C) =
∫ C
>
_(B) 3B could be estimated

nonparametrically by the Nelson-Aalen estimator. However, we would like to have an esti-
mator of the incidence rate itself. One could apply kernel smoothing methods to obtain a
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1. Descriptive Epidemiology

smooth estimate of incidence from the Nelson-Aalen estimator but we will not take that ap-
proach. Instead, we will derive a simple histogram-like empirical estimate of incidence based
on a piecewise exponential model.

MLE with exponential distribution

Let us start with exponentially distributed time to disease occurrence. Assume)1, . . . ,)= are in-
dependent, with distribution Exp(_) and constant incidence _. Suppose (�8,�8 ) is independent
of )8 . Define ) ∗

8 = )8 − �8 , �∗
8 = �8 − �8 . In all observed subjects, ) ∗

8 and �∗
8 are non-negative.

Consider the data*8 = min() ∗
8 ,�

∗
8 ) and X8 = 1() ∗

8 ≤ �∗
8 ) = 1(�8 ≤ )8 ≤ �8). Then) ∗

8 ∼ Exp(_)
because P

[
)8 > C + B

��)8 > B
]
= P [)8 > C] and �8 (playing the role of B) is independent of

)8 . Hence we can estimate _ from () ∗
8 , X8) by maximum likelihood methods for exponential

distribution with random censoring and get

_̂ =

∑=
8=1 X8∑=
8=1*8

.

So, constant incidence can be estimated by the number of observed cases divided by the
total follow-up time. With the notation introduced at the end of the previous section,

_̂ = # (∞)/* (∞). (1.2)

MLE of piecewise constant incidence

Now divide the time axis into " disjoint intervals defined by points 0 ≡ C0 < C1 < · · · <

C"−1 < C" < ∞. The length of the :-th interval is 3: = C: − C:−1. Suppose the incidence _(C) is
piecewise constant on those " intervals, that is, _(C) = _: for C ∈ 〈C:−1, C: ). This corresponds
to a piecewise exponential distribution of )8 .

Estimation of _: proceeds as follows: start with : = 1, the first interval. Censor all obser-
vations at C1, that is, redefine �8 to min(�8, C1). Then we are dealing with a censored sample
from Exp(_1) and the MLE is given by equation (1.2) stopped at C1, that is,

_̂1 = # (C1)/* (C1).

Now consider the second interval. Redefine all entry times to start at C1 (set them tomax(�8, C1))
and redefine all censoring times to censor at C2 (take min(�8, C2)). Now we are dealing with an
exponential sample with incidence _2 and can use equation (1.2) again to estimate _2 except
that the number of cases and total follow-up time are calculated over the interval 〈C1, C2). The
same procedure can be repeated for each successive interval.

Define # (C:−1, C: ) = # (C:) − # (C:−1) ≡ =: the number of cases observed on the :-th
interval and define * (C:−1, C: ) =

∑=
8=1

∫ C:
C:−1

.8 (B) 3B ≡ D: the total follow-up time on the :-th

interval. It follows that the MLE of _: is

_̂: = # (C:−1, C: )/* (C:−1, C: ) = =:/D:

10



1. Descriptive Epidemiology

for : = 1, . . . , " .

We will call these piecewise constant estimates of incidence empirical incidence estimates.
They can be plotted to get a histogram-like picture of estimated incidence. With enough data
and suitable partitioning, the piecewise constant incidence estimate can reasonably approx-
imate a relatively complicated incidence function. It is important to select the partitioning
carefully, so that each interval has enough observed cases.

Empirical incidence estimates with aggregated data

Epidemiological data sets rarely include information on individual subjects. More frequently,
the data are aggregated over subgroups. Such aggregated data include the time intervals, the
numbers of cases observed in the intervals and the numbers of subjects observed at the start
of the intervals.

Empirical incidence estimates can be calculated from aggregated data by replacing the
exact total follow-up time D: by its estimate obtained from the duration of the interval 3: and
the number of subjects ~: = . (C:−1) who are at risk at the start of the interval. Suppose that
there are no entries into the population and no censoring during the interval (except at the
cutpoints). The we can estimate D: simply by 3:~: to get

_̂: =
=:

3:~:

or, taking into account the number of cases observed within the interval,

_̂: =
=:

3: (~: − =:/2)
,

giving each case only half of the follow-up of a control. If the disease is rare, =: is relatively
small compared to ~: and the adjustment by =:/2 is quite negligible. With common diseases,
however, the adjustment substantially improves the bias in the incidence estimate.

The estimated incidence depends on the units of time used for 3: . Follow-up is usually
measured in person-years, p.y. (1 person-year corresponds to one person followed for one
year). Incidence of rare diseases is frequently expressed per 105 person years (one hundred
thousand) and understood as the number of cases expected in one year in a population of 105

subjects.

1.5. Age-specific incidence, age-standardized incidence,

cumulative incidence

Age-specific incidence

Age-specific incidence is simply piecewise-constant incidence estimate of the previous section
calculated for pre-specified age groups (the time scale is age, age 0 is the birth). The age groups

11



1. Descriptive Epidemiology

are usually taken as five or ten years wide. Incidence of most diseases strongly depends on age
so it rarely makes sense to report the overall incidence in the population without taking into
account its age composition.

Similarly, sex-specific incidence is calculated separately by gender, and calendar-time-
specific incidence is calculated separately by predefined intervals of calendar time.

Age-standardized incidence

For a simple comparison of incidences in two sub-populations (e.g., men vs. women), it would
be helpful to characterize incidence in the subgroup by a single number instead of an age-
dependent way. However, the overall incidence in the subgroup is affected by its age compo-
sition. Instead, the epidemiologists combine age-specific incidences into a single number with
weights that are the same for all subgroups and represent the age composition of some selected
“standard” population. This is called age-standardized incidence. Such standardized incidences
can be compared even between subgroups with different age compositions.

WeightsF1, . . . , F" are chosen for age intervals 〈C:−1, C: ) so thatF: ≥ 0 and
∑"
:=1F: = 1.

They describe the relative representation of the age groups in a standard reference population
(which should be identified). The reference population can be, for example:

• the general population of the country the study population is taken from;

• some idealized standard population (published, e.g., by the World Health Organization);

• the combined population of the current study (all subgroups together).

The age-standardized incidence is a weighted average of age-specific incidences,

_̂( =

"∑

:=1

F: _̂: .

Cumulative incidence

The cumulative incidence is integrated incidence rate over a time interval, Λ(C) =
∫ C
0
_(B) 3B.

If individual follow-up data is available, cumulative incidence can be estimated by the Nelson-
Aalen estimator. Under the piecewise exponential model with constant incidence _: on inter-
vals 〈C:−1, C: ), : = 1, . . . , " , the cumulative incidence can be expressed as Λ(C:) =

∑:
9=1 3 9_ 9 ,

where 3 9 = C 9 − C 9−1 is the duration of the 9-th interval. An estimator for the cumulative
incidence is obtained as a linear combination of empirical incidence estimates,

Λ̂(C: ) =
:∑

9=1

3 9 _̂ 9 .

In the context of rare diseases, cumulative incidence has an interesting interpretation. We
know it is related to the survival function ( by ( (C) = e−Λ(C ) . When the disease is rare, Λ(C) is

12



1. Descriptive Epidemiology

small and we can apply a one term Taylor approximation e−G ≈ 1− G to write ( (C) ≈ 1 −Λ(C),
or � (C) ≈ Λ(C), where � is the distribution function of age of disease occurrence. Thus, for
rare diseases, the cumulative incidence at the age C approximates the probability of getting the
disease by the age C .

Confidence intervals for age-standardized and cumulative incidence

Recall that the empirical incidence estimates are _̂: = =:/D: , where =: is the number of cases
observed on the :-th interval and D: is the total follow-up time on the :-th interval (person-
years of follow-up), either exact (if individual data are available), or approximated as 3:~: ,
where ~: is the number of subjects at risk at the start of the interval (for aggregated data).

The number of cases =: is a realization of a counting process with constant intensity _: .
Conditionally on D: , it can be shown that the counting process is a Poisson process and hence
=: ∼ Po(_:D: ). Also, =1, . . . , =" are independent. For D: → ∞ (increasing total follow-up
time), Poisson distribution can be approximated by a normal distribution. More precisely,

=: − _:D:√
_:D:

D−→ N(0, 1) as D: → ∞. (1.3)

After a simple manipulation, we get

_̂: − _:√
_:/D:

D−→ N(0, 1) as D: → ∞. (1.4)

Take ,̂ = (_̂1, . . . , _̂" )T and , = (_1, . . . , _" )T. Since _̂: , : = 1, . . . , " , are asymptotically
normal and they are independent of each other, we get joint asymptotic normality

Σ
−1/2(,̂ − ,) D−→ N" (0, I" ),

where

Σ = diag

(
_:

D:

)
.

For any non-zero vector of constants c , it holds

cT,̂ − cT,
√
cTΣc

D−→ N(0, 1). (1.5)

Finally, we replace Σ by its estimator Σ̂ = diag (_̂:/D: ) = diag (=:/D2: ) and calculate

cTΣ̂c =

"∑

:=1

(
2:

D:

)2
=: .

13



1. Descriptive Epidemiology

An asymptotic confidence interval for a linear combination of incidence rates cT, is

cT,̂ ∓ D1−U/2

√√√
"∑

:=1

(
2:

D:

)2
=: .

This gives us asymptotic confidence intervals for both age-standardized incidence and
cumulative incidence. For age-standardized incidence, we set 2: = F: and for cumulative
incidence, 2: = 3: . For cumulative incidence calculated on (0, C" ) with aggregated data, we
can plug in 3:~: for D: and express the variance as cTΣ̂c =

∑"
:=1 =:/~2: . Hence a confidence

interval for cumulative incidence with coverage probability converging to 1 − U is

Λ̂(C" ) ∓ D1−U/2

√√√
"∑

:=1

=:

~2
:

.

1.6. Exposures and exposure-disease associations

Excess risk and relative risk

Now consider a potential risk factor- , which could affect the risk of developing the disease. In
epidemiology, such a variable is called an exposure. The exposure can be some environmental
factor (radiation, air pollution), a characteristic of the lifestyle of the subject (diet, smoking,
alcohol consumption), an innate factor (genetics, ethnicity), a cultural factor, or just anything.
We would like to learn whether the exposure affects the incidence of the disease and evaluate
its effect.

Classical epidemiologyworks with discrete (or discretized) variables. Let us assume at this
moment that the exposure - is discrete with values 0, 1, . . . , � . Value 0 means an “unexposed”
subject, who was never subjected to the risk factor at all (e.g., a non-smoker). Subsequent
values of - indicate increasing levels of the exposure. The simplest special case for � = 1 leads
to a binary exposure that allows only two values: 0 = unexposed (non-smoker) and 1 = exposed
(smoker).

Denote by _ 9: the incidence of the disease at the 9-th level of the exposure over the :-th
age interval, 9 = 0, . . . , � , : = 1, . . . , " . There are twoways to express the effect of the exposure
on the incidence. We can take differences relative to the unexposed, i.e.,

�' 9: = _ 9: − _0: .

This is called the excess risk. The excess risk can be interpreted as the expected number of
additional new cases of the disease occurring in a population with exposure level 9 (compared
to the unexposed population of the same size). If both incidences are expressed in the usual
way, per 105 person-years of follow-up, �' 9: is the number of cases attributable to the exposure
that occur in a population of 100, 000 people over one year.
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1. Descriptive Epidemiology

Another measure of exposure effects is provided by the relative risk

'' 9: =
_ 9:

_0:
.

The relative risk '' 9: shows the proportional increase in incidence for the exposure level 9
(relative to the unexposed subjects) at the age category : .

In many practical examples the relative risk does not depend on the age category, i.e.,
'' 9: = A 9 for all : = 1, . . . ,  . Realizing analogy with the Cox model, we say that the propor-
tional hazards condition is satisfied. Then the effect of exposure level 9 can be expressed by a
single number A 9 .

Empirical estimates of relative risk and excess risk can be obtained from empirical esti-
mates of _ 9: calculated for each exposure-by-age subgroup by the methods explained in Sec-
tion 1.4. However, as we show below, relative risk can be estimated even from data that only
include disease status, without any recorded follow-up information. This is the most important
advantage of relative risk over excess risk.

However, relative risk should not be interpreted without consideration of the wider con-
text, especiallywhen interested in the practical importance of various risk factors. For example,
a rare exposure -1 with a seemingly high relative risk of 5 or 10 for a rare disease represents a
much smaller practical problem for the overall human health than a common exposure-2 with
modest relative risk of 1.2 acting on a common disease. Efforts to eliminate-1 will bring much
smaller benefits than efforts to eliminate-2. For such considerations, the excess risk would be
more relevant measure than the relative risk.

Estimating relative risk when no follow-up data are available

The relative risk is defined as ratio of incidences. Estimation of incidence requires information
of individual follow-up or at least number of subjects who are at risk at different age intervals.
However, under some circumstances, it is possible to estimate relative risk from binary data
that only includes information on disease status of the subjects, but not on follow-up. In this
section, we show why this is so and under what circumstances such simplified estimation
provides reasonable results.

It is shown in Section 1.5 on p. 12 that for rare diseases, the cumulative incidence approx-
imates the probability of acquiring the disease by the given age. The cumulative incidence for
the exposure group 9 at the end of the age interval : is

Λ 9 (C:) =
:∑

;=1

_ 9;3; ≈ � 9 (C:) = P
[
) ≤ C:

��- = 9
]
,

where 3; is the duration of the ;-th age interval and � 9 is the conditional distribution function
of age at occurrence of disease given exposure group 9 . To write it in this way, we need to
assume that the exposure is time-invariant (each subject stays in the same exposure group for
the whole life).
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1. Descriptive Epidemiology

Now make the proportional hazards assumption, i.e., let there be no interaction between
exposure and age. Take _0: the incidence of the unexposed group in the :-th age interval and
express _ 9: = A 9_0: . Then

Λ 9 (C:) =
:∑

;=1

A 9_0;3; = A 9Λ0(C: ).

