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1. Review of Linear Regression

1.1. Definition and Assumptions

Consider n independent copies of random vectors (Yi , Xi), i = 1, . . . , n. Each Xi has p < n

components (X i1, . . . , X ip).

Note.

• Yi is called the response∗. The components of Xi are called covariates (explanatory

variables, predictors, regressors)†.

• The covariate X i1 is usually taken as 1.

• In certain applications, the covariates can be fixed quantities rather than random vari-

ables. Throughout this course, we will consider covariates random. Extensions to fixed

covariates usually hold with some additional conditions but the proofs require more

effort.

Notation. Let Y = (Y1, . . . , Yn)
T and

X =




XT
1

XT
2
...

XT
n


 .

The n by p matrix X is called the regression matrix‡. We assume r(X) = p (full rank).

Definition 1.1. The data (Yi , Xi) satisfy the linear regression model if the response Yi can

be written as

Yi = XT
i β0 + ǫi,

where β0 = (β01, . . .β0p)
T is a vector of unknown regression parameters (coefficients)§ and

ǫ1, . . . ,ǫn are independent random variables such that E
�
ǫi

��Xi

�
= 0, and var
�
ǫi

��Xi

�
= σ2.∇

Note. The unobserved random variables ǫi are called error terms (disturbances)¶, σ2 is

called residual variance‖.
∗ Česky odezva † Česky regresory, nezávisle proměnné, vysvětlující velǐciny, prediktory, kovariáty ‡ Česky

regresní matice § Česky regresní koeficienty ¶ Česky chybové členy ‖ Česky residuální rozptyl
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1. Review of Linear Regression

Note. Another convenient formulation of the model is based on conditional moments and

it avoids the expression of the error terms:

The linear regression model holds if and only if

• Y1, . . . , Yn are independent

• E
�
Yi

��Xi

�
= XT

i β0

• var
�
Yi

��Xi

�
= σ2

Thus, the linear regression model specifies the first two conditional moments of Yi given Xi .

Note. We will use the notation E , var for the conditional expectation and variance, re-

spectively, given Xi. The symbol EX will be used for unconditional expectation over the

distribution of Xi .

Note. The regression parameters express the influence of Xi on EYi. Assuming that X i1 = 1,

we have

β01 = E
�
Yi

��X i2 = 0, X i3 = 0, . . . , X ip = 0
�

and, with e j = (0, . . . , 0,1,0, . . . , 0)T being a p-vector of zeros with 1 at the j-th position,

β0 j = E
�
Yi

��Xi = x + e j

�
− E
�
Yi

��Xi = x
�
, j = 2, . . . , p.

1.2. Estimation

The regression coefficients β0 are estimated by the least squares estimator (LSE) bβ that min-

imizes the sum of squares

bβ = arg min
β∈Rp

n∑

i=1

(Yi − XT
i β)

2 = arg min
β∈Rp

(Y −Xβ)T(Y −Xβ),

i.e., solves the system of normal equations

n∑

i=1

Xi(Yi − XT
i
bβ) = 0.

Because X is of full rank, the single solution to the system is

bβ = (XTX)−1XTY .

Note.

• E bβ = β0 (unbiased), var bβ = σ2(XTX)−1.

• The vector
bY = X bβ = X(XTX)−1XTY = HY

is called the vector of fitted values∗.

∗ Česky vektor odhadnutých (vyrovnaných) hodnot
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1. Review of Linear Regression

• The projection matrix H
df
= X(XTX)−1XT is idempotent, with rank p. It satisfies HX =

X. The matrix In −H is also idempotent with rank n− p, and satisfies (In −H)X = 0.

• E bY = Xβ0, var bY = σ2H.

• The random vector u
df
= Y − bY = (In −H)Y is called the vector of residuals∗. It satisfies

Eu = 0, varu = σ2(In −H).
• The random variable

SSe
df
= uTu =

n∑

i=1

(Yi − XT
i
bβ)2 = Y T(In −H)Y

is called the residual sum of squares†. Because ESSe = (n−p)σ2, we obtain an unbiased

estimator of residual variance as bσ2 = SSe/(n− p).

1.3. Normal Linear Regression

For normally distributed errors, additional useful properties can be derived. Assume now

that ǫ ∼ Nn(0,σ2In).

Proposition 1.1. Under normality,

(i) Y ∼ Nn(Xβ0,σ2In)

(ii) bβ ∼ Np(β0,σ2(XTX)−1)

(iii) bY ∼ Nn(Xβ0,σ2H)

(iv) u ∼ Nn(0,σ2(In −H))
(v) SSe/σ

2 ∼ χ2
n−p

(vi) bβ and SSe are independent

(vii) Let c be any non-zero p-vector of real constants. Then

cT bβ − cTβ0p
bσ2cT(XTX)−1c

∼ tn−p

(viii) Assume the model Y = Xβ0 + ǫ, where X = (XA|XB) and β0 = (β
T
A ,βT

B)
T, βB ∈ Rm,

βA ∈ Rp−m, and introduce the submodel Y = XAβA + ǫ
′. Let SSe and SSh be the

residual sums of squares in the model and submodel, respectively. If the submodel is

true (H0 : βB = 0 holds) then

F =
n− p

m

SSh − SSe

SSe

∼ Fm,n−p. (1.1)

♦

It can be also shown that, under normality, bβ is the best linear unbiased estimator and

the maximum likelihood estimator, so it possesses optimality properties.

∗ Česky vektor residuí † Česky residuální součet čtverců
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1. Review of Linear Regression

1.4. Asymptotic Properties of the LSE

Let (Yi, Xi), i = 1, . . . , n, be iid. Assume Definition 1.1 (without normality). Denote DX =

EX XiX
T
i .

Proposition 1.2. Let DX be a finite regular matrix. Then

(i) bβ P−→ β0 as n→∞,

(ii)
p

n( bβ −β0)
D−→ Np(0,σ2D−1

X ) as n→∞. ♦

Proposition 1.2(ii) is an asymptotic restatement of Proposition 1.1(ii). Other parts of

Proposition 1.1 also hold asymptotically even if the data are not normal.

Now relax the assumption of equal variance: assume only E
�
Yi

��Xi

�
= XT

i β0. Let

var
�
Yi

��Xi

�
= σ2(Xi) be stochastically bounded (finite expectation follows). Denote VX =

EXσ
2(Xi)XiX

T
i .