Using the approximate equality of cumulative incidence and distribution function, we get

A 9 =
Λ 9 (C:)
Λ0 (C:)

≈
P
[
) ≤ C:

��- = 9
]

P
[
) ≤ C:

��- = 0
] for all : = 1, . . . , ".

Taking : = " , we have A 9 = P
[
) ≤ C"

��- = 9
]
/P

[
) ≤ C"

��- = 0
]
, the ratio of overall

probabilities of being a case (by the upper age limit C" ) in the exposure group 9 relative to the
unexposed. We can estimate the probability of being a case empirically by relative frequencies.
Let # 9 · be the total number of observed cases in the exposure group 9 ∈ {0, . . . , � } and let
= 9 be the number of subjects in the exposure group 9 . Then # 9 ·/= 9 , 9 = 1, . . . , � , estimates
P
[
) ≤ C"

��- = 9
]
and # 0·/=0 estimates P

[
) ≤ C"

��- = 0
]
. The relative risk A 9 can be estimated

by

Â 9 =
# 9 ·/= 9
# 0·/=0

.

To calculate this estimator of relative risk, we only need to know the numbers of cases
and controls in each exposure category, nothing more.

This approach works well if the following conditions are satisfied:

• the disease is rare;
• the exposure is time invariant;
• the proportional hazards assumption holds.

Supplementary reading

• Esteve et al. (1994, Chap. 1, pp. 1–34; Chap. 2, pp. 49–62)

• Breslow and Day (1980, Chap. II, pp. 42–49)

• Breslow and Day (1987, Chap. 2, pp. 48–57)
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2. Analyzing Exposure-Disease Associations

2.1. Epidemiological study design: Cohort studies and

case-control studies

In epidemiology, we are frequently interested in estimating the association between an expo-
sure and a disease and making statistical inference about it. We want to answer questions such
as “Is the exposure related to the disease or not?” or “How strong is the association and what is
the uncertainty about its size?” So, we need methods for hypothesis testing and construction
of confidence intervals. Which methods are most appropriate for a particular problem depends
on the nature of the problem, structure of the data available for analysis, and data collection
methods (study design). Classical statistical methods usually require the iid paradigm, avail-
ability of independent and identically distributed observations–random vectors that contain
data observed on each participant. However, in epidemiology the data are rarely collected in
this way. Therefore we first consider the important issue of study design.

Let us start with the simplest possible setup of a single binary exposure - . For each of
# participating subjects, we observe a pair (-8, .8 ), where -8 ∈ {0, 1} is the exposure (0 =

unexposed and 1 = exposed) and .8 ∈ {0, 1} is the disease status (0 = control, disease-free
subject and 1 = case, subject having the disease). No follow-up information is available. The
data can be summarized in the form of a 2 × 2 contingency table as displayed in Table 2.1.

Suppose the subjects in the table came from a population with classification probabilities
of the four cells denoted by 0 = (c�1 , c*1 , c�0 , c*0 ). The exposure-disease association can be
expressed, e.g., by the relative risk discussed in Section 1.6. Under the conditions described

Table 2.1.: Observed frequencies in a case-control study with a single binary exposure.

- = 1 - = 0
(Exposed) (Unexposed)

Total

Cases (. = 1) =�1 =*1 =1

Controls (. = 0) =�0 =*0 =0

Total =� =* #
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2. Analyzing Exposure-Disease Associations

there, the relative risk can be approximated even in the absence of follow-up data. We have

'' =
c1 |�
c1 |*

, (2.1)

where c1 |� = P
[
. = 1

��- = 1
]
= c�1 /(c�1 +c�0 ) is the probability of disease in the exposed group

and c1 |* = P
[
. = 1

��- = 0
]
= c*1 /(c*1 + c*0 ) is the probability of disease in the unexposed

group.

Now consider three different ways how the data forming the contingency table could have
been obtained.

Cohort study

Let the # participating subjects be independently drawn from the population of interest. Then
the data (=�1 , =*1 , =�0 , =*0 ) have a joint multinomial distribution. All components of 0 and any
of their functions can be consistently estimated with such data. In particular, the empirical
estimate of the relative risk is simply (=�1=* )/(=�=*1 ). It is also the MLE under the multinomial
model.

This is a design that satisfies the iid paradigm. The participating subjects are indepen-
dently drawn and form a representative sample from a single underlying population. In epi-
demiology, this design is called the cohort design∗. All the classical statistical methods for the
analysis of two-way tables can be used with the cohort design.

However, data collected in this way are likely to yield very small counts in the contingency
table if the disease is rare and/or if the exposure is rare. In epidemiology,most diseases are quite
rare. This is, by the way, an assumption needed for a reasonable approximation of the relative
risk by (2.1). Cohort studies are quite inefficient because they need very large sample sizes #
to yield sufficient information about the disease.

Case-control study

The problem with small numbers of cases of rare diseases can be alleviated in the following
way. Fix the desired number of cases=1 and the number of controls=0 beforehand. Then obtain
a random sample of size =1 from subjects who have the disease and another random sample of
size =0 from subjects who do not have the disease, and observe their exposures. This design is
called the case-control design†.

The case-control data forms two independent samples from two different subpopulations
and it does not follow the iid paradigm. We have =�1 ∼ Bi(=1, c� |1) and =�0 ∼ Bi(=0, c� |0)
independent, where c� |1 = P

[
- = 1

��. = 1
]
= c�1 /(c�1 +c*1 ) is the probability of being exposed

for the cases and c� |0 = P
[
- = 1

��. = 0
]
= c�0 /(c�0 + c*0 ) is the probability of being exposed

for the controls. Because the model for this design depends only on c� |1 and c� |0, it allows

∗ Česky kohortová studie † Česky studie případů a kontrol
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2. Analyzing Exposure-Disease Associations

consistent estimation of exposure distributions given the outcome but not the marginal or
conditional distributions of the outcome. For example, with the case control design, we cannot
estimate the prevalence of the disease c1 = P [. = 1]. The consistent ML estimator of c1 for
the cohort design is =1/# . However, in the case-control study, =1 is set by the investigator and
=1/# is not a consistent estimator of c1. Similarly, we cannot estimate c1 |� , the probability of
disease in the exposed group, or c1 |* , the probability of disease in the unexposed group, or the
relative risk '' =

c1|�
c1|*

from case-control data.

The case-control study is an example of outcome-dependent sampling, a data collection
mechanism for which inclusion into the study depends on the outcome (here, disease status).
Such data have to be analyzed by specialized methods.

Exposure-dependent sampling

It is also possible to create the contingency table by setting the numbers of exposed subjects
=� and the number of unexposed subjects =* and taking independent random samples from
these two groups. This design may be called exposure-dependent sampling.

The data (=�1 , =*1 ) can be represented by two independent samples from two binomial
distributions, this time column-wise: =�1 ∼ Bi(=�, c1 |�) and=*1 ∼ Bi(=* , c1 |* ). Here, we cannot
estimate the exposure probability c� = P [- = 1] or the conditional probabilities c� |1 and c� |0
(but these are of little interest anyway), but we can estimate the relative risk '' =

c1|�
c1|*

.

This sampling design could be useful with rare exposures affecting a common disease but
it is not used as frequently in epidemiological studies as the case-control design.

Odds ratio and its invariance

The question is whether we can estimate anything useful about exposure-disease association
from the case-control study. The answer is, of course, “Yes, we can!” The parameter we will
focus on is the odds ratio∗. In the cohort design, the odds ratio is defined as

\ ≡ $' =

c�1 c
*
0

c�0 c
*
1

.

The odds ratio is 1 if and only if there is no association between the exposure- and the disease
. , that is, if and only if the relative risk is 1. However, the odds ratio can be rewritten in terms
of parameters that are identifiable under each of the three designs, in particular

\ ≡ $' =
c�1 c

*
0

c�0 c
*
1

=
c1 |�c0 |*
c0 |�c1 |*

=
c� |1c* |0
c� |0c* |1

.

∗ Česky poměr šancí
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Hence, the odds ratio is invariant to the study design and can be always estimated consistently.
Furthermore, if the disease is rare,

\ ≡ $' =
c1 |�c0 |*
c0 |�c1 |*

=
c1 |� (1 − c1 |* )
c1 |* (1 − c1 |�)

≈
c1 |�
c1 |*

= ''

so the odds ratio well approximates the relative risk of rare diseases.

The empirical estimate of odds ratio is the same for all three study designs:

\̂ =
=�1=

*
0

=�0=
*
1

. (2.2)

It is also the maximum likelihood estimator, with consistency and asymptotic normality guar-
anteed by the general ML theory.

2.2. Odds ratio estimation and testing: classical methods

In this section, we review classical methods for estimation and testing of odds ratios in the
simplest case of a single binary exposure, which can be transformed into a 2 × 2 contingency
table.

As explained in the previous section, it is possible to use odds ratios for describing exposure-
disease associations instead of relative risks. The odds ratio can be estimated consistently in the
same way with each of the study designs and approximates the relative risk closely if the dis-
ease is rare. In cohort studies, however, follow-up information is usually available, so we prefer
analyses that estimate relative risks using survival analysis methods. Therefore the methods
covered in this section are primarily applicable to case-control studies.

Large sample methods

Large samplemethods for estimating and testing the odds ratio in a 2×2 table are taught in basic
statistics courses. The MLE \̂ is given by (2.2). Even though this estimator is asymptotically
normal, it is better to transform it by the log-transformation and use the convergence

log \̂ − log\√
+̂\

D−→ N(0, 1), (2.3)

where

+̂\ =
1

=�1
+ 1

=*1
+ 1

=�0
+ 1

=*0
(2.4)

and =+̂\ is a consistent estimator of the asymptotic variance of
√
=(log \̂ − log\ ). This can be

proven by the delta method and Slutsky Theorem.
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2. Analyzing Exposure-Disease Associations

We can use (2.3) to construct asymptotic tests of �0 : \ = \0 and asymptotic confidence
intervals for \ .

The most common asymptotic test of independence in a two-way table is the Pearson j2

test. The general form of the test statistic is

j2 =

(
=�1 − =�=1

#

)2

=�=1
#

+

(
=*1 − =* =1

#

)2

=* =1
#

+

(
=�0 − =�=0

#

)2

=�=0
#

+

(
=*0 − =* =0

#

)2

=* =0
#

.

Under the null hypothesis �0 : \ = 1, this statistic converges in distribution to j21 . For a 2 × 2
table, the statistic can be rewritten as (see Anděl 2002, Theorem 13.5)

j2 =
#

=�=*=0=1
(=�1=*0 − =�0=*1 )2 =

# (=�0=*1 )2

=�=*=0=1
(\̂ − 1)2.

The Pearson j2 test is actually a Rao-type test based on the asymptotic normality of the un-

transformed odds ratio
√
# (\̂ − \ ) with \ = 1. It can be used to test �0 : \ = 1 but it cannot be

easily generalized to test �0 : \ = \0 or to construct confidence intervals for \ .

Small sample methods

The large sample methods require large enough counts in the whole table. Methods based on
asymptotic normality of log-transformed odds ratio (2.3) completely break down when at least
one of the cell counts is zero. The Pearson j2 test is unreliable when any of the cell counts is
too small (e.g., < 5). The MLE (2.2) takes an infinite value when =�0 = 0 or =*1 = 0. Fortunately,
exact small sample methods are available for 2 × 2 tables.

The small sample methods are based on the conditional distribution of the number of
exposed cases =�1 given all the marginals =1, =0, =� , =* . It can be shown that, when the true
odds ratio is \ ,

?: (\ ) ≡ P
[
=�1 = :

��=1, =0, =�, =* ;\
]
=

(
=1

:

) (
=0

=� − :

)
\:

∑

8∈I

(
=1

8

) (
=0

=� − 8

)
\ 8

=

(
=�

:

) (
=*

=1 − :

)
\:

∑

8∈I

(
=�

8

) (
=*

=1 − 8

)
\ 8
, (2.5)

for : ∈ I, where the set of permitted values I includes all natural numbers 8 such that
max(0, =� − =0) ≤ 8 ≤ min(=�, =1). This is called a non-central hypergeometric distribution
. In the special case of \ = 1, we get the standard hypergeometric distribution. Because the
small sample methods condition on all the marginal counts, they are invariant with respect to
the sampling design and can be used with cohort studies, case-control studies, and exposure-
dependent sampling in the same way.
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The conditional maximum likelihood estimator \̃ of odds ratio is obtained by maximizing
?=�1

(\ ) over \ > 0 (with the observed value of =�1 ). It is the value of \ that equates the observed

value of =�1 with its expectation under the distribution (2.5), i.e., \̃ solves the equation

=�1 =

∑

:∈I
:

(
=1

:

) (
=0

=� − :

)
\̃ :

∑

8∈I

(
=1

8

) (
=0

=� − 8

)
\̃ 8

.

This leads to the calculation of the roots of a polynomial of the degree min(=�, =1)−max(0, =�−
=0). One has to be careful to evaluate ?=�1 (\ ) at all the existing roots in order to find the global
maximum.

We can use the distribution (2.5) to obtain exact tests and construct exact confidence in-
tervals. Consider the hypothesis �0 : \ = \0. An exact two-sided test will reject �0 if

∑

:≤=�1 ,:∈I
?: (\0) ≤

U

2
or

∑

:≥=�1 ,:∈I
?: (\0) ≤

U

2
.

In the special case of \0 = 1, this test is called the Fisher exact test∗, see Anděl (2002, Sec. 13.5).
It is important to realize that, even though the test is called “exact”, its true level is ≤ U because
the discrete reference distribution does not allow reaching an arbitrary level exactly.

An “exact” confidence interval for the odds ratio based on the distribution (2.5) has a lower
limit \! and an upper limit \* that satisfy the equations

∑

:≥=�1 ,:∈I
?: (\!) =

U

2

and ∑

:≤=�1 ,:∈I
?: (\* ) =

U

2
.

2.3. Odds ratio estimation and testing: regression methods

Wehave only considered a single binary exposure so far. This is not sufficient formost practical
applications, for example multi-level exposures, continuous exposures, or multiple exposures
affecting the same disease. With cohort study or exposure-dependent sampling, such prob-
lems can be analyzed by logistic regression with disease status as the binary outcome. Logistic
regression can be used to deal with fairy general situations and is the method of choice for
estimation and testing of exposure-disease associations. With case-control sampling, the situ-
ation is less clear because disease status is not the outcome in this design and the iid paradigm

∗ Česky Fisherův faktoriálový test
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(a)

X Y

C

(b)

X Y

C

Figure 2.1.: Graphical representation of (a) confounding effect of variable � and (b) mediating
effect of variable�. The exposure is denoted by - , the disease by . .

is violated. Nevertheless, we will show in the next chapter, section 3.3, that logistic regression
can be used even with case-control sampling to estimate the parameters of interest properly.

Before we get there, however, we need to introduce and discuss the fundamental issue of
confounding.

2.4. Confounding in epidemiological studies

The ultimate goal of epidemiological studies is to ascertain whether the exposure causes the
disease or not. However, this cannot be done by considering only the exposure - and the
disease . out of the context of all other factors that may be related to them.

Imagine that there exists another variable �, which is associated both with the exposure
and with the disease. If such a variable is not properly considered in the analysis, it can distort
the true causal relationship between the exposure and the outcome. Figure 2.1 displays two
possible ways how � could be related to the exposure - and the disease . . The variables are
pictured as nodes of a graph and causal relationships between them are marked by oriented
edges with arrows.

In the left panel (a) of the figure, the variable� affects both the exposure- and the disease
. . Such a variable is called a confounder∗. In the presence of a confounder, the true causal
association between the exposure - and the disease . cannot be estimated correctly. In order
to estimate the true effect of- on. , it is necessary to measure the confounder� and to remove
its confounding effect by methods discussed below. Confounders can distort the true exposure
effect both ways: they can create spurious effects that do not in fact exist, or they can mask a
true exposure effect so that it cannot be detected.

In the right panel (b), the variable � is affected by the exposure - and, in turn, it affects
the disease . . Such a variable is called a mediator†. A mediating variable must not be treated
as a confounder in the analysis; if its effect is removed, the analysis would estimate only the
part of the true causal effect of- on . , which is not mediated through�. In epidemiology, this
error is called over-matching. Over-matchingmay also occur when- and� are two alternative
measures expressing the same true cause of the disease. In that case it is also wrong to consider

∗ Česky matoucí veličina nebo zkreslující veličina † Česky zprostředkující veličina
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� a confounder and to remove its effect.

It is also possible to encounter a variable that is a consequence of the disease. Such a
variable is neither a confounder nor a mediator and, of course, it should not play any role in
the analysis.

Thus, it is very important to distinguish confounders from mediators. Confounders must
be taken into account in the analysis but mediators must not. It is impossible to tell the dif-
ference between them from the data alone. We can check which variables are associated both
with the exposure and with the outcome but we usually cannot determine the direction of the
association between - and � from the data. This requires an external expert knowledge that
carefully considers the meaning of the measured variables and their role in the process leading
to the disease.

Confounding is always a concern in observational (non-randomized) studies. The key
principle of epidemiological studies is that all potential confounders should be consideredwhen
the experiment is planned, should be appropriately measured and accounted for. There are
three main strategies to deal with confounding in case-control studies at the stage of sampling
(subject selection) and/or analysis: stratification, matching, and adjustment.

Stratification ∗ means that we classify the subjects into  groups (called strata) according to
the value of the confounder. Thus, within each stratum, the subjects have fairly similar
confounder values. Stratification can be performed at the sampling stage, by taking sep-
arate samples of cases and controls (of a pre-specified size) from each stratum (stratified
sampling†). Or it can be performed at the analysis stage, by conducting separate anal-
yses within each stratum and then combining stratum-specific effect estimates into one
overall estimate (stratified analysis‡). Statistical methods for the analysis of stratified
case-control studies will be discussed in the next chapter.

Matching § is actually a very fine stratification, with strata that are so small that each of
them includes just a single case. It allows choosing controls for each case individually so
that the controls are as similar to the case in terms of confounding variables as possible.
Methods for the analysis of matched studies are explained in Chapter 4.

Adjustment ¶ means including the confounder as a covariate in the binary response regres-
sion model used for estimation of the exposure effect on the disease. Because the regres-
sion model conditions on the values of the covariates, it estimates the exposure effect
conditionally on having equal values of the confounder.

Cohort studies are usually prospective, subjects are enrolled before their confounders and
outcomes are known. Therefore, in cohort studies, adjustment is the only available approach.
In case-control studies, stratification and matching are frequently done, combined with adjust-
ment at the analysis stage.

∗ Česky stratifikace † Česky stratifikovaný výběr ‡ Česky stratifikovaná analýza § Česky matching
¶ Česky adjustment
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2.5. Practical issues

2.5.1. Causality

Assessing causality from observational studies is always difficult and not quite reliable. There
are many sources of potential biases that may create a non-existing effect or mask a true effect
of the exposure on the disease. Confounding is always the top concern but there are many
other mechanisms that introduce bias. The only reliable way for estimation of causal effects
is randomization. However, in epidemiology, randomization is only possible when protective
measures designed to prevent the disease are investigated. Randomizing human subjects to
harmful risk factors is not an option. This situation is not specific to epidemiological research,
it applies to data analysis problems in general.

So, canwe in fact make any conclusions about causal effects from epidemiological studies?
The answer is a cautious “yes”, under certain conditions. Breslow and Day (1980, pp. 86–90)
discuss criteria that need to be satisfied in order to consider an association suggested by an
observational study causal. Among those criteria are:

• Dose-response relationship. If the exposure is a true cause of the disease, the risk of the
disease should increase with higher levels of the exposure and longer exposure duration.
If such trends are not observed or are not monotone, the association is likely not to be
causal.

• Strength of the association. If the estimated relative risk (odds ratio) is quite large (say,
5 or more), it is less likely that it could be brought about by confounding. On the other
hand, a weak (though significant) relative risk such as 1.3 can easily be an artefact of
confounding or other biases.

• Credible temporal relationships. If it can be shown that the exposure precedes the
disease by a reasonable amount of time and/or that the increased risk occurs in time
periodswhen the exposure is likely to have the largest effect, the arguments for causality
are strengthened. If, on the other hand, the increased risk is observed in time periods
when the exposure could not have had a strong impact, the association cannot be causal.

• Plausible biological explanation. There must be a plausible explanation of biological
processes leading from exposure to disease, supported by findings of basic science.

• Confirmation by multiple studies. A positive finding has a higher credibility if it can
be replicated by other studies conducted by a different methodology on different popu-
lations. A single positive study cannot be considered a definite proof of causality.

With respect to temporal relationships between the exposure and the disease, longitudinal
studies that follow the evolution of exposure, disease, and confounders over a period of time
provides much stronger evidence than a cross-sectional study, where all the data are collected
at a single moment.

To summarize, interpretationof observational studiesmust be done carefully and thought-
fully. Their findings need not correspond to the true causal relationships. This is whywe prefer
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to describe the results as “associations” between - and . rather than giving false impressions
of causal meaning by calling them “effects” of - on . .

With epidemiological studies, the problem of causality is serious enough. However, most
of these studies are at least well planned, conducted according to a specific study design, with
data carefully checked and processed. The situation is much worse with the analysis of data
sets collected in ad-hoc ways where the study population is not well defined, participation
rates are not under control, and variables and outcomes are recorded in a haphazard way. This
criticism is especially relevant for so called “big data” problems, in which the size of the data
set cannot make for the lack of control over sampling procedures and data quality.

2.5.2. Sources of bias

Confounding belongs to the most serious sources of bias in case-control studies but it is not
the only source of bias. In order to come up with reliable results, all sources of bias should be
minimized.

Selection of controls

In case-control studies, separate samples from cases and controls are obtained. It is important to
make sure that the two groups come from the same underlying population. Ideally, cases would
be taken from disease registry capturing occurences of the disease in a certain population
(geographical area). Controls should be sampled from the same population towhich the disease
registry applies using, e.g., lists of registered voters, register of inhabitants, etc. However, this
is rarely done due to practical constraints, such studies are expensive and time-consuming.

Commonly, cases are identified from medical records in a hospital where their disease
is treated. The selection of appropriate controls for such population may be questionable.
Sometimes controls are taken from other patients who are treated or hospitalized in the same
hospital with a different condition (so called hospital controls), however, this may not be a
random sample from the same population as the cases. The most serious concern is that the
controls might have a condition caused by a factor closely related to the exposure, which would
lead to a biased odds ratio estimate.

Case ascertainment, diagnosis accuracy

It is not surprizing that errors in case ascertainment (classification of subjects as cases/controls)
may have very detrimental effects on the case-control study. It is a bit more surprizing that
these errors are not as uncommon as it might seem. When cases are taken from routinelymain-
tained disease registries or according to diagnoses marked in hospital records, the possibility
of an incorrect diagnosis is real. Also the controls may not be as healthy as they should, some
of them may be undiagnosed cases of the disease of interest.
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Errors in diagnoses can be minimized by careful verification of the status of each of the
study participants. This can be done, e.g, by review of medical records by an independent ex-
perienced physician or by conducting additional laboratory procedures to verify the diagnosis.

Misclassification of exposures

Exposures are frequently subject to measurement error. Sometimes past exposures can be de-
termined relatively precisely using recorded information (employment records, medical records,
etc.). More commonly, exposures must be estimated from imperfect sources or reported by the
participants themselves or their relatives. Some exposures (intake of dietary fat) cannot be
ascertained by any reliable method. Also, exposure levels may vary over time and it may be
difficult to summarize them in a meaningful way. Measurement errors in exposures typically
lead to shrinking estimated associations towards one.

Prospective vs. retrospective studies. Recall bias.

Another source of bias may arise by not keeping data collection procedures the same for both
cases and controls. Cohort studies can be done in a prospective way (enrolling subjects and
following them over time). This is a great advantage because exposure assessment can be stan-
dardized and verified. In such studies, all participants have data collected in the sameway, mea-
surements can be verified, errors identified and fixed, missing items resolved. Also, prospective
studies allow better control of temporal relationships (does the suspected risk factor precede
the development of the disease or not?).

Case-control studies (and some cohort studies) are done retrospectively: cases and con-
trols are identified at a certain moment and their past exposures are ascertained. This often
means that the way the exposures are measured cannot be controlled. Sometimes, it is neces-
sary to ask the subjects to report their exposures over their lifetimes (or to ask their families if
the subject is severely ill or deceised). This raises a concern that exposures could be reported
differently by the controls (healthy subjects) than by the cases who are severely ill and have
pondered about possible causes of their disease for some time (not speaking about families of
subjects who died of the disease). This differential error in exposure assessment is called recall
bias; it may substantially deteriorate the results of the study.

2.5.3. Sample size in case-control studies

Case-control studies are especially powerful for rare diseases. With rare diseases, cases are
scarce so we include in the study all the cases that can be identified. Then the question is how
many controls we should get. The number of controls should be at least equal to the number of
cases. If we take more controls, we improve precision in the odds ratio estimate and increase
the power to detect an exposure effect. However, if we take more than four controls per case,
the additional gain in power is negligible.
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2. Analyzing Exposure-Disease Associations

If the disease is less rare we specify the total number of subjects to be enrolled and take
samples of cases and controls of equal size.

Supplementary reading

• Breslow and Day (1980, Chap. III, pp. 84–115, Chap. IV, pp. 122-136)
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3. Stratified Case-Control Studies

3.1. Stratified sampling vs. stratified analysis

Consider one or several confounders that we want to take into account in the analysis of a case-
control study and define  strata based on the values of the confounder(s). Each subject from
the population of interest is classified into one of the strata and the values of the confounder(s)
within each stratum are similar. Thus, when we compare two subjects from the same stratum,
they would not differ in the values of the confounder(s) too much.

For example, if the confounder is age, we can take subjects younger than 20 years as the first
stratum and create additional strata as 10-year age groups 20 – 30 years, 30 – 40 years etc. The last
stratum could be subjects 80 years old or older. We have created a total of  = 8 strata.

Stratified case-control sampling is performed by choosing a fixed number of cases and
controls in each stratum. In small strata, we usually take all available cases and up to 4 times
as many controls. In large strata, we can take a subsample of the cases and a suitable number
of controls. Denote the number of cases in the :-th stratum by =1: and the number of controls
by =0: . The total number of subjects in the stratum is =: .

With a single binary exposure, which will be the setting investigated first, the data can be
expressed as  2 × 2 contingency tables. The notation is summarized in Table 3.1.

Stratified samples must be analyzed by stratified analysis. This is performed by estimating
the parameter of interest (here, odds ratio) in each stratum and then combining the stratum-
specific estimates into a single estimate/single test statistic. Because subjects in the stratum
do not vary too much in terms of the confounders (used for setting up the strata), the con-

Table 3.1.: Observed frequencies in the :-th stratum of a stratified case-control study with a
single binary exposure.

- = 1 - = 0
Stratum: :

(Exposed) (Unexposed)
Total

Cases (. = 1) =�
1:

=*
1:

=1:

Controls (. = 0) =�
0:

=*
0:

=0:

Total =�
:

=*
:

=:
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3. Stratified Case-Control Studies

founding effect is (nearly) eliminated in each stratum-specific analysis. The overall estimate
or test created by combining the stratum-specific analyses is therefore much less affected by
confounding than a non-stratified analysis.