Proposition 1.3. Let VX be finite and DX be finite and regular. Then

(i) bβ P−→ β0 as n→∞,

(ii)
p

n( bβ −β0)
D−→ Np(0,D−1

X VXD
−1
X ) as n→∞. ♦

When equal variances hold, VX = σ
2DX and the result in Proposition 1.3(ii) transforms

into the result in Proposition 1.2(ii).

Consistent estimates of DX and VX are

bDn =
1

n
XTX

and

bVn =
1

n
XTdiag (u2

i )X.

So, if both normality and homoskedasticity are in doubt, one can use the OLS estimator
bβ with variance

(XTX)−1XTdiag (u2
i )X (X

TX)−1

in place of the usual bσ2(XTX)−1. This is called the sandwich estimator∗, or, in the econometric

context, White estimator† (White 1980).

Many variants and improvements of this estimator have been proposed in the literature.

∗ Česky sendvǐcový odhad † Česky Whiteův odhad
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1. Review of Linear Regression

1.5. Implications for Data Analysis

The asymptotic results we have just summarized indicate that linear regression model with

ordinary least squares estimation of regression parameters can be used to obtain asymptot-

ically correct statistical inference even if the response is not normal and the error terms do

not have equal variance. We only need to have enough observations available for analysis

so that the asymptotic results provide a reasonable approximation of the true distribution of

the parameter estimator and other quantities of interest.

In this aspect, linear regression is actually a robust nonparametric statistical procedure.

(a) If the responses are normal and possess equal variances we can perform exact statistical

inference based on Proposition 1.1 regardless of the size of the dataset (for any n> p).

(b) If the responses are not normal but have equal variances we can perform asymptotic

inference based on Proposition 1.2 for large enough number of observations.

(c) If the responses are not normal and have unequal variances we can perform asymptotic

inference based on Proposition 1.3 with sandwich variance estimator for large enough

number of observations.

What number of observations is large enough to trust the asymptotic approaches (b)

and (c) depends on the complexity of the linear model.

Furthermore, if the error variances are unequal but are known up to a proportionality

constant, i.e., var Yi = σ
2wi with known wi , weighted least squares estimation can be used

instead of the sandwich.

1.6. Interpretation with Transformed Response

Recall the linear model E
�
Yi

��Xi

�
= XT

i β0 with var
�
Yi

��Xi

�
= σ2. The regression parameters

can be interpreted as

β01 = E
�
Yi

��X i2 = 0, X i3 = 0, . . . , X ip = 0
�

and, e j being the j-th unit vector of the length p,

β0 j = E
�
Yi

��Xi = x + e j

�
− E
�
Yi

��Xi = x
�
.

When the response is non-normal, the common practice is to specify a linear model on

a transformed response. Let g be some monotone function. The transformed model is

g(Yi) = XT
i β0 + ǫi

or E
�
g(Yi)
��Xi

�
= XT

i β0 with var
�
g(Yi)
��Xi

�
= σ2. The induced model for Yi is

Yi = g−1(XT
i β0 + ǫi).

10



1. Review of Linear Regression

In general, the effect of the covariates on EYi in this model cannot be expressed.

The only special case (apart from linear g) when the transformed model says anything

useful about E
�
Yi

��Xi

�
is the log transform. From

log Yi = XT
i β0 + ǫi

we get a multiplicative model

Yi = eXT
i β0ǫ∗i ,

where ǫ∗i = eǫi , Eǫ∗i = µǫ > 1, varǫ∗i = σ
2
ǫ . Then

E
�
Yi

��Xi

�
=exp{logµǫ + XT

i β0},
var
�
Yi

��Xi

�
=σ2

ǫ(exp{XT

i β0})2.

While β01 (the intercept) does not have useful interpretation, the other parameters express

multiplicative effects of X i2, . . . , X ip on EYi:

eβ0 j =
E
�
Yi

��Xi = x + e j

�

E
�
Yi

��Xi = x
� , j = 2, . . . , p.

So, eβ0 j is the proportional increase (relative change) in EYi after a unit change in X i j.

The problem with the interpretation of the transformed linear model is serious when

the primary task is to estimate the effect of Xi on EYi. If the goal is to predict Yi from Xi ,

transformations can still be useful even if the interpretation of the parameters is lost. The end of

lecture 1

(Mar. 1)
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2. Generalized Linear Model: Theory

The generalized linear model extends the normal linear model in two aspects: it admits a

wider choice of distributions for Yi (distributions from the exponential family) and it allows

some flexibility in the relationship between EYi and XT
i β0.

2.1. Exponential Family

2.1.1. Parametrization, moments

Definition 2.1. A distribution of a real-valued random variable belongs to the exponential

family of distributions∗ if its density (w.r.t. some σ-finite measure) can be written in the

form

f (x ;θ ,ϕ) = exp

§
xθ − b(θ)

ϕ
+ c(x ,ϕ)

ª
, (2.1)

where

• θ is called the canonical parameter†;

• ϕ ∈ (0,∞) is called the dispersion parameter‡;

• b and c are some real functions;

The expression (2.1) is called the canonical form of the density§. ∇

Example: Normal distribution

Y ∼ N(µ,σ2), µ ∈ R, σ2 > 0.

f (x ;µ,σ2) =
1p

2πσ
exp
¦
− (x −µ)

2

2σ2

©

=
1p

2πσ
exp
¦ xµ
σ2
− µ2

2σ2
− x2

2σ2

©

= exp
¦ xµ−µ2/2

σ2
− x2

2σ2
− 1

2
log(2πσ2)
©

.

∗ Česky rozdělení exponenciálního typu † Česky kanonický parametr ‡ Česky disperzní parametr § Česky

kanonický tvar hustoty
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2. Generalized Linear Model: Theory

θ = µ, ϕ = σ2, b(θ) =
θ2

2
, c(x ,ϕ) = − x2

2ϕ
− 1

2
log(2πϕ).

Example: Gamma distribution

Y ∼ Γ (a, p), a > 0, p > 0, Y > 0 a.s.

f (x ; a, p) =
ap

Γ (p)
x p−1 exp{−ax}

= exp
�
−ax + p log a + (p− 1) log x − logΓ (p)

	

= exp
¦−(a/p)x + log(a/p)

1/p
+ (p− 1) log x + p log p− log Γ (p)

©

θ = −a

p
, ϕ = 1/p, b(θ) = − log(−θ)

c(x ,ϕ) = (1/ϕ − 1) log x − logϕ/ϕ − log Γ (1/ϕ).

Example: Inverse Gaussian distribution

Y ∼ IG(µ,λ), µ > 0, λ > 0, Y > 0 a.s.

f (x ;µ,λ) =

√√ λ

2πx3
exp
¦
− λ(x −µ)

2

2µ2 x

©

=

√√ λ

2πx3
exp
¦
− λx2

2µ2x
+
λxµ

µ2 x
− λµ

2

2µ2x

©

= exp
¦−x/(2µ2) + 1/µ

1/λ
+

1

2
log

λ

2πx3
− λ

2x

©
.

θ = − 1

2µ2
, ϕ = 1/λ, b(θ) = −

p
−2θ , c(x ,ϕ) = −1

2
log(2πx3ϕ)− (2xϕ)−1.

This is a continuous distribution on the positive halfline. It is related to χ2 distribution

through the transformation

λ(X −µ)2
µ2X

∼ χ2
1 .

13



2. Generalized Linear Model: Theory

Example: Poisson distribution

Y ∼ Po(λ), λ > 0, values 0,1,2, . . .

f (x ;λ) =
λx

x!
exp{−λ} = exp

�
x logλ−λ− log x!

	
.

θ = logλ, ϕ = 1, b(θ) = exp(θ), c(x ,ϕ) = − log x!

Example: Alternative distribution

Y ∼ Alt(p), p ∈ (0,1), values 0,1.

f (x ; p) = px (1− p)1−x = exp
�

x log p+ (1− x) log(1− p)
	
= exp
¦

x log
p

1− p
+ log(1− p)
©

.

θ = log
p

1− p
, ϕ = 1, b(θ) = log(1+ eθ ), c(x ,ϕ) = 0.

The next lemma shows that for distributions of exponential family, the first two moments

can be obtained from the canonical form of the density by a simple calculation.

Lemma 2.1. Let the random variable Y follow a distribution from the exponential family.

Then the moment generation function mY (t) ≡ EetY of Y exists, is finite, and is equal to

mY (t) = exp

§
b(θ + tϕ)− b(θ)

ϕ

ª
.

If b(θ) is twice continuously differentiable, mY (t) is twice differentiable at t = 0, and

EY = b′(θ),

varY = ϕ b′′(θ). ♦

Proof. Suppose the density f (x ;θ ,ϕ) exists with respect to aσ-finite measure ν and denote

the support A= {x : f (x ;θ ,ϕ) > 0}. We have

mY (t) = EetY =

∫

A

exp

§
xθ + x tϕ − b(θ)

ϕ
+ c(x ,ϕ)

ª
dν(x)

=

∫

A

exp

§
x(θ + tϕ)− b(θ + tϕ)

ϕ
+ c(x ,ϕ)

ª
dν(x) · exp

§
b(θ + tϕ)− b(θ)

ϕ

ª

= exp

§
b(θ + tϕ)− b(θ)

ϕ

ª
.
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2. Generalized Linear Model: Theory

The moments can be calculated by differentiation of mY (t) at t = 0. We have EY = m′Y (0)
and

m′Y (t) = mY (t)
b′(θ + tϕ)

ϕ
ϕ,

so EY = m′Y (0) = b′(θ)mY (0) = b′(θ). Next, EY 2 = m′′Y (0) and

m′′Y (t) = mY (t)
�

b′(θ + tϕ)
�2
+mY (t)b

′′(θ + tϕ)ϕ

so EY 2 = m′′Y (0) = ϕb′′(θ) +
�
b′(θ)
�2

. Hence,

varY = EY 2 −
�
EY
�2
= ϕ b′′(θ). �

We will always assume that b(θ) is twice continuously differentiable so that varY is

finite. Denote µ
df
= EY .

Note. Since varY = ϕ b′′(θ) > 0, b must be a strictly convex function and b′ is strictly

increasing. Hence b′ has a well-defined inverse and there exists a function V (µ) of the

mean µ such that varY = ϕV (µ). It satisfies the equation b′′(θ) = V (b′(θ)) or V (µ) =

b′′
�
(b′)−1(µ)
�
.

Definition 2.2. The function V (µ) such that varY = ϕ V (µ) is called the variance func-

tion∗. ∇

Note.

• Different distributions that belong to the exponential family must have different vari-

ance functions.

• Within the exponential family, the variance function determines the distribution of Y .

However, not every function V is a variance function of some distribution from the

exponential family.

Example: Normal distribution

For Y ∼ N(µ,σ2), we have θ = µ, ϕ = σ2, and b(θ) = θ 2

2 . Hence

EY = b′(θ) = µ, varY = ϕ b′′(θ) = ϕ = σ2, and V (µ) = 1.

The normal distribution is the only distribution in exponential family with constant

variance function, i.e., the variance is unrelated to the mean. (Recall the assumption of

homoskedasticity in linear regression!).

∗ Česky rozptylová funkce
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2. Generalized Linear Model: Theory

Example: Gamma distribution

For Y ∼ Γ (a, p), we have θ = − a
p , ϕ = 1/p, and b(θ) = − log(−θ). Hence

µ = EY = b′(θ) = −1/θ = p/a, varY = ϕ b′′(θ) = ϕ/θ2 = p/a2, and V (µ) = µ2.

Example: Inverse Gaussian distribution

For Y ∼ IG(µ,λ), we have θ = − 1
2µ2 , ϕ = 1/λ, and b(θ) = −

p
−2θ . Hence

EY = b′(θ) = 1/
p
−2θ = µ, varY = ϕ b′′(θ) = ϕ(−2θ)−3/2 = µ3/λ, and V (µ) = µ3.

Example: Poisson distribution

For Y ∼ Po(λ), we have θ = logλ, ϕ = 1, and b(θ) = exp(θ). Hence

µ = EY = b′(θ) = exp(θ) = λ, varY = ϕ b′′(θ) = exp(θ) = λ, and V (µ) = µ.

Example: Alternative distribution

For Y ∼ Alt(p), we have θ = log
p

1−p , ϕ = 1, and b(θ) = log(1+ eθ ) = log(1− p). Hence

µ = EY = b′(θ) =
eθ

1+ eθ
= p, varY = ϕ b′′(θ) =

eθ

(1+ eθ )2
= p(1− p), V (µ) = µ(1−µ).