Stratified analysis can be performed even on data that was originally collected by ordinary
case-control sampling. After the confounders are assessed, the subjects are divided into strata
and the data are formed as in Table 3.1. The only difference is that the row totals are random
instead of fixed. However, this does not affect the analysis. Forming strata on data that was not
selected by stratified sampling is called post-stratification. As opposed to stratified sampling,
in post-stratified data the numbers of cases and controls in each stratum are not under control
and may turn quite unbalanced.

Stratification is suitable for controlling a small number of important confounders, typi-
cally age and sex. With too many confounders, we would either obtain a very large number of
strata or stratification would be so rough that confounding would not be removed. For strati-
fied sampling, it is necessary that stratification variables are already available when the cases
and controls are selected for the study; one cannot stratify on variables that are difficult or
expensive to measure. Most analysis methods for stratified case-control studies break down
when the data include a large number of small strata – there are some exceptions, though,
which are noted in the subsequent sections.

3.2. Classical methods for stratified case-control studies

As noted above, stratified analysis proceeds by performing the analysis within each stratum
and combining the results across strata. If this strategy is to be effective for the odds ratio,
we need to assume that all strata have the same odds ratio \ between the exposure and the
disease. In other words, we assume that there is no interaction between the exposure and
the confounder, or that the exposure affects the disease in the same way at all levels of the
confounder.

With the notation of Table 3.1, the odds ratio can be estimated from the :-th stratum by
the empirical estimator

\̂: =

=�
1:
=*
0:

=�
0:
=*
1:

, (3.1)

see (2.2). If there is no interaction, all these estimators estimate the same parameter \ . When
\ ≈ 1, the variance of this estimator can be approximated by

ˆvar \̂: ≈
(
=*1:=

�
0:

=:

)−1
. (3.2)

(the variance estimator can be justified by the asymptotic normality of empirical relative fre-
quencies and the delta method).
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3.2.1. Cochran-Mantel-Haenszel test

Now consider the null hypothesis �0 : \ = 1 against the alternative �1 : \ ≠ 1. Fix the
marginals of each of the 2×2 contingency tables from Table 3.1. Under�0 and fixedmarginals,
the number of exposed cases =�

1:
has a hypergeometric distribution with expectation

E=�1: ≡<: = =1:
=�
:

=:

and exact variance

var=�1: ≡ +: =

=1:=0:=
�
:
=*
:

=2
:
(=: − 1)

.

The test statistic is composed in the same way as the logrank test for comparing two censored
samples (even the expectation and variance are exactly the same as in that case, only with a
different notation and meaning of the counts). Take

j2MH =

[∑ 
:=1 (=�1: −<: )

]2
∑ 
:=1+:

. (3.3)

Under the null hypothesis, the test statistic has an asymptotic j21 distribution. The asymptotic
distribution can be justified by similar arguments as in the case of the logrank test, although
here the situation is simpler because the tables for the individual strata are independent of each
other. The asymptotic distribution is valid under both kinds of asymptotics: a small number of
strata with large number of subjects in each, or a large number of small strata. This is a great
advantage of this test.

The null hypothesis is rejected at the asymptotic level of U if and only if

j2MH ≥ j21 (1 − U),

where j21 (1 − U) is the 1 − U quantile of the j21 distribution.

This test is called the Cochran-Mantel-Haenszel test, or, in short the Mantel-Haenszel test.
It was first suggested by Cochran (1954), with a somewhat different+: , and later made popular
by Mantel and Haenszel (1959).

3.2.2. Woolf estimator

The next task is to estimate the common odds ratio parameter \ . All the stratum-specific

estimators \̂: estimate this parameter so we need to combine them in a suitable way into a
single estimator. Woolf (1955) proposed to work on the log odds scale and to use the asymptotic
distribution (2.3) for =: → ∞∀: . The Woolf estimator is defined by

log \̂W =

∑ 
:=1F: log \̂:∑ 

:=1F:
,
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where F: are weights. The optimal weights for a linear combination of consistent estimators
are inverses of variances of the individual estimators; in this case we get

F: =

(
1

=�
1:

+ 1

=*
1:

+ 1

=�
0:

+ 1

=*
0:

)−1
,

see (2.4). It is not difficult to see that the asymptotic variance of log \̂W with these weights can

be estimated by
(∑ 

:=1F:
)−1

. It follows from the asymptotic normality of log \̂: that

log \̂W − log\√(∑ 
:=1F:

)−1
D−→ N(0, 1)

as =: → ∞ for all : = 1, . . . ,  . This allows to construct asymptotic confidence intervals for \ .

The Woolf estimator works well when the number of strata is small and the number of
subjects is large in each stratum. However, stratum-specific estimates of log\ cannot even be
calculated when any of the cell counts in the stratum-specific contingency table is 0. Even if
all the counts are positive, but small, the practical performance of the Woolf estimator is very
poor.

3.2.3. Mantel-Haenszel estimator

A much better estimator of the common odds ratio was proposed by Mantel and Haenszel
(1959). They used empirical odds ratio estimators directly, without taking logs, together with
asymptotic variances (3.2).

The Mantel-Haenszel estimator is obtained as the weighted average

\̂MH =

∑ 
:=1 l:\̂:∑ 
:=1 l:

,

with weights taken as inverses of (3.2), that is l: = =*1:=
�
0:/=: . When we plug in expressions

for \̂: and l: , we get

\̂MH =

∑ 
:=1l: \̂:∑ 
:=1l:

=

∑ 
:=1

=*1:=
�
0:

=:

=�1:=
*
0:

=�0:=
*
1:

∑ 
:=1

=*1:=
�
0:

=:

=

∑ 
:=1

=�1:=
*
0:

=:

∑ 
:=1

=*1:=
�
0:

=:

. (3.4)

It can be shown that theMantel-Haenszel estimator is 1 if and only if theMantel-Haenszel
test statistic is exactly zero. Indeed,

j2MH = 0 ⇔
 ∑

:=1

=�1:
=:

=:
=

 ∑

:=1

=1:
=�
:

=:
.
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Write the :-th term on the left-hand side as

=�1: (=
�
1: + =

*
1: + =

�
0: + =

*
0: )

=:
=

(=�1: )
2 + =�1:=

*
1: + =

�
1:=

�
0: + =

�
1:=

*
0:

=:

and the :-th term on the right-hand side as

(=�
1:

+ =*
1:
) (=�

1:
+ =�

0:
)

=:
=

(=�
1:
)2 + =�

1:
=*
1:

+ =�
1:
=�
0:

+ =*
1:
=�
0:

=:
.

Clearly, the two sides (after summation) are equal if and only if

 ∑

:=1

=�
1:
=*
0:

=:
=

 ∑

:=1

=*
1:
=�
0:

=:
,

that is, \̂MH = 1.

The Mantel-Haenszel estimator has good properties even if some of the cell counts are
very small or even zero. Is is actually consistent under both kinds of asymptotics: for constant
and =: → ∞ for all : , as well as for  → ∞ and =: small.

It took over 25 years to prove that log \̂MH is asymptotically normal and to develop a
variance estimator. Eventually, it was done by Robins et al. (1986). Their asymptotic variance

formula (for log \̂MH) is rather complicated and we show it here just to share its aesthetic
beauty:

 ∑

:=1

=�1: + =
*
0:

=:

=�1:=
*
0:

=:

2

(  ∑

:=1

=�
1:
=*
0:

=:

)2 +

 ∑

:=1

(=�1: + =*0:
=:

=�0:=
*
1:

=:
+
=�0: + =

*
1:

=:

=�1:=
*
0:

=:

)

2

(  ∑

:=1

=�
1:
=*
0:

=:

) (  ∑

:=1

=�
0:
=*
1:

=:

) +

 ∑

:=1

=�0: + =
*
1:

=:

=�0:=
*
1:

=:

2

(  ∑

:=1

=�
0:
=*
1:

=:

)2 .

This can be used to construct confidence intervals for log\ (and thence \ ).

3.3. Logistic regression for stratified case-control studies

The classical methods discussed in the previous section are limited to a single binary exposure
and do not allow further adjustment for confounders not used for stratification. Logistic re-
gression represents a much more general and flexible tool for the analysis of stratified (as well
as non-stratified) case-control studies. It allows simultaneous estimation and testing of effects
of multiple exposures of an arbitrary nature (binary, ordinal, continuous). It also allows adjust-
ment for additional confounders and interactions between stratum and exposure, or exposure
and confounder. However, theoretical properties of logistic regression have been developed in
the context of iid data, so it is necessary to justify its use with stratified case-control sampling.
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3. Stratified Case-Control Studies

Let us introduce a framework for investigating this problem. Let � be a discretized con-
founder used for stratification. The values of � are : = 1, . . . ,  and @: = P [� = :] (in the
general population), so that

∑ 
:=1 @: = 1. Consider a vector of covariates ^ that includes ex-

posures and confounders not included in �, transformed in a suitable way. The disease status
is captured by the variable . (. = 1 means disease case, . = 0 means disease-free control).

Consider the joint distribution of (.,^,�) in the general population and write its density
as

5 (~, x, :) = 5 (~ |x, :) · 5 (x |:) · 5 (:) = 5: (~ |x) · 5: (x) · @: ,

where 5: (~ |x) is the conditional density of . given ^ = x in the :-th stratum and 5: (x) is the
density of ^ in the :-th stratum. Assume that 5: (~ |x) can be expressed through a stratum-
specific logistic regression model, in particular

P
[
. = 1

��^,� = :
]
=

eU:+#
T
:
^

1 + eU:+#
T
:
^
.

The parameters are stratum-specific and have the following interpretation: take V: 9 , the 9-th
component of #: , then eV: 9 is the odds ratio for the disease due to a unit increase in the 9-th
covariate in the :-th stratum, and eU: is the odds of the disease for a subject with ^ = 0 in the
:-th stratum.

This setup provides a model for exposure-disease association in the general population.
Notice that the implied population model that ignores strata is

P
[
. = 1

��^
]
=

 ∑

:=1

@:P
[
. = 1

��^, � = :
]
=

 ∑

:=1

@:
eU:+#

T
:
^

1 + eU:+#
T
:
^
,

and it cannot be transcribed as a logistic regression model unless  = 1 or all coefficients are
independent of strata: #: = # and U: = U for all : = 1, . . . ,  . In the latter case, � is not a
confounder at all (because it is not related to the disease) and stratification is useless.

Stratified case-control sampling means that we obtain samples from the conditional dis-
tribution of ^ given . and �. Introduce a sampling indicator b so that b = 1 means that the
subject (from the general population) is included in the stratified case-control sample and b = 0
means that the subject is not included. Write the complete data as (.,^,�, b). The observa-
tions consist of (.,^, �) for the subjects with b = 1. From such data, we can estimate elements
of the conditional distribution of (.,^,�) given b = 1.

Stratified case-control sampling is obtained by setting the sampling probabilities as fol-
lows

P
[
b = 1

��. = 1,^, � = :
]
= c1: and P

[
b = 1

��. = 0,^,� = :
]
= c0: .

These probabilities depend on the outcome (disease) and stratum (confounder) but not on any-
thing included in ^ . With rare diseases we would set c1: = 1 (sample all cases from each
stratum) but this is not necessary. In all real applications, c1: ≫ c0: .
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Now we calculate the probability that the subject is a case (. = 1) given ^ and � among
subjects included in the stratified case-control sample, i.e., within the data we actually have
available for analysis. In the process, we use the assumptions formulated above.

P
[
. = 1

��^,� = :, b = 1
]
=

P
[
. = 1, b = 1

��^, � = :
]

P
[
b = 1

��^, � = :
]

=

P
[
b = 1

��. = 1,^, � = :
]
P
[
. = 1

��^, � = :
]

P
[
b = 1

��. = 1,^,� = :
]
P
[
. = 1

��^, � = :
]
+ P

[
b = 1

��. = 0,^,� = :
]
P
[
. = 0

��^,� = :
]

=

c1:
eU:+#

T
:
^

1 + eU:+#
T
:
^

c1:
eU:+#

T
:
^

1 + eU:+#
T
:
^
+ c0:

1

1 + eU:+#
T
:
^

=

c1:

c0:
eU:+#

T
:
^

c1:

c0:
eU:+#

T
:
^ + 1

=
eU

∗
:
+#T

:
^

1 + eU
∗
:
+#T

:
^
,

where U∗
:
= U: + log c1:

c0:
does not depend on ^ (because c0: and c1: do not depend on ^ when

� = : is fixed).

This means that, in data collected by stratified case-control sampling, the disease status
. satisfies the same logistic regression model as if we were working with an iid sample from
the general population, except for the main effects of the strata U: (strata-specific intercepts),
which are shifted by a quantity depending on the sampling probabilities. Because c1: ≫ c0: ,
there is an upward bias in U: . The parameters #: which may include main effects of the ex-
posures, main effects of potential additional confounders, and their interactions with stratum,
will be estimated consistently by the logistic regression model.

It is not surprising that strata-specific odds of disease cannot be estimated consistently —
the case-control sampling design lacks the information about them. However, if we knew the
sampling probabilities for the cases and controls, we would be able to evaluate and subtract
the bias in strata effects and get consistent estimates of U: . Because non-stratified case-control
design is a special case (with  = 1), we have also verified the validity of logistic regression for
ordinary case-control studies, as foreseen in Section 2.3.

The arguments we laid out here only justify consistency of estimates of #: obtained from
logistic regression. Additional development is needed to show that the estimated parameters
are asymptotically normal, that their asymptotic variance can be estimated by the observed
information from logistic regression fits, and that likelihood ratio (deviance) tests are valid. All
of this has been shown by Prentice and Pyke (1979) for ordinary case-control studies and by
Scott and Wild (1991) for stratified case-control studies.