2.1.2. Maximum likelihood estimator of the canonical parameter

Let Y1, . . . , Yn be a random sample from the density f (x ;θ0,ϕ0) belonging to the exponential

family, θ0 is the true canonical parameter, ϕ0 is the true dispersion parameter. Let Y =

(Y1, . . . , Yn)
T. We will discuss maximum likelihood estimation of the canonical parameter θ

with iid data. Summary of the maximum likelihood theory together with notation we use

throughout this text is provided in the Appendix starting on p. 144.

The likelihood for exponential family is

L(θ ,ϕ) =

n∏

i=1

exp

§
Yiθ − b(θ)

ϕ
+ c(Yi ,ϕ)

ª
,
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2. Generalized Linear Model: Theory

The log-likelihood is

ℓ(θ ,ϕ) = log L(θ ,ϕ) =

n∑

i=1

�
Yiθ − b(θ)

ϕ
+ c(Yi ,ϕ)

�
.

Suppose that the true dispersion parameter ϕ0 is known. Then the score function for θ is

U(θ | Yi) =
∂

∂ θ
log f (x ;θ ,ϕ0) =

1

ϕ0

�
Yi − b′(θ)
�
.

Obviously, EU(θ0 | Yi) = 0. The score statistic is

Un(θ | Y ) =
n∑

i=1

U(θ | Yi) =
1

ϕ0

n∑

i=1

�
Yi − b′(θ)
�
.

The maximum likelihood estimator [MLE] bθn solves the equation Un(
bθn | Y ) = 0, that is∑n

i=1 Yi = nb′(bθn). The solution is bθn = (b
′)−1(Y n), where Y n = n−1

∑n
i=1 Yi.

The MLE is unique because b is convex, and it does not depend on the dispersion pa-

rameter ϕ0. It can be calculated even if ϕ0 is unknown.

The observed information is

In(θ | Y ) = −
1

n

n∑

i=1

∂ U(θ | Yi)

∂ θ
=

1

ϕ0

b′′(θ) > 0,

so the likelihood is strictly concave. The expected (Fisher) information is the same as the

observed information,

I(θ) = −E ∂ U(θ | Yi)

∂ θ
=

1

ϕ0

b′′(θ).

It is easy to check that

varU(θ0 | Yi) = I(θ0).

It follows from Theorem A.4 in the Appendix that

p
n(bθn − θ0)

D−→ N(0,ϕ0[b
′′(θ0)]

−1). (2.2)

Now consider the true dispersion parameter ϕ0 unknown. The MLE of θ0 is still the

same, bθn = (b
′)−1(Y n). However, what is the asymptotic distribution of bθn when ϕ0 is

unknown? In general, the asymptotic variance may change.

Calculate the joint information matrix for (θ ,ϕ):

I(θ0,ϕ0) = −E
∂ 2 log f (x ;θ0,ϕ0)

∂ (θ ,ϕ)∂ (θ ,ϕ)T
=

�
Iθθ Iθϕ
Iθϕ Iϕϕ

�
=

�
b′′(θ0)/ϕ0 0

0 Iϕϕ

�
.

Thus, the information matrix is diagonal. It follows that the asymptotic distribution of bθn is

given by (2.2) even if ϕ0 is unknown.
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2. Generalized Linear Model: Theory

We do not need ϕ0 to estimate θ0 but we need an estimate of ϕ0 to estimate the asymp-

totic variance of θ0. Of course, we could use the MLE of ϕ0 but it often cannot be calculated

explicitely. Instead, we can use the moment estimator

bϕ =
S2

n

b′′(bθn)
=

S2
n

V (Y n)
,

where S2
n is the sample variance. Since S2

n

P−→ varYi = ϕ0 b′′(θ0),
bθn is consistent and b′′ is

continuous, bϕ is consistent (though less efficient than the MLE). The end of

lecture 2

(Mar. 4)

2.2. Definition of the Generalized Linear Model

Consider n independent copies of random vectors (Yi , Xi), i = 1, . . . , n, where Xi = (X i1, . . . , X ip)
T.

We want to express the dependence of µi
df
= E
�
Yi

��Xi

�
on Xi by a model that is more general

than the linear model.

Definition 2.3. (Nelder and Wedderburn 1972) The data (Yi , Xi) satisfy the generalized

linear model∗ [GLM] if

1. Y1, . . . , Yn are independent and the distribution of Yi depends on Xi through regression

parameters β = (β1, . . . ,βp)
T.

2. the conditional density of Yi given Xi has the form

f (y;θi ,ϕ) = exp

§
yθi − b(θi)

ϕ
+ c(y,ϕ)

ª
,

(is of exponential type), where b(·) is a known twice continuously differentiable func-

tion, θi depends on Xi and β , ϕ > 0 is a known or an unknown constant.

3. θi depends on Xi and β through the linear predictor† ηi
df
= XT

i β .

4. There exists a known strictly monotone, twice continuously differentiable link func-

tion‡ g such that g(µi) = ηi . ∇

Notation. Let Y = (Y1, . . . , Yn)
T and define the regression matrix

Xn×p =




XT
1

XT
2
...

XT
n


 .

We assume r(X) = p. We sometimes use the notation β0 = (β01, . . . ,β0p)
T to denote the true

regression parameter (but the notation β can also mean the true parameter).

∗ Česky zobecněný lineární model † Česky lineární prediktor ‡ Česky linková funkce
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2. Generalized Linear Model: Theory

Note. The (conditional) means of Y1, . . . , Yn vary because the canonical parameters θ1, . . . ,θn

depend on Xi . The dispersion parameter ϕ is the same for all observations, it must not

depend on Xi (recall homoskedasticity in linear regression). However, the variances of

Y1, . . . , Yn depend on the mean through the variance function V (µi), and hence vary with

Xi.

Note. The link function postulates a possibly non-linear relationship between the expecta-

tion of the response µi and the linear predictor ηi = XT
i β . It has to be specified in advance.

There are methods to verify the choice of the link function for a specific data set (see Sec-

tion 2.8.8). It is enough to specify the link function up to a non-zero proportionality constant

(if c 6= 0, g and cg lead to the same model).

Definition 2.4. The link function g is called the canonical link∗ for the distribution f if it

equates the linear predictor ηi with the canonical parameter θi. ∇

Lemma 2.2. (Properties of canonical link)

(i) The canonical link is equal to the inverse of b′, that is g(µi) = (b
′)−1(µi).

(ii) The canonical link satisfies the equation g′(µi) = 1/V (µi). ♦

Proof. The link function g maps the mean µi = b′(θi) to the linear predictor ηi: g(µi) = ηi .

The canonical link satisfies ηi = θi.

For canonical link, g(b′(θi)) = θi , hence g = (b′)−1. This proves (i).

Differentiating the equality g(b′(θi)) = θi, we get g′(b′(θi))b
′′(θi) = 1. Because b′(θi) =

µi and b′′(θi) = V (µi), we get g′(µi)V (µi) = 1. This proves (ii). �

Note. For each distribution f from the exponential family, there is a unique (up to a non-

zero proportionality constant) canonical link function. Two distributions cannot share the

same canonical link. Canonical link functions have certain numerical advantages that will

become apparent later on. However, some canonical link functions violate the conditions

we require and are difficult to interpret (see examples below).

Example: Normal distribution

For normal distribution, the canonical parameter is θi = µi, and the dispersion parameter is

ϕ = σ2. Let Yi ∼ N(µi,σ
2) with g(µi) = XT

i β .

We know that

b(θi) =
θ2

i

2
, µi = b′(θi) = θi, varYi = σ

2, V (µ) = 1.

∗ Česky kanonický link
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2. Generalized Linear Model: Theory

The canonical link is g(µi) = (b
′)−1(µi) = µi (identity link).

So the canonical GLM for the normal distribution is EYi = ηi = XT
i β , the normal linear

model.

Example: Gamma distribution

For gamma distribution, the canonical parameter is θi = −
ai

p , and the dispersion parameter

is ϕ = 1/p. So, we take Yi ∼ Γ (ai, p) with the mean µi = p/ai and link g(µi) = XT
i β .

We know that

b(θi) = − log(−θi), µi = b′(θi) = −1/θi, varYi = ϕµ
2
i .

The canonical link is g(µi) = (b
′)−1(µi)∝ 1/µi (inverse link — after dropping the minus

sign). It is a function which is discontinuous at 0 and not strictly monotone.

The canonical GLM for the gamma distribution is EYi = g−1(ηi) = 1/XT
i β . The model can

be interpreted only when the linear predictors have all either positive or negative signs.

Example: Inverse Gaussian distribution

For inverse Gaussian distribution, the canonical parameter is θi = − 1

2µ2
i

, and the dispersion

parameter is ϕ = 1/λ. So, we take Yi ∼ IG(µi,λ) with the mean µi and link g(µi) = XT
i β .

We know that

b(θi) = −
Æ
−2θi, µi = b′(θi) = 1/

Æ
−2θi, varYi = ϕµ

3
i .

The canonical link is g(µi) = (b
′)−1(µi)∝ 1/µ2

i (squared inverse link — after dropping the

constant −2). It is a function which is discontinuous at 0 and not strictly monotone.

The canonical GLM for the inverse Gaussian distribution is EYi = g−1(ηi) = 1/
q

XT
i
β . The

model can be interpreted only when the linear predictors all have positive signs.

Example: Poisson distribution

For Poisson distribution, the canonical parameter is θi = logλi, and the dispersion parameter

is ϕ = 1. So, we take Yi ∼ Po(λi) with the mean λi and link g(µi) = XT
i β .

We know that

b(θi) = exp(θi), µi = b′(θi) = exp(θi), varYi = µi.

The canonical link is g(µi) = (b
′)−1(µi) = logµi (log link).

The canonical GLM for Poisson distribution is EYi = g−1(ηi) = exp{XT
i β}. This is called the

loglinear model.
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2. Generalized Linear Model: Theory

Example: Alternative distribution

For alternative distribution, the canonical parameter is θi = log
pi

1−pi
, and the dispersion

parameter is ϕ = 1. So, we take Yi ∼ Alt(pi) with the mean pi and link g(µi) = XT
i β .

We know that

b(θi) = log(1+ exp{θi}), µi = b′(θi) =
eθi

1+ eθi
, varYi = µi(1−µi).

The canonical link is g(µi) = log
µi

1−µi
(logistic link).

The canonical GLM for alternative distribution is EYi = g−1(ηi) =
exp{XT

i
β}

1+exp{XT
i
β} . This is called

the logistic regression model.

Choice of the link function

Canonical links provide very attractive options for the selection of the link function for nor-

mal, Poisson and alternative distributions. For these distributions, we always prefer the

canonical link unless there is a very strong reason (given by the nature of the application)

to select a different link function. For gamma and inverse Gaussian distributions, the canon-

ical links are problematic because they do not even satisfy the assumptions we put on link

functions. Also, they are hard to interpret.

Denote byM the parametric space for the mean of the response (the set of all possible

values of the mean). Then g mapsM to R, which is the space of all possible values of the

linear predictor. The inverse link g−1 should map R toM .

For non-negative random variables, such as from gamma or inverse Gaussian distribu-

tions,M = (0,∞). A reasonable inverse link g−1 should map R to (0,∞), but this is not

the case for the canonical links of these two distributions. On the other hand, a reasonable

link that maps the two sets correctly is the log-link. For this link, we get µi = exp{XT
i β},

which is inM for any value of the parameter vector β .

For the alternative distribution,M = (0,1). A reasonable inverse link g−1 should map

R to (0,1) and be strictly monotone. We can choose such links from distribution functions

of continuous random variables with positive densities over R. On the other hand, the link

functions are quantile functions of such distributions. The logistic link is the quantile func-

tion of the standard logistic distribution.

Parametrizations of the GLM

The primary parameters in the GLM are the regression coefficients β = (β1, . . . ,βp)
T. How-

ever, we are also interested in parametrizing the distributions of the individual Yi ’s that
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2. Generalized Linear Model: Theory

depend on both the primary parameters β and the covariates Xi . This can be done in three

ways:

• by the linear predictors η1, . . . ,ηn;

• by the means µ1 ≡ EY1, . . . ,µn ≡ EYn;

• by the canonical parameters θ1, . . . ,θn.

The parametrizations are related to each other as follows:

• ηi = XT
i β;

• ηi = g(µi), µi = g−1(ηi);

• µi = b′(θi), θi = (b
′)−1(µi);

• ηi = g
�
b′(θi)
�
, θi = (b

′)−1
�
g−1(ηi)
�
; if the link g is canonical then ηi = θi. The end of

lecture 3

(Mar. 4)The likelihood function

Let the true dispersion parameter ϕ0 be known. The likelihood function for β has the form

L(β | Y ) =
n∏

i=1

exp

§
Yiθi − b(θi)

ϕ0

+ c(Yi ,ϕ0)

ª
,

where θi = (b
′)−1
�
g−1(XT

i β)
�
.