To summarize, stratified case-control data can be analyzed by logistic regression with dis-
ease status as the response, as long as main effects of the stratum are included in the linear
predictor. The model correctly estimates the effects of exposures, additional confounders, mu-
tual interactions among them, and interactions of these variables with stratum. Confidence
intervals and tests for these parameters provided by standard logistic regression software are
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all asymptotically valid. The asymptotics for logistic regression, however, does not allow the
number of parameters U∗

:
to grow to infinity. The asymptotic results require that is bounded

and the numbers of subjects per stratum =: all converge to∞. Thus, logistic regression cannot
be used for a large number of small strata.

Last, we note that there is a connection between the Mantel-Haenszel test and logistic
regression. Take a binary exposure - ∈ {0, 1} and fit the logistic model

P
[
. = 1

��-,� = :, b = 1
]
=

eU
∗
:
+V-

1 + eU
∗
:
+V-

with V independent of stratum (to satisfy the assumption of no interaction between exposure
and stratum). Then the score statistic for testing the null hypothesis �0 : V = 0 (no exposure
effect) is equivalent to Cochran’s formulation of the Cochran-Mantel-Haenszel test statistic.

Supplementary reading

• Breslow and Day (1980, Chap. IV, pp. 136–146, Chap. VI, pp. 192–242)
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4.1. Principles of matching

Matching is just a very fine stratification: the strata are made so small that there is a single case
in each, with a small number< of controls. The controls are selected to match the particular
case in terms of important confounders as close as possible. The number of controls per case
is pre-determined by the study plan. An important and common special case of< = 1 is called
a matched-pair design, with a single control selected for each case.

Typical matching variables in epidemiological studies are age and sex – the controls have
the same sex as the case and are just as old. One can include other variables in the matching
procedure. The advantage of matching is that we can select controls who look in some aspect
“similar” to the case without having to define precisely what exactly “similarity” means. This
can be achieved, e.g., by picking controls from the same social or geographical environment
the case belongs to. Thus, by matching we can achieve adjustment for confounders that are
difficult to quantify or difficult to measure (lifestyle, genetics, culture).

When investigating risk factors for development of Type 1 diabetes in children, we take cases
who attend elementary school and select matched controls from the case’s classmates of the same
sex who do not have diabetes. The matched controls will have similar age and cultural and socio-
economic background as the cases.

When investigating the effect of some occupational exposure on certain type of cancer, we
select controls from the siblings or close relatives of the case who do not have that type of cancer.
The matched controls will have similar lifestyle, culture, and genetic predispositions for the disease
as the case.

One should resist the temptation to match on too many potential confounders at once.
Strict matching on too many variables can make finding suitable controls almost impossible.
Loose matching would sacrifice the main advantages of the matched design. Also, too much
effort to match controls closely to the cases could result in inadvertently matching on the
exposures (over-matching). If the matched controls have similar exposures as the cases, the
data contain very little information on the exposure effects and the effects cannot be reliably
estimated.

The matched case-control design can be very powerful if conducted thoughtfully and re-
sponsibly. It is undoubtedly one of the most efficient and bias-resistant study designs for epi-
demiological research. However, it is also somewhat dangerous – obtaining matched controls
may not be as easy as expected and over-matching on exposures can make the collected data
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Table 4.1.: Observed frequencies in a pair-matched case-control study with a single binary ex-
posure.

- = 1 - = 0
Pair #: :

(Exposed) (Unexposed)
Total

Cases (. = 1) =�
1:

=*
1:

=1: = 1

Controls (. = 0) =�
0:

=*
0:

=0: = 1

Total =�
:

=*
:

=: = 2

Table 4.2.: Four possible outcomes of one matched pair with a single binary exposure.

(a)

E U Σ

Case 1 0 1
Cont. 1 0 1

Σ 2 0 2

=11 tables

(b)

E U Σ

Case 1 0 1
Cont. 0 1 1

Σ 1 1 2

=10 tables

(c)

E U Σ

Case 0 1 1
Cont. 1 0 1

Σ 1 1 2

=01 tables

(d)

E U Σ

Case 0 1 1
Cont. 0 1 1

Σ 0 2 2

=00 tables

worthless.

4.2. Classical methods for matched case-control studies

In this section, we again consider just the simplest possible situation: a pair-matched case-
control design with a single binary exposure. We keep the same notation as in Chapter 2 (see
Table 4.1), : indexes the pairs/strata. The number of pairs is equal to the number of available
cases because each stratum includes exactly one case.

In a pair-matched design, the contingency table displayed in Table 4.1 has only four pos-
sible outcomes, see Table 4.2. The first outcome (a) and the last outcome (d) in Table 4.2 are
concordant outcomes: both the case and the control have the same exposures (either both
exposed or both unexposed). These outcomes do not contain any information about the as-
sociation between the exposure and the disease. All that information is included in the other,
discordant outcomes: in outcome (b), the case is exposed and the control is unexposed, in out-
come (c) it is vice versa. The whole dataset can be summarized without any loss of information
as the numbers of outcomes of each of the four kinds that appeared in the  matched pairs.
Let =11 be the number of pairs with outcome (a), =10 the number of pairs with outcome (b), =01
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the number of pairs with outcome (c), and =00 the number of pairs with outcome (d). The sum
=11 + =10 + =01 + =00 gives the total number of pairs  .

Estimation and testing is based on the numbers of discordant tables =10 and =01. Recall

the notation from Section 2.1 but make it pair-dependent: c (: )
� |1 = P

[
- = 1

��. = 1, pair :
]
for

the probability that the case in the :-th pair is exposed, and c (: )
� |0 = P

[
- = 1

��. = 0, pair :
]
for

the probability that the control in the :-th pair is exposed. Let the exposure status of the case
and the control (conditionally on the pair) be independent.

The odds ratio for disease among the exposed relative to the unexposed in the :-th pair
can be expressed as

\ =

c
(: )
� |1 (1 − c

(: )
� |0 )

(1 − c (: )
� |1 )c

(: )
� |0

.

We assume that the odds ratio is the same for all pairs (no interaction between the exposure
and the pair), so it is expressed as a parameter \ that does not depend on : .

The probability that the case is exposed and the control is unexposed in the :-th stratum is

(by conditional independence) c (: )
� |1 (1−c

(: )
� |0 ). This is the probability that the pair will generate

outcome (b). The probability that the control is exposed and the case is unexposed in the :-th

stratum is (1 − c (: )
� |1 )c

(: )
� |0 . This is the probability that the pair will generate outcome (c).

Summarizing these steps, if we get a discordant table, where either the case of the control
(but not both) is exposed, we can express the conditional probability that the case is exposed
(the outcome is (b)) as

c
(: )
� |1 (1 − c

(: )
� |0 )

c
(: )
� |1 (1 − c

(: )
� |0 ) + (1 − c (: )

� |1 )c
(: )
� |0

=
\

\ + 1
≡ c .

Because \ is the same in all pairs, the probability c that the case is exposed in a discordant
table is also the same in all pairs.

The pairs are independent, so the distribution of =10 given the total number =10 + =01 of
discordant tables is Bi(=10 + =01, c ) – this is the number of successes observed in =10 + =01
independent binary experiments with success probability c . This finding is the key to making
statistical inference about the odds ratio.

In the conditional binomial model, the MLE of c is ĉ =
=10

=10+=01 . Inverting c =
\
\+1 , we get

\ =
c

1−c and the conditional MLE of \ is

\̂ =
ĉ

1 − ĉ =
=10

=01
. (4.1)

The odds ratio in a pair-matched case-control study can be estimated by the ratio of the number
of pairs where the case is exposed and the control is unexposed to the number of pairs with
the opposite exposure status.
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We could also calculate the Mantel-Haenszel estimator using equation (3.4), with strata
sizes =: = 2 for all : . It turns out that the Mantel-Haenszel estimator is the same as the
conditional MLE (4.1).

Let us turn attention to the hypothesis of no exposure effect,�0 : \ = 1. This is equivalent
to �0 : c =

1
2 . Using the conditional MLE ĉ =

=10
=10+=01 of the probability c and the standard

central limit theorem, we get

√
=10 + =01

ĉ − 1/2√
1/4

D−→ N(0, 1)

under �0. The left-hand side can be rewritten as

2=10 − (=10 + =01)√
=10 + =01

=
=10 − =01√
=10 + =01

D−→ N(0, 1)

and hence
(=10 − =01)2
=10 + =01

D−→ j21

under �0. We reject �0 : \ = 1 if and only if

j2MN ≡ (=10 − =01)2
=10 + =01

≥ j21 (1 − U).

This is the test known in classical statistics as the McNemar test (Anděl 2002, Chapter
13.6). It was originally developed as a paired test of equality of probabilities.

Let us evaluate the Mantel-Haenszel test statistic (3.3). We have =1: = =0: = 1, =: = 2,

<: = E=�1: = =1:
=�
:

=:
=

=�
:

2
,

and

+: = var=�1: =

=1:=0:=
�
:
=*
:

=2
:
(=: − 1)

=

=�
:
=*
:

4
.

In concordant tables, (=�
:
, =*
:
) are either (0, 2) or (2, 0), =�1: = <: and +: = 0. The contribu-

tions of concordant tables to both the numerator and the denominator of the Mantel-Haenszel
statistic are zero. Discordant tables have =�

:
= =*

:
= 1, <: = 1/2 and +: = 1/4. Thus, the

Mantel-Haenszel test statistic is (the summation goes over discordant tables)

j2MH =

[∑(=�
1:

− 1/2)
]2

∑
1/4 =

(
=10 −

=10 + =01
2

)2

=10 + =01
4

=
(=10 − =01)2
=10 + =01

and we end up with the McNemar test again.
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Confidence intervals for \ can be obtained by a transformation of confidence intervals for
c calculated by any of the standard methods (Wald, Wilson, Clopper-Pearson, etc.).

The classical methods explained in this section can be applied only to the simplest pair-
matched designs. To a certain extent, they can be generalized to handle 1 : < matching with
< > 2, variable numbers of controls per case, or multi-level exposures. However, these gener-
alizations are complicated and do not share the simplicity and beauty we have enjoyed here.
A much more flexible alternative for analyzing matched case-control studies in general can be
obtained by a modification of logistic regression explained in the following section.

4.3. Conditional logistic regression for matched case-control

studies

Consider amatched case-control study with cases, and<: matched controls for the:-th case,
: = 1, . . . ,  . We allow an arbitrary variable number of controls – matched pairs are a special
case with<: = 1 for each : . Denote the total number of sampled controls by " =

∑
<: ; the

total number of study subjects is  +" .

Form a covariate vector^ that includes all exposures, and confounders that were not used
for matching (after a suitable transformation). Suppose that the probability of disease follows
the following logistic regression model:

P
[
. = 1

��^, � = :
]
=

eU:+#
T^

1 + eU:+#T^
, : = 1, . . . ,  . (4.2)

This model includes a separate intercept for each stratum (which includes a case together with
his matched controls). There is no stratum-by-exposure interaction (because it cannot be con-
sistently estimated from the matched data anyway). The number of parameters in this model
tends to ∞ as the number of cases  increases and the MLE’s are inconsistent – not only Û:
but even #̂ , see Breslow and Day (1980, Sec. 7.1) for an example.

However, consistent estimates of # can be obtained by an appropriate conditioning. We
know that there is a single case in each stratum. Take a single stratum and take a subjectwith an
observed covariate vector x0. Denote observed covariate vectors of the<: remaining subjects
in the stratum by x1, . . . , x<:

. Now calculate the conditional probability that the subject with
covariates x0 is the sole case in the stratum given the covariate vectors of all the other subjects
and assuming the validity of the logistic regression model (4.2). To facilitate the notation,
denote by � the event that the considered subject is a case and by � the event that the subject
is a control. Then the desired conditional probability is in fact the probability that the covariates
of the diseased subject arex0 rather than any the other covariate values observed in the stratum,
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i.e.,

P
[
^ = x0

���
] <:∏

8=1

P
[
^ = x8

���
]

P
[
^ = x0

���
] <:∏

8=1

P
[
^ = x8

���
]
+
<:∑

;=1

(
P
[
^ = x0

���
]
P
[
^ = x;

���
] ∏

8≠;

P
[
^ = x8

���
] )
. (4.3)

The numerator expresses the probability of the only constellation that leads to the desired
result, the denominator sums the probabilities of all possible constellations, respecting that the
case-control sampling scheme generates covariate values conditionally on disease status. For
any 8 = 0, . . . ,<: we have

P
[
^ = x8

���
]
=

P
[
�

��^ = x8
]
P [^ = x8 ]

P(�)

and

P
[
^ = x8

���
]
=

P
[
�

��^ = x8
]
P [^ = x8 ]

1 − P(�)
where all the probabilities on the right-hand sides are stratum-specific. When we plug these
expressions into (4.3), the numerator and each summand in the denominator all include

P(�) [1 − P(�)]<:

<:∏

8=0

P [^ = x8 ]

so these terms cancel each other throughout. Thus, the probability (4.3) can be expressed in
terms of conditional disease probabilities as follows:

P
[
�

��^ = x0
] <:∏

8=1

P
[
�

��^ = x8
]

P
[
�

��^ = x0
] <:∏

8=1

P
[
�

��^ = x8
]
+
<:∑

;=1

(
P
[
�

��^ = x0
]
P
[
�

��^ = x;
] ∏

8≠;

P
[
�

��^ = x8
] )
. (4.4)

Plug in the logistic regression model (4.2) for each of the conditional disease probabilities. In
the numerator of (4.4), this gives

P
[
�

��^ = x0
] <:∏

8=1

P
[
�

��^ = x8
]
=

eU:+#
Tx0

<:∏

8=0

(
1 + eU:+#

Tx8
)
.