The log-likelihood is

ℓ(β | Y ) =
n∑

i=1

�
Yiθi − b(θi)

ϕ0

+ c(Yi ,ϕ0)

�
. (2.3)

The saturated model

Suppose at least one covariate is continuous and consider a model which has the largest

possible number of parameters p = n. This is called the saturated model∗. In the saturated

model, each Yi gets its own canonical parameter θi, which is unrelated to the canonical

parameters of the other observations. Maximizing L(β | Y ) w.r.t all β ∈ Rn is the same

as maximizing L(θ | Y ) w.r.t all θ ∈ Rn. To obtain the MLE in the saturated model, we

differentiate (2.3) w.r.t. each θi separately and we get n equations

ϕ−1
0 [Yi − b′(θi)] = 0, i = 1, . . . , n.

The MLE of µi under the saturated model is

bµi = Yi.

∗ Česky saturovaný model
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2. Generalized Linear Model: Theory

The fitted values bµi ≡ bYi are equal to the observed values Yi. This model provides a “perfect

fit”. However, a “perfect fit” of this kind is rarely useful.

The saturated model with p = n does not satisfy the regularity assumptions of the MLE

theory (the number of parameters must be constant for the theory to apply; here p→∞ as

n→∞). The estimates obtained from this model are not even consistent.

Note. When all covariates are discrete (with a finite number of values), the largest possible

number of parameters in the model is equal to the number of possible distinct values of the

covariate vector Xi, which is usually smaller than n and does not change as the number of

observations increases. In this setting, the saturated model behaves differently.

The null model

The null model∗ is the opposite extreme. It assumes p = 1 and Xi = 1 so that the model

includes only the intercept and all Yi are equally distributed.

The MLE of the common canonical parameter θ of the null model is derived in Sec-

tion 2.1.2. Using β0 = η = g
�
b′(θ)
�
, we get the MLE of β0 as bβn = g(b′(bθn)) = g(Y n).

From the central limit theorem for iid random variables and the delta method,

p
n(bβn − β0)

D−→ N(0,ϕ0V (µ0)[g
′(µ0)]

2),

where µ0 = EYi (compare this with (2.2)).

Neither the null model nor the saturated model are particularly interesting. We aim

to build a model which has more structure than the null model, fewer parameters than the

saturated model, and fits the observed data well.

2.3. Maximum Likelihood Estimation in the GLM

Let (Yi, Xi), i = 1, . . . , n be iid random vectors of dimension p+1. Let hi(x ) be the marginal

density of Xi (with no assumptions about it except finite second moments). Let (Yi, Xi),

i = 1, . . . , n, satisfy the generalized linear model (Definition 2.3) with true parametersβ0 and

ϕ0. Consider ϕ0 known. Write the conditional density of Y given X = x as f (y | x ,β0,ϕ0).

Then the joint density of (Yi , Xi) is f (y | x ,β0,ϕ0)hi(x ), the full likelihood is

L∗(β) =
n∏

i=1

f (Yi | Xi,β ,ϕ0)hi(Xi)

and the full log-likelihood is

ℓ∗(β) =
n∑

i=1

log f (Yi | Xi ,β ,ϕ0) +

n∑

i=1

log hi(Xi).

∗ Česky nulový model
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Since the rightmost sum does not depend on β , it suffices to maximize

ℓ(β) =

n∑

i=1

log f (Yi | Xi,β ,ϕ0). (2.4)

This is the log-likelihood shown previously in (2.3) (without the detailed derivation and

justification needed for the validity of asymptotic results).

When the covariates are random, it is not necessary to consider, know or estimate their

distribution. If the covariates were constants, the log-likelihood and the score statistic would

be sums of nonidentically distributed terms. Feller-Lindeberg or Lyapunov central limit theo-

rems would have to be applied to validate the asymptotic results, and additional assumptions

would have to be imposed on the covariates. The asymptotic results for constant covariates

would then turn out to be the same as the results for iid data.

The core term in the log-likelihood (2.4) that we are going to maximize can be written

as
n∑

i=1

Yiθi − b(θi)

ϕ0

, (2.5)

where g(µi) = XT
i β and µi = b′(θi). The following theorem summarizes the main results

for maximum likelihood estimation of β .

Theorem 2.3. (likelihood equations in the GLM; Nelder and Wedderburn 1972) Let the

definition of the GLM hold. Denote by β0 the true parameter. Let

w(µi) =
1

V (µi)[g
′(µi)]

2
> 0. (2.6)

(i) The score function for β is

U(β | Yi) = ϕ
−1
0

w(µi)g
′(µi)(Yi −µi)Xi ,

where µi = g−1(XT

i β). It satisfies EU(β0 | Yi) = 0.

(ii) The score statistic for β is

Un(β | Y ) =
1

ϕ0

n∑

i=1

w(µi)g
′(µi)(Yi −µi)Xi .

(iii) The maximum likelihood estimator bβn solves the system of equations

n∑

i=1

w(bµi)g
′(bµi)(Yi − bµi)Xi = 0, (2.7)

where bµi = g−1(XT

i
bβn).
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(iv) When the link g is canonical then

w(µi) = V (µi) =
1

g′(µi)
,

the score statistic can be written as

Un(β | Y ) =
1

ϕ0

n∑

i=1

(Yi −µi)Xi ,

and the likelihood equations are

n∑

i=1

YiXi =

n∑

i=1

bµiXi .
♦

Note. When the link g is canonical then S =
∑n

i=1 YiXi is the sufficient statistic and the MLE

equates the observed value of S to its estimated expectation under the model (conditional

on the covariates).

Definition 2.5. bµi = g−1(XT
i
bβn) are called the fitted values∗. ∇

Proof (of Theorem 2.3).

(i) The score function is calculated by the chain rule:

U(β | Yi) =
∂

∂β

1

ϕ0

[Yiθi − b(θi)] =
∂

∂ θ

1

ϕ0

[Yiθi − b(θi)] ·
∂ θi

∂ µ
· ∂ µi

∂ η
· ∂ ηi

∂β

This is a product of four terms. The first term is 1
ϕ0
(Yi − µi). The next two terms can

be calculated by the formula for the derivative of the inverse function. We have

∂ θi

∂ µ
=
∂ (b′)−1(µi)

∂ µ
=

1

b′′(θi)
=

1

V (µi)
,

and
∂ µi

∂ η
=
∂ g−1(ηi)

∂ η
=

1

g′(µi)
.