The expression
[∏<:

8=0

(
1 + eU:+#

Tx8
) ]−1

appears not only in the numerator of (4.4) but also in
each term in the denominator, so it cancels out again.
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After all this development, the conditional probability that the subject with covariates x0
is the case given the covariate vectors of all the other subjects in the stratum can be written as

eU:+#
Tx0

∑<:

8=0 e
U:+#Tx8

=
e#

Tx0

∑<:

8=0 e
#Tx8

,

where, at the last step, we were able to cancel the stratum-specific intercept U: and ended up
with an expression that only depends on # and is the same for all strata. This is taken as the
likelihood contribution from a single stratum. Because the strata are independent from each
other, the conditional likelihood is the product of such terms. Let ^:8 be the covariate vector
for the 8th subject in the :-th stratum (8 = 0 is the case). The conditional likelihood is

!(#) =
 ∏

:=1

e#
T^:0

∑<:

8=0 e
#T^:8

=

 +"∏

9=1

(
e#

T^ 9

∑ +"
;=1 .; 9e#

T^;

)X 9
,

where .; 9 = 1 if subjects 9 and ; belong to the same stratum, and .; 9 = 0 otherwise, and X 9 = 1
if the subject 9 is a case, and X 9 = 0 if the subject 9 is a control. The last expression makes clear
that the likelihood for the conditional logistic model has the same form as the partial likelihood
of the Cox model, with X 9 playing the role of the failure indicator and .; 9 playing the role of
the at-risk indicator.

Therefore all the developments for the conditional logistic model (score function, likeli-
hood equations, observed and expected information, asymptotic properties, consistency and
asymptotic normality) can be deduced from the results known for the Cox model. Asymptotic
theory for the conditional logistic regression model is actually simpler because the likelihood
terms are independent of each other (unlike in the Cox model). To perform the calculation on
data, only slight modifications of software designed for the Cox model is needed. In R, this is
done by the function clogit in library survival.

Now consider the conditional likelihood for the special case of matched pairs. We get

!(#) =
 ∏

:=1

e#
T^:0

e#T^:0 + e#T^:1
=

 ∏

:=1

e#
T (^:0−^:1)

1 + e#T (^:0−^:1)
,

which is the likelihood of a logistic regression model with responses .1 = · · · = . = 1, no
intercept term, and covariates taken as differences between the covariates of the case and the
matched control. When we set up the data set and the model according to this prescription, we
can estimate the parameters of conditional logistic regression using standard logistic regression
software. All results generated by the logistic regression fit (standard errors, test statistics,
confidence intervals) are valid.

The last form of the likelihood alsomakes obvious that if a covariate attains the same value
for the case as for the control, the pair does not contribute to the estimation of that covariate’s
parameter.
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Supplementary reading

• Breslow and Day (1980, Chap. V, pp. 162–169, Chap. VII, pp. 248–268)
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5. Cohort Studies

5.1. Cohort study design

Cohort studies use random samples from the target population (or, potentially, exposure-de-
pendent samples). With rare diseases, very large sample sizes are needed to come up with a
sufficient number of cases. Cohort studies are usually conducted in a prospective way. At the
start of a prospective cohort study, a large cohort of participants is enrolled. All of them are fol-
lowed for a sufficient time, incident cases are captured and exposures are recorded. Prospective
cohort studies take a long time to complete and are quite expensive.

A great advantage of prospective cohort studies is the possibility to reduce some biases
that plague case-control studies. Case ascertainment can be done in a standardized and reliable
way, reducing the potential for misdiagnosis or misclassification. Exposure and confounder
records can be obtained with better precision and reliability. Biases caused by an inappropriate
selection of controls are avoided.

Cohort studies can also be done retrospectively, by sampling from databases or existing
records where the necessary information had been captured. Such studies are sometimes com-
binedwith a case-control subsample to reduce the cost of covariatemeasurement. Suppose that
a retrospective study included a cohort of 10,000 subjects, of which 250 acquired the disease of
interest. Suppose further that basic demographic and follow-up data as well as some imperfect
information on exposures and confounders is available for all 10,000 participants. Obtaining
precise exposure information for all 10,000 people would be extremely time-consuming and
expensive. So, instead, this “ideal” information is only collected on the 250 cases and a random
sample of a comparable size (say, also 250) from the controls. Then, the data available for the
large cohort is combined with the detailed assessment collected on the case-control subsample.
Such designs are called case-cohort design or nested case-control study. Statistical methods for
the analysis of such designs have been developed but they are out of the scope of this course.

5.2. Models for ungrouped cohort data

Prospective cohort studies satisfy the i.i.d. assumption of standard statistical methods and
usually include individual-level data on follow-up, exposures, and occurrence of the disease of
interest. Thus, they can be analyzed by standard survival analysis methods.

The follow-up data include the entry time �8 (usually we work with age as the time scale,
so this would be interpreted as age at the entry into the study), the exit time -8 and disease
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outcome X8 for participants 8 = 1, . . . , =. The exposures and confounders are collected into the
covariate vector `8 (C), which may have time-varying components. The covariate vector is a
random process observed in the interval (�8 , -8 ).

The follow-up data can be transformed into the counting process#8 (C) = 1(-8 ≤ C, X8 = 1)
and the at-risk process .8 (C) = 1(�8 ≤ C ≤ -8 ). The theory of counting process martingales is
available to justify the properties of various statistical methods.

The Cox model

The most commonly used model for the analysis of ungrouped cohort data is the Cox model,
of course. The incidence rate at the time (age) C is expressed as

_(C | `) = _0 (C)e#
T` (C ) ,

where _0 (C) is the incidence rate for a subject with zero exposures and confounders (an arbi-
trary unknown hazard function) and 4V 9 is the relative risk associated with a unit increase in
the 9-th covariate (while keeping other exposures and confounders unchanged).

The time-varying components of ` (C) are supposed to affect the incidence through their
current value. It is the responsibility of the analyst to transform the observed histories of ex-
posures and confounders so that the resulting model makes sense for the disease of interest.
There are various possibilities how to summarize exposure histories: one can use cumulative
exposures over the whole lifetime, cumulative exposures over some period of time (10 years
back), lagged cumulative exposures, where exposures acquired for some time prior to the cur-
rent age are ignored, somemoving averages, smoothed trajectories, etc. The choice depends on
how the exposure is believed to affect the disease: immediate vs. cumulative effect, expected
duration of increased risk after exposure, expected duration of latent time between exposure
and disease diagnosis, etc. The Cox model allows a great flexibility in transformations of time-
varying covariates, and with sufficient data, one can determine the correct form by testing
significance of alternative transformations.

The basic form of the Cox model requires the proportional hazards assumption, i.e., the
relative risk of the exposures and confounders must not depend on age. However, this assump-
tion can be relaxed and tested by the inclusion of interactions between exposures/confounders
and age. For example, one can factorize age into several age groups and allow different relative
risks in each age group.

General relative risk models

The Cox model can be extended by considering other functions to express the influence of the
linear predictor on the hazard function. Let

_(C | `) = _0 (C)A (#T` (C)),
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where A is a known sufficiently smooth (twice continuously differentiable) strictly increasing
function such that A (0) = 1. This model is called the general relative risk model. The function
A may be called the relative risk function, it plays a role of an inverse link function in the GLM
terminology. The Cox model is a special case with A (G) = eG . Another useful relative risk
function is A (G) = 1 + G . The resulting model has the form

_(C | `) = _0 (C) (1 + #T` (C)).

This is called the additive relative risk (ARR) model. With a single exposure I, the relative risk
with respect to an unexposed subject is linear in I: ''(I) = 1 + VI. Thus, the relative risk of
an ARR model increases much more slowly than with a Cox model, where ''(I) = 4VI . The
additive relative risk model is used, e.g., for modeling radiation effects on cancer incidence –
it is believed to express the true risk better than the Cox model in this case.

Consider what happens when you fit the Cox model with a shifted log-transformed expo-
sure log(0 + I), where 0 is some positive constant. What is the functional form of ''(I)
then?

The additive relative risk model has a problem when V/ < −1. However, if we are
convinced that the exposure / cannot have a protective effect (V ≥ 0) then the problem
cannot occur.

The analysis of the general relative risk model is based on partial likelihood. The calcula-
tions follow the same route as those for the Cox model, only some of the expressions are more
complicated. The partial likelihood is

!% (#) =
=∏

8=1

(
A (#T`8 (-8))∑=

9=1 .9 (-8)A (#T` 9 (-8 ))

)X8
.

Denote

D (G) = log A (G),

D′ (G) = 3 log A (G)
3G

,

( (0) (#, C) = 1

=

=∑

8=1

.8 (C)A (#T`8 (C)),

( (1) (#, C) = m( (0) (#, C)
m#

,

( (2) (#, C) = 1

=

=∑

8=1

.8 (C)`8 (C)⊗2[D′ (#T`8 (C))]2A (#T`8 (C)),

` (#, C) = ( (1) (#, C)
( (0) (#, C)

.
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The score statistic is

[ (#, C) =
=∑

8=1

∫ C

0

[
`8 (C)D′ (#T`8 (C)) − ` (#, C)

]
3#8 (C),

the estimator solves the system of equations [ (#̂, g) = 0, and the estimated Fisher information
matrix has the form

�̂ (#̂, C) = 1

=

∫ C

0

[
( (2) (#̂, C)
( (0) (#̂, C)

− ` (#̂, C)⊗2
]
3# (C).

Details and proofs of consistency and asymptotic normality are provided in Prentice and Self
(1983). Unfortunately, the observed information matrix is complicated and not necessarily
positive definite at all # . Therefore, the likelihood need not be concave and we need to pay
attention to finding the global maximum when solving the likelihood equations.

It is also possible to introduce general relative risk models that combine various relative
risk functions used for subsets of covariates. Suppose the covariate vector ` is decomposed
into two parts `T

= (`T
1 ,`

T
2 ) and the regression parameter # is divided correspondingly into

#T
= (#T

1 , #
T
2 ). Then define

A (#T`) = A1 (#T
1`1)A2 (#T

2`2),
where A1 (G) = eG and A2 (G) = 1 + G . Then, `1 affects the RR exponentially, `2 affects the RR
additively, and their respective effects are multiplied.

Additive hazards model

Lin and Ying (1994) studied the additive model

_(C | `) = _0 (C) + #T` (C).

This is called the additive hazards model. Here, _0 (C) is again the incidence rate for a subject
with zero exposures and confounders (an arbitrary unknown hazard function) and covariates
act additively on this function. The parameter V 9 can be interpreted as the expected number
of cases that will occur per unit of time if the corresponding covariate is increased by 1. Thus,
the model is useful when the interest is in estimating excess risks rather than relative risks.

Lin and Ying (1994) proposed an estimator for this model based on themethod of moments
and proved its consistency and asymptotic normality. The estimator is not efficient but it is very
simple (it can be even expressed by an explicit formula and is easy to calculate).

5.3. Models for grouped cohort data

Cohort data are sometimes available in a grouped format, which is unsuitable for analysis by
the models mentioned in the previous section. Those models all require individual-level data
on follow-up, exposures and occurrence of failures.
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Figure 5.1.: Lexis diagram recording the development of age during follow-up. Purple dots
denote observed events.

The setup of grouped cohort data can be explained on a Lexis diagram, which provides a
graphical representation of the follow-up of subjects over time. Figure 5.1 shows an example of
a Lexis diagram showing development of age during time. (Other examples of a Lexis diagram
are in [BD1], Fig. 2.2 on p. 48 and in [BD2], Fig. 2.1 on p.50.) In Figure 5.1, calendar time is on
the horizontal axis, the vertical axis represents age. Individual subjects are plotted as red line
segments starting at the time of entry and ending at the time of exit. The cases are indicated
by purple dots at exit times. Because age increases at the same rate as calendar time, all the
line segments are running parallel at an angle of 45◦ with the horizontal axis.

Now divide the calendar time axis into intervals, e.g. every 5 years, and do the same
with the age axis. This divides the diagram into rectangular cells (squares if the age and time
intervals have the same length). Approximate the incidence in the (8, 9)-th cell by a constant
_8 9 . Consider a particular cell, for example year 1990–1995 and age 40–45, as highlighted in
Figure 5.1. The total follow up time D8 9 in this cell is equal to total length of projections of
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Figure 5.2.: Lexis diagram recording the development of a time-varying exposure during the
follow-up of a single subject.

the red segments (restricted within the cell) onto the horizontal axis; this is the total time
spent by all subjects withing the (8, 9)-th cell. Then count the number of cases (purple dots)
observed within the cell and denote it by =8 9 . If the incidence is constant within the cell, then
=8 9 ∼ Po(D8 9_8 9 ) and the counts from different cells are independent of each other.

The cell-specific incidence_8 9 can be estimated empirically using themethods from Sec. 1.4,

i.e. _̂8 9 = =8 9 /D8 9 . But we want to separate calendar time effects from age effects. We can do
that by fitting a Poisson loglinear model with the observed cell counts =8 9 as the response and
offset logD8 9 . The main effects of that model estimate the log relative risks of the 8-th (9-th)
level of calendar time (age) relative to the first level (the baseline). This approach is related to
fitting loglinear models to contingency tables as explained in the course on Advanced Regres-
sion Models and also to using loglinear models to estimate covariate effects on intensities of
Poisson processes observed for variable duration of time. See the course notes for Advanced
Regression, Sec. 3.2 and 3.3.

We can create the Lexis diagram for any exposure, not just age. If the exposure is constant
in time (gender, race, highest education achieved before the entry), the path of a subject through
the diagram is horizontal. An example of a Lexis diagram for a time-varying exposure (e.g,
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cumulative alcohol consumption) is shown in Figure 5.2. Here, the subject had different trends
in the exposure during different intervals. Again, we can calculate the total follow-up time
in each cell by summing projections of the red segments onto the horizontal axis, count the
number of cases in each cell and fit Poisson loglinear models as explained above.