Finally,
∂ ηi

∂ β =
∂ XT

i β

∂ β = Xi . So we have

U(β | Yi) =
Yi −µi

ϕ0V (µi)g′(µi)
Xi =

1

ϕ0

1

V (µi)[g′(µi)]
2

︸ ︷︷ ︸
df
= w(µi) > 0

g′(µi)(Yi −µi)Xi .

∗ Česky vyrovnané hodnoty
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2. Generalized Linear Model: Theory

Because the conditional expectation (given Xi) of Yi − µi is 0 when µi is evaluated

at the true parameter β0, the conditional expectation of U(β0 | Yi) is zero and the

unconditional expectation is zero as well. This proves that EU(β0 | Yi) = 0.

The next two points (ii) and (iii) are obvious.

(iv) For the canonical link, we know by Lemma 2.2 that g′(µi) = 1/V (µi). Hence w(µi) =

V (µi) and w(µi)g
′(µi) = 1. The rest is easy. �

The end of

lecture 4

(Mar. 11)

The next step is to investigate the observed and expected information matrices for β .

Let a⊗2 df
= aaT.

Theorem 2.4. (on information matrices in the GLM) Let the definition of the GLM hold.

Let EX w(µi)X
⊗2
i

be finite and of full rank.

(i) The contribution of the i-th observation to the observed information matrix is

I(β | Yi) =
1

ϕ0

�
w(µi)X

⊗2
i − Ji
�
,

where

Ji =

�
w′(µi) +w(µi)

g′′(µi)

g′(µi)

�
(Yi −µi)X

⊗2
i .

The observed information matrix is In(β | Y ) = n−1
∑n

i=1 I(β | Yi).

(ii) When evaluated at the true β0, EJi = 0. The Fisher (expected) information matrix at

the true β0 is

I(β0) = E I(β0 | Yi) =
1

ϕ0

EX w(µi)X
⊗2
i . (2.8)

By assumptions, it is finite and of full rank. It holds that varU(β0 | Yi) = I(β0).

(iii) When the link g is canonical then Ji = 0 at any β for all i, the observed information ma-

trix is positive definite at all β , the log-likelihood is concave, the likelihood equations

have just one solution and it is the MLE. ♦

Note. If the link g is not canonical, there is no guarantee that a solution to the likelihood

equations is the MLE. The likelihood is not concave, the equations may have multiple so-

lutions. Numerical algorithms for solving the likelihood equations may iterate slowly and

converge to the wrong solution.

The Fisher information matrix I(β0) can be consistently estimated by the empirical es-

timator

bIn =
1

nϕ0

n∑

i=1

w(bµi)X
⊗2
i =

1

nϕ0

XTŴX, (2.9)

where Ŵ is the n × n diagonal matrix diag (w(bµ1), . . . , w(bµn)). When ϕ0 is unknown it is

replaced by a consistent estimator bϕn, which will be introduced in Section 2.5.
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2. Generalized Linear Model: Theory

Proof (of Theorem 2.4).

(i) The contribution to the observed information matrix can be calculated as follows.

I(β | Yi) = −
∂

∂βT
U(β | Yi) = −

1

ϕ0

∂ w(µi)g
′(µi)(Yi −µi)

∂ µ
Xi ·

∂ µi

∂ η
· ∂ ηi

∂βT
.

We already know from the proof of Theorem 2.3 that

∂ µi

∂ η
=

1

g′(µi)
and

∂ ηi

∂ βT
= XT

i .

It remains to calculate the derivative of the product of three functions of µi. We get

∂ w(µi)g
′(µi)(Yi −µi)

∂ µ
= w′(µi)g

′(µi)(Yi −µi) +w(µi)g
′′(µi)(Yi −µi)−w(µi)g

′(µi).

Putting all the terms together and separating out the part that does not depend on

(Yi −µi), we get

I(β | Yi) =
1

ϕ0

w(µi)XiX
T

i −
1

ϕ0

�
w′(µi) +w(µi)

g′′(µi)

g′(µi)

�
(Yi −µi)XiX

T

i

︸ ︷︷ ︸
df
= Ji

and the result follows. Notice that the first part is a positive semi-definite matrix while

the second part may be anything.

(ii) Because Ji is a product of Yi − µi (which has zero conditional expectation given Xi at

the true β0) and terms that depend on Xi but not on Yi, its expectation at the true β0

is a zero matrix. It follows that

E I(β0 | Yi) =
1

ϕ0

EX w(µi)X
⊗2
i .

Next,

varU(β0 | Yi) = var
1

ϕ0

w(µi)g
′(µi)(Yi −µi)Xi = E X

1

ϕ2
0

[w(µi)g
′(µi)]

2var
�
Yi

��Xi

�
X⊗2

i

= E X

[w(µi)g
′(µi)]

2ϕ0V (µi)

ϕ2
0

X⊗2
i =

1

ϕ0

E X w(µi)X
⊗2
i = I(β0 | Yi).

(iii) We have w(µi) =
1

V (µi)[g
′(µi)]

2 . For the canonical link, g′(µi) = 1/V (µi) by Lemma 2.2,

hence g′(µi) = 1/w(µi). Next,

g′′(µi) = −
w′(µi)

w2(µi)
.

Hence
g′′(µi)

g′(µi)
w(µi) = −w′(µi) and

�
w′(µi) +w(µi)

g′′(µi)

g′(µi)

�
= 0.

�
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2. Generalized Linear Model: Theory

2.4. Algorithm for Fitting the GLM

The parameters of the GLM can be estimated by a numerical algorithm called iterative

weighted least squares∗ [IWLS]. It is based on the following result.

Theorem 2.5. (Nelder and Wedderburn 1972) The MLE bβn in the GLM solves the system

of equations
bβn = (X

TŴX)−1(XTŴbZ),
where Ŵ= diag (w(bµ1), . . . , w(bµn)), bZ is an n-vector with components

bZi = bηi + (Yi − bµi)g
′(bµi),

bµi = g−1(bηi), and bηi = XT
i
bβn. ♦

Note. bZ is called the adjusted dependent variable†. Notice that bZi is the linear approximation

to g(Yi) by Taylor expansion around bµi:

g(Yi)≈ g(bµi) + g′(bµi)(Yi − bµi).