In practice, a two-way classification is not sufficient because we need more than two
factors to consider simultaneously. But the idea of Lexis diagram and accumulation of observed
cases and follow-up time over the individual cells easily extends tomulti-factor settings as well.
Thenwe in fact perform analysis of a multi-dimensional contingency table via loglinearmodels
with offsets.

Example:

A grouped cohort data may come, e.g., in the following format

Cases Total f-up Age Age Cal. year Cal. yr Exposure Expos.
= D group midpoint midpoint group midpoint

6 2132 35–40 37.5 1995–2000 1997.5 0–10 5.0
15 3759 55–60 57.5 2005–2010 2007.5 35–50 42.5
...

...
...

The midpoints we assign to each interval are useful for fitting functional forms of relative
risks rather that treating each interval as a separate category. For example, we may consider
the following loglinear model for this data set:

log<8 9: = logD8 9: + U + V8 + W (2 9 − 1995) + X log(4: − 4),

where<8 9: is the expected number of cases in the 8-th level of age, 9-th level of calendar time
and:-th level of exposure,D8 9: is the total follow-up time in that cell, 2 9 is themidpoint of the 9-
th calendar time interval, and 4: is the midpoint of the :-th exposure interval. The parameters
to be estimated are U , V8 for 8 > 1, W and X .

Since<8 9: = _8 9:D8 9: , we have

log _8 9: = U + V8 + W (2 9 − 1995) + X log(4: − 4).

The interpretation of the parameters is as follows:

• eU is the incidence for the youngest age group (8 = 1) in the year 1995 at exposure 5.
• eV8 is the relative risk of age group 8 with respect to the youngest age group.
• e10W is the proportional increase in the risk over 10 year time period.
• The relative risk of exposure level 4: relative to exposure 5 is

_8 9:

_8 91
= eX log(4:−4) = (4: − 4)X ,

this is a power function of the exposure midpoint.
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This model does not include interactions between age and exposure, or any other pairs of
variables. Such interactions could be added into the model and tested.

The loglinear model requires that there are enough data in each cell. The fitted cell
counts <̂8 9: should be at least 5 for the asymptotics to work. Thus, fitting a model with
finely categorized multiple exposures, confounders and other factors in amulti-way table
requires a huge amount of data. One should be really careful not to fit these models to
data that is too sparse.

The Poisson model can be used with other link functions to fit additive risks or excess
relative risks. For example, with identity link function, we can fit the additive model

_8 9: = #T^8 9: ,

where^8 9: is a suitably selected vector of covariates for the cell (8, 9, :). For such models,
the total follow-up time D8 9: is used as a “prior weight” in the GLM fitter rather than
as an offset and the response is provided in the form of empirical incidence estimates
=8 9:/D8 9: . The prior weight in GLM terminology is a known constant specific to each
observation that divides the common dispersion parameter.

To summarize, the use of Poisson loglinear models for aggregated cohort data provides an
interesting alternative to standard survival analysis methods. Of course, if the data comes in an
individual format, we prefer the Cox model. An artificial aggregation would lose information.
However, if the data arrive in an aggregated form, Poisson loglinearmodels are the only choice.

5.4. Discrete Cox model

Sometimes it is only the information on the timing of events that gets aggregated, while expo-
sures and confounders are available for each individual separately. This may happen for two
reasons:

• only calendar year (month etc.) of diagnosis is known, with no exact date;
• diagnosis is done by repeated diagnostic testing according to some schedule; we only
know the date of the last negative test and the date of the first positive test (for the
cases) but not the exact date the disease was acquired.

The second case is typical for infectious diseases. We never know the exact date when the
infection was acquired.

With such data, we only know an interval when the event of interest occurred but not the
time. This aggregates the original continuous distribution of) into a discrete distribution. The
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standard Cox model is unsuitable for such data because it assumes a continuous distribution
of the event time ) .

There are modifications of the partial likelihood that allow treatment of ties in observed
failure times (Efron, Breslow methods). They are good for occasional ties but not for
purely discrete failure times. There is also so called “exact” method that would work for
dicrete failure times but is computationally intensive.

The discrete Cox model is developed as follows. Consider a continuous random variable
) ≥ 0, the exact event time. Partition the positive half-line, the support of ) , into A disjoint
intervals �8 = 〈08−1, 08 ), 8 = 1, . . . , A , where 0 = 00 < 01 < · · · < 0A−1 < 0A = ∞. The intervals
need not have the same length. Take discrete values C1 < . . . < CA and define a discretized
version of ) as

) ∗
= C 9 when ) ∈ � 9 , i.e., 0 9−1 ≤ ) < 0 9 .

This setup describes both the rounding issue and repeateddiagnostic testing problem (however,
the intervals must be the same for all subjects).

Suppose the original continuous event time ) satisfies the Cox model

_(C | `) = _0 (C)e#
T` (C ) .

The covariates ` (C) may be time varying but we will assume that they are constant within
each interval � 9 , so that they can change values only at the times 0 9 . Denote ` (C) = z 9 for
C ∈ � 9 .

Now we will calculate the distribution of) ∗. The survival function of) can be written as

() (C) = exp
{
−

∫ C

0
_0 (B)e#

T` (B )3B
}
.

Denote ? (C: ) ≡ P [) ∗
= C: ] and write

? (C: ) = P [) ∗
= C: ] = P [0:−1 ≤ ) < 0: ] = () (0:−1) − () (0: ) =

= exp
{
−

∫ 0:−1

0
_0 (B)e#

T` (B )3B
} [
1 − exp

{
−

∫ 0:

0:−1

_0 (B)e#
Tz:3B

}]

Next, decompose the integral from 0 to 0:−1 into the individual intervals.

exp
{
−

∫ 0:−1

0
_0 (B)e#

T` (B )3B
}
=

:−1∏

;=1

exp
{
−

∫ 0;

0;−1

_0 (B)e#
Tz;3B

}
.

Because ` is constant on each interval, the integrals only integrate the baseline hazard. Denote

U: ≡ exp
{
−

∫ 0:

0:−1

_0(B)3B
}
.
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Plug it into the expression for ? (C: ) to get

? (C: ) = P [) ∗
= C: ] =

(:−1∏

;=1

U
exp{#Tz; }
;

) (
1 − Uexp{#

Tz: }
:

)
.

Now express the survival function of the discretized) ∗.

( (C:) = P [) ∗
> C: ] = P [) > 0: ] = exp

{
−

∫ 0:

0
_0 (B)e#

T` (B )3B
}
=

:∏

;=1

U
exp{#Tz; }
;

. (5.1)

For a discrete failure time, the hazard function can be expressed as _(C: ) = ? (C: )/( (C:−1). In
our case,

_(C:) =
? (C: )
( (C:−1)

= 1 − Uexp{#
Tz: }

:
. (5.2)

Consider the discretized data (- ∗
8 , X8,`8 (C)), independent vectors for 8 = 1, . . . , =. We have

- ∗
8 = min() ∗

8 ,�
∗
8 ), X8 = 1() ∗

8 ≤ �∗
8 ). The censoring variable�∗

8 is conditionally independent of
) ∗
8 given `8 and its support is the same as the support of ) ∗

8 , the discrete times C1 < · · · < CA .
Denote

?8 (C: ) = P
[
) ∗
8 = C:

]
, (8 (C:) = P [)8 > C: ] , _8 (C:) =

?8 (C: )
(8 (C:−1)

.

Let z8: be the value of `8 (C) over the interval�: . Denote by<8 the index of the time when - ∗
8

occurred: C<8
= - ∗

8 .

The likelihood for the observed data is (see the notes for the course Censored Data Anal-
ysis, Theorem 2.2):

!(#) =
=∏

8=1

?8 (C<8
)X8(8 (C<8

)1−X8 =
=∏

8=1

_8 (C<8
)X8(8 (C<8−1)X8(8 (C<8

)1−X8 .

Plug in the expressions for (8 (C:) from (5.1) and for _8 (C: ) from (5.2) to get

!(#) =
=∏

8=1

{(
1 − Uexp{#

Tz8<8
}

<8

)X8 (<8−1∏

;=1

U
exp{#Tz8; }
;

) (
U
exp{#Tz8<8

}
<8

)1−X8 }
.

This likelihood can be transcribed as follows. For all 8 = 1, . . . , = and 9 = 1, . . . ,<8 define

.8 9 =

{
1 if X8 = 1 and 9 =<8

0 otherwise,

and
?8 9 = 1 − Uexp{#

Tz8 9 }
9 .

Then

!(#) =
=∏

8=1

<8∏

9=1

?
.8 9
8 9 (1 − ?8 9 )1−.8 9 ,
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which is the likelihood of independent alternative variables with success probability ?8 9 !

Now express U 9 as exp{−eW 9 }. Then we can write

?8 9 = 1 − Uexp{#
Tz8 9 }

9 = 1 − exp{−eW 9+#Tz8 9 }.

Invert this to obtain the linear predictor.

[8 9 = W 9 + #Tz8 9 = log(− log(1 − ?8 9 )) = 6(?8 9 ),

where6 is the complementary log-log link. The linear predictor includes the factorized discrete
time in addition to the linear predictor from the original Cox model.

Thus, we can fit the discrete Cox model by binary data regression with complementary
log-log link. These two models have the same likelihood and therefore all the expressions
derived from the likelihood have the same form and share the same asymptotic behavior.

The data for fitting the binary model must be arranged in the following way in order to
generate the correct likelihood. For the 8-th subject, we create<8 rows (<8 is the value of the
discrete censored . ∗

8 ).

.8 9 C8 9 `8 9

0 C1 z81
0 C2 z82
...

...

0 C<8−1 z8,<8−1
X8 C<8

z8<8

After arranging the data in this way, we would call, e.g., in R:

glm(y~factor(time)+z1+z2+..., family=binomial, link=cloglog)

and use the usual functions to evaluate the results of the fit (summary, anova, drop1, etc.).

This adaptation of the Cox model was first proposed and investigated by Prentice and
Gloeckler (1978). However, the connection to binary regression with the complementary log-
log link escaped the attention of these authors. This idea can be found, e.g., in Allison (1982),
who unfortunately did not provide detailed justification of the validity of this approach.

The fact that the complementary log-log link can be used for the analysis of censored
data is occasionally mentioned in the literature on binary regression and GLM. However,
details or clarifications are nowhere to be found.

Bookmark this chapter or learn it by heart. This is something you will not be able to find
using Google or to discover by searching the Web of Science.
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Supplementary reading

• Breslow and Day (1987, Chap. 3, pp. 82–91, Chap. 4, pp. 120–171, Chap. 5, pp. 178–197)
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6. Diagnostic Tests

6.1. Diagnostic markers

In medicine, diseases are frequently diagnosed by measuring a level of a biomarker - , which
is a continuous variable associated with the presence of the disease � . Suppose that patients
who have the disease have on average higher levels of the biomarker and we want to use the
biomarker to distinguish them from disease-free individuals. We select a threshold 2 for the
biomarker and define a diagnostic test ) (2) = 1(- ≥ 2). Thus,

• when the marker- exceeds the threshold 2 then) = 1, the test is positive and the subject
is diagnosed;

• when the marker - is under the threshold 2 then ) = 0, the test is negative and the
subject is considered free of the disease.

This is a classification problem. With a univariate observation- , there is no other reason-
able classification rule than the threshold test ) (2). We assume that the conditional densities
5 (G | �) (density of - among subjects with the disease) and 5 (G | � ) (density of - among
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 −4  −2  0  c = 2  4  6

Figure 6.1.: Conditional densities of the biomarker in disease-free individuals (left curve) and
those who have the disease (right curve). The threshold for diagnosis is set at the
value 2.
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healthy subjects) are different from each other, ideally, shifted in the location. An illustrative
example is provided in Figure 6.1.

Considering the true disease status� or� and the test result) (2), four different outcomes
are possible. Their probabilities form the following table.

Disease Healthy All

) (2) = 1 (positive test) c�1 c�1 c ·1
) (2) = 0 (negative test) c�0 c�0 c ·0

All c� · c� · 1

The probability c� · is the true prevalence of the disease. All probabilities except c� · and
c� · depend on the choice of the threshold 2 (though it is not expressed in the notation).

6.2. Sensitivity and specificity

Consider a subject with the disease and consider the probability that the test is positive. This
is called the sensitivity of the test. We have

Sensitivity: P
[
) = 1

���
]
=
c�1

c� ·

df
= [ ≡ [ (2).
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ν(c) η(c)

 −4  −2  0  c = 2  4  6

Figure 6.2.: Graphical illustration of sensitivity [ (2) (lighter shade) and specificity a (2) (darker
shade).
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Now take a subject who is healthy and consider the probability that the test is negative. This
is called the specificity of the test. We have

Specificity: P
[
) = 0

���
]
=
c�0

c� ·

df
= a ≡ a (2).

See also Figure 6.2. Sensitivity and specificity are probabilities of the two desired outcomes,
so we would like the test to have a high sensitivity and a high specificity. This is not possi-
ble, of course, unless the conditional densities of the marker have a disjoint support allowing a
perfect classification (and hence error-free diagnosis). In general, sensitivity and specificity de-
pend on the threshold 2. When we increase the threshold, we increase specificity but decrease
sensitivity (and vice versa).

Sensitivity [ is the rate of true positive tests. The probability 1 − [ of the error that is
made by obtaining a negative test result on a diseased subject is called the false negative rate.
Specificity a is the rate of true negative tests. The probability 1−a of the error that is made by
obtaining a positive test result on a healthy subject is called the false positive rate.

Sensitivity and specificity are the properties of the test, they are not affected by the pop-
ulation to which the test is applied (as long as the conditional distributions of the marker stay
the same). Other important aspects of the practical performance of the test depend on the pop-
ulation through the prevalence c� · of the disease. In particular, the probability that the subject
who tested positive indeed has the disease is called positive predictive value. It is related to
sensitivity, specificity and prevalence as follows.

Positive predictive value: P
[
�

��) = 1
]
=
c�1

c ·1
=

[c� ·
[c� · + (1 − a) (1 − c� ·)

.

Similarly, the probability that the subject who tested negative is indeed disease-free is called
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Figure 6.3.: Joint distribution of marker and disease, with disease prevalence 0.05.
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negative predictive value.

Negative predictive value: P
[
�

��) = 0
]
=
c�0

c ·0
=

a (1 − c� ·)
a (1 − c� ·) + (1 − [)c� ·

.

Because most diseases are rare (prevalence is small), negative predicitive value is usually
quite close to 1. However, positive predictive value can be quite poor unless the specificity a
is very close to one. This can be illustrated by plotting the joint distribution of the marker and
disease (see Figure 6.3). This figure plots the marker distributions among the healthy and the
diseased in the scale corresponding to the prevalence. It is clear that a large fraction of the
subjects who test positive will be misdiagnosed healthy idividuals.

Simple example:

Suppose the population prevalence of Covid19 antibodies is 0.05. Antibodies are detected by
a rapid test with sensitivity 0.99 and specificity 0.9. What fraction of the positive test results
will truly have antibodies against Covid19?

We have c� · = 0.05, [ = 0.99, a = 0.9. Hence, we have positive predictive value

P
[
�

��) = 1
]
=

0.99 · 0.05
0.99 · 0.05 + 0.1 · 0.95 =

0.0495

0.1445
= 0.34.

Only about a third of the subjects detected by the test will have Covid19 antibodies. Two
thirds will be false positives.

Diagnostic tests are sometimes compared using so called diagnostic accuracy, which is the
probability that the test provides a correct classification. Diagnostic accuracy can be expressed
as

c�1 + c�0 = [c� · + ac� · .

This is not a suitable criterion for comparing tests because it depends on the prevalence of the
disease.

Estimation of these parameters is straightforward because they are all derived from a 2×2
contingency table and have a probability interpretation. It is enough to use empirical propor-
tions to estimate these probabilities. Confidence intervals are also straightforward. However,
one needs to know the true status of the subjects to estimate any of these parameters. If only the
test results are available (or test results of two alternative tests), none of these characteristics
can be evaluated.

There is no generally applicable rule for choosing the threshold 2 for diagnostic testing.
It is all about the tradeoff between sensitivity and specificity. This consideration needs to
take into account the consequences of obtaining a false positive or a false negative test result
and weigh them against each other. It all depends on the disease to be diagnosed, available
treatment options, purpose of the test. Imprecise tests are sometimes followed by more precise
but more expensive or more aggresive diagnostic procedures.

60



6. Diagnostic Tests

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 − ν(c)

η(
c
)

Figure 6.4.: Example ROC curve.

6.3. ROC curves

It is of advantage to describe the properties of a diagnostic test across many different thresh-
old levels at once. This is done by the so called ROC curve (ROC is an acronym for Receiver
Operating Characteristic). A ROC curve is a plot of sensitivity against the false positive rate
(1 minus specificity) created for all values of 2 ∈ (−∞,∞). The whole curve is contained in
the unit square. For 2 = −∞, the test always returns a positive result. Then, sensitivity is one,
[ (−∞) = 1, specificity is zero, a (−∞) = 0, and the ROC curve starts at the upper right corner
of the graph. For 2 = ∞, the test never returns a positive result. Then, sensitivity is zero,
[ (∞) = 0, specificity is one, a (∞) = 1, and the ROC curve ends at the lower left corner of the
graph (see Figure 6.4).

If the value of the marker - is independent of the disease status, the ROC curve runs
along the diagonal of the unit square, sensitivity is equal to false positive rate because the
result of the test does not depend on the disease status. Such test is worthless, of course. At the
other extreme, the ROC of the perfect test shifts from [1, 1] to [0, 1] (specificity increases while
sensitivity is still one) and then jumps to [0, 0] (specificity is one and sensitivity decreases to
zero). The upper left corner is only reachable with the ideal test at a 2 that provides a perfect
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Figure 6.5.: Illustration of Area Under the Curve (AUC).

classification.

ROC curves are used to choose 2 that just provides the desired specificity (or sensitivity)
and to compare the performance of two tests. They can be estimated from the data by taking
empirical estimates of sensitivity and specificity over a range of values of 2. Because observed
data points are discrete, estimated ROC curves are not smooth but look like step functions.

Sometimes we want to express the performance of a test by a single number. A reasonable
and common way to do that is to calculate the area under the ROC curve (AUC), see Figure 6.5.
The ideal test has AUC = 1, the worthless test has AUC = 0.5. The closer the AUC to 1 the
better, of course. The AUC can be used to compare even tests that have crossing ROC curves.

6.4. Diagnostic tests based on multiple markers

We can generalize our approach to diagnostic testing to diagnoses made frommultiple markers
as well. Involving multiple markers in the testing result can, of course, substantially reduce
the errors.

The most straightforward generalization is based on logistic regression. Suppose we ob-
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serve multiple markers arranged into a covariate vector ` together with the true disease status
� on a sample of = independent subjects. We build a logistic model

log
P
[
�

��`
]

P
[
�

��`
] = `T#

by the usual methods and obtain the estimated coefficients #̂ . We consider the classification
rule

) (2) = 1 if ĉ (`) > 2

for some 2 ∈ (0, 1), where ĉ (`) is the fitted value (estimated disease probability) from the
logistic model. However, the estimated disease probabilities are increasing functions of the
linear predictor `T#̂ . Thus, we can take the linear rule

) (2) = 1 if `T#̂ > 2,

where 2 ∈ (−∞,∞). Then we can investigate sensitivity and specificity as functions of 2, plot
ROC curves, calculate AUC, all as before.

Alternatively, we can use any other classification or prediction procedure known from
other areas of statistics: Bayesian classification, cluster analysis, principal components, classi-
fication trees, neural networks etc.
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A. Appendix

A.1. A universal approach to sample size and power calculation

The outcome . will be observed in two independent iid samples for two treatments� and �:

.�1, . . . , .�=� for treatment A and .�1, . . . , .�=� for treatment B.

Let the treatment effect be expressed as the difference in the expectations of . between
treatments� and �: denote `� = E.�8 , `� = E.�8 , and \ = `� − `� . We consider the two-sided
test of the null hypothesis

�0 : \ = 0 against �1 : \ ≠ 0.

Consider asymptotically normal estimators ̂̀�, ̂̀� of the treatment-specific expectations that
satisfy

√
=� (̂̀� − `�)

D−→ N(0, f2�),
√
=� (̂̀� − `�)

D−→ N(0, f2�)

when the null hypothesis `� = `� is true.

The test statistic for the two-sample test is defined as∗

/ =
̂̀� − ̂̀�√
f2
�

=�
+ f2

�

=�

.

Under �0, /
D−→ N(0, 1). The null hypothesis is rejected (at the asymptotic two-sided level U)

if |/ | > D1−U/2.
Now let’s calculate the power of this test under a fixed alternative `� − `� = \ > 0. The

variances of ̂̀� and ̂̀� might be changed under the alternative. To calculate the power, we will
assume that

√
=� (̂̀� − `�)

D−→ N(0, g2�),
√
=� (̂̀� − `�)

D−→ N(0, g2�)
∗ The real statistic would include estimated variances. However, at the planning stage, these are not available and
the variances must be replaced by sensible guesses.
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when `� = `� + \ . Thus, under this alternative,

̂̀� − ̂̀� − \√
g2
�

=�
+ g2

�

=�

D−→ N(0, 1).

We rewrite the test statistic / as follows:

/ =
̂̀� − ̂̀�√
f2
�

=�
+ f2

�

=�

=

√√√√√ g2
�

=�
+ g2

�

=�

f2
�

=�
+ f2

�

=�

(
̂̀� − ̂̀� − \√

g2
�

=�
+ g2

�

=�︸         ︷︷         ︸

≡ * D−→ N(0, 1)

+ \√
g2
�

=�
+ g2

�

=�

)
.

Now introduce A = =�/=� and express / as

/ =

√√√√
g2
�
+ g2

�

A

f2
�
+ f2

�

A︸       ︷︷       ︸
≡ Xf

(
* + \√

g2
�
+ g2

�

A︸     ︷︷     ︸
≡ X\

√
=�

)
= Xf (* + X\

√
=�).

Let us approximate the power

P
[
Xf

��* + X\
√
=�

�� > D1−U/2
]
= P

[
Xf (* + X\

√
=�) < −D1−U/2

]
︸                                  ︷︷                                  ︸

≈ 0

+P
[
Xf (* + X\

√
=�) > D1−U/2

]

≈ P

[
* >

1

Xf
D1−U/2 − X\

√
=�

]
= 1 − Φ

(
1

Xf
D1−U/2 − X\

√
=�

)
.

So, the power for a given =� , =� and \ is done. We just need some idea about variability
in both samples under the hypothesis and the alternative to calculate Xf and X\ .

How many observations do we need to achieve a power of at least 1 − V? Solve the
inequality

1 − Φ

(
1

Xf
D1−U/2 − X\

√
=�

)
> 1 − V

Φ

(
1

Xf
D1−U/2 − X\

√
=�

)
< V

1

Xf
D1−U/2 − X\

√
=� < DV

X\
√
=� − 1

Xf
D1−U/2 > D1−V
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√
=� >

1
Xf
D1−U/2 + D1−V

X\

=� >

(
1
Xf
D1−U/2 + D1−V

)2

X2
\

.

This is the number of observations needed in arm A. In arm B, we need A times as many. The
total sample size for the whole study is

(1 + A )

(
1
Xf
D1−U/2 + D1−V

)2

X2
\

,

where

X\ =
\√

g2
�
+ g2

�

A

and

Xf =

√√√√
g2
�
+ g2

�

A

f2
�
+ f2

�

A

.

How to select the parameters we are free to choose? In planned experiments, we usually
take A = 1. The level U always takes the standard 0.05 value. The power 1 − V should be
set to at least 0.8, ideally to 0.95 to make probabilities of type I and type II errors the same.
The alternative \ should express the clinically relevant effect, that is, the effect size that would
make a substantial enough difference in clinical practice. This is something to discuss with
the clinicians that initiated the study. Of course, small effect sizes require astronomical sample
sizes.

This approach can be used to calculate sample size for continuous outcomes. For these
outcomes, variances f2

�
and f2

�
under the null hypothesis are set to the same value (obtained

from previous studies or by an “educated” guess) and the variances g2
�
and g2

�
are the same as

under the null hypothesis. If there is no way even to guess the single variance parameter, a
sensitivity analysis can be performed (evaluating the power/sample size for a range of sensible
variance values).

For binary outcomes the means are success probabilities and the variances can be deter-
mined from them. We set c0 the probability under the null hypothesis (the same for both arms)
and the alternative c1 in arm �. We can directly apply the sample size calculation to the test
statistic based on the difference in the estimated probabilities, with

\ = c1 − c0, f2� = f2� = g2� = c0 (1 − c0), g2� = c1(1 − c1).

70



A. Appendix

Or, we can consider a test based on the log odds ratio, with `� = log c1
1−c1 , `� = log c0

1−c0

\ = log
c1

1 − c1
− log

c0

1 − c0
,

f2� = f2� = g2� =
1

c0(1 − c0)

g2� =
1

c1(1 − c1)
.

For time to event outcomes, the asymptotics is based on the approximation (1.3) of Pois-
son distribution by normal distribution combined with the Δ-method. Let _� be the event rate
in arm� (assumed to be constant for the purpose of power calculation) and _� be the event rate
in arm �. Let D� and D� be the expected total duration of follow-up in both arms, depending
on the number of subjects =�, =� and the follow-up durations ~� and ~� . Then the number of
events observed in arm � is #� ∼ Po(_�D�) and in the arm � it is #� ∼ Po(_�D�). From (1.3)
and (1.4) we have

#�

D�
− _�

√
_�
D�

D−→ N(0, 1) and

#�

D�
− _�

√
_�
D�

D−→ N(0, 1).

Denote _̂� =
#�

D�
and _̂� =

#�

D�
. By the Δ-method,

log _̂� − log _�√
1

_�D�

D−→ N(0, 1) and
log _̂� − log _�√

1
_�D�

D−→ N(0, 1).

Consider the null hypothesis �0 : _� = _� and the alternative �1 : _� = e\_� for \ > 0.
Then, under �1,

log _̂� − log _̂� − \√
1

_�D�
+ 1
_�D�

D−→ N(0, 1).

We take _� = e\_�, D� = =�~�, D� = A=�~� (better approximations of the total follow-up time
are possible if the outcome is not rare) and use the previously developed sample size formula
with

g2� =
1

_�~�
, g2� =

1

e\_�~�

and (under the null hypothesis, with \ = 0)

f2� =
1

_�~�
, f2� =

1

_�~�
.

Of course, usually ~� = ~� but this calculation can handle even unequal follow-up duration.
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If the primary analysis is more complex than a two-sample test (e.g., a linear regression
model with some baseline measurements taken as additional predictors), we perform the sam-
ple size calculation on the two-sample test anyway, arguing that the regression analysis will
only improve the power that will be available for the two-sample test. The problem with com-
plex methods is that the sample size calculation would require the knowledge of additional
parameters (such as regression parameters, residual standard error) that are not available be-
fore the data are collected.

Sometimes the calculated sample size is adjusted upwards for the expected attrition rate
(subjects that will be enrolled but will not complete the study and will not be included in the
final analysis).

As far as power calculation is concerned, it is important to be aware that it should be done
only before the study is conducted. When the data is already collected, doing a power calcula-
tion does not make sense because it is already known whether or not the hypothesis has been
rejected (the power is the probability of rejecting the null hypothesis under the alternative).
Despite that, some experts who do not understand probability theory or hypothesis testing
principles request a post-hoc power calculation as a measure of uncertainty of the study result.
However, a better and a totally sufficient measure of this uncertainty is the confidence interval
for the treatment effect.
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