Unlike g(Yi), the adjusted dependent variable can be calculated even if Yi is outside of the

domain of g, for example when g ≡ log and Yi ∼ Po(µi) attains the value of zero.

Note. When the link g is canonical then Ŵ= diag (V (bµ1), . . . , V (bµn)) and

bZi = bηi +
Yi − bµi

V (bµi)
.

Proof (of Theorem 2.5). Take the obvious equality

� n∑

i=1

w(bµi)XiX
T
i

�
bβn =

� n∑

i=1

w(bµi)XiX
T
i

�
bβn

and add zero to the right-hand side in the form of the likelihood equations

0=

n∑

i=1

w(bµi)g
′(bµi)(Yi − bµi)Xi .

Rearrange the right-hand side to get

� n∑

i=1

w(bµi)XiX
T

i

�
bβn =

n∑

i=1

w(bµi)Xi

�
XT

i
bβn + g′(bµi)(Yi − bµi)

�
,

where the bracket contains the value bZi of the adjusted dependent variable. Rewrite the

result in a matrix form as

(XTŴX) bβn = X
TŴbZ.

This completes the proof. �

∗ Česky iterativní vážené nejmenší čtverce † Česky upravená odezva
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2. Generalized Linear Model: Theory

One cannot calculate bβn directly from Theorem 2.5 because it appears on both the left-

hand side as well as the right-hand side. However, the result motivates the following iterative

algorithm.

Iterative weighted least squares algorithm

Step 1. Take initial values bµ(0)
i
= Yi (or Yi ± ǫ if Yi is not within the domain of g). Set

k := 0.

Step 2. Calculate Ŵ(k) = diag (w(bµ(k)
1
), . . . , w(bµ(k)n )) and bZ (k)

i
= g(bµ(k)

i
)+(Yi−bµ(k)i

)g′(bµ(k)
i
).

Step 3. Take
bβ (k+1)

n = (XTŴ(k)X)−1(XTŴ(k)bZ(k)).

Step 4. Calculate bµ(k+1)

i
= g−1(XT

i
bβ (k+1)

n ).

Step 5. Set k := k + 1.

Iterate steps 2–5 until convergence, for example until

 bβ (k)n − bβ (k−1)
n

 < δ, where δ is a

pre-specified tolerance parameter. If the model is well formulated, the algorithm usually

converges in 5–7 steps.

Note.

• The IWLS algorithm is a special case of the Fisher scoring algorithm (see Appendix A.2,

bottom of page 146).

• According to (2.9), the matrix (XTŴ(k)X)−1 estimates (up to the proportionality con-

stant ϕ0) the inverse information matrix. Thus, an estimate of the asymptotic variance

of bβn is obtained by the IWLS as well (just make sure to update it after the last iteration

of bβ (k)n ).

• Let X∗ = Ŵ1/2X and Y ∗ = Ŵ1/2bZ. Then bβn can be written as an ordinary least squares

estimator bβn = (X
∗TX∗)−1X∗TY ∗. This is useful for extending the diagnostic methods

available for the linear model to the GLM.
The end of

lecture 5

(Mar. 11)

2.5. Estimation of the Dispersion Parameter

The dispersion parameter ϕ0 is usually unknown (unless we work with Poisson or alternative

distributions). This fact does not alter the estimation of β0 or the asymptotic properties of
bβn but we occassionally need an estimator for ϕ0. Instead of using the method of maximum

likelihood, ϕ0 is estimated by a modified method of moments.
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2. Generalized Linear Model: Theory

Definition 2.6. The statistic

X 2 =

n∑

i=1

(Yi − bµi)
2

V (bµi)
(2.10)

is called the Pearson chi-square statistic∗. An estimator for ϕ0 is given by

bϕn =
X 2

n− p
. (2.11)

∇

Note. When the distribution of Yi is normal, X 2 is the residual sum of squares SSe and bϕn

is the usual estimator of residual variance.

The next theorem provides conditions for consistency of bϕn.

Theorem 2.6. Let h(y, x ,β) =
[y−g−1(x Tβ)]2

V (g−1(x Tβ))
. Suppose there exists a function C(y, x ) such

that ‖∂ h/∂ β‖ ≤ C(y, x ) in a neighborhood B0 of β0 and EC(Yi, Xi) exists and is finite.

Then bϕn

P−→ ϕ0. ♦

Note. The notation ‖·‖ means the Euclidean norm. The condition of Theorem 2.6 is ful-

filled when V and g′ are bounded away from zero and V has a bounded derivative in a

neighborhood of β0.

Note. The moment estimator bϕn is used instead of ϕ0 in all statistics that need to be eval-

uated. The asymptotic distributions of these statistics are not affected (Cramér-Slutski The-

orem).

Proof. We have

bϕn =
1

n− p

n∑

i=1

h(Yi , Xi , bβn).

Decompose this as follows:

bϕn =
1

n− p

n∑

i=1

h(Yi, Xi ,β0) +
1

n− p

n∑

i=1

[h(Yi , Xi ,
bβn)− h(Yi, Xi ,β0)].

The first summand is an average of iid terms that converges in probability by the weak law

of large numbers to

Eh(Yi, Xi ,β0) = EE
�(Yi −µi)

2

V (µi)

��Xi

�
= E

ϕ0V (µi)

V (µi)
= ϕ0.

We need to prove that the second summand converges in probability to 0. Take its Euclidean

norm, ignore the subtraction of p from n in the denominator, and bound it from above using

a one-step Taylor expansion


1

n

n∑

i=1

[h(Yi , Xi ,
bβn)− h(Yi, Xi ,β0)]

 ≤
 bβn −β0

 1
n

n∑

i=1

h′(Yi , Xi ,β
∗)
 ,

∗ Česky Pearsonovo chí kvadrát

30



2. Generalized Linear Model: Theory

where β∗ lies on the line segment between bβn and β0, and h′(y, x ,β) = ∂ h/∂ β . The

estimator bβn is consistent, so

 bβn −β0

 P−→ 0 and ‖β∗ −β0‖
P−→ 0.

It remains to show that 1
n

∑n
i=1

h′(Yi , Xi ,β
∗)
 is bounded from above in probability by

a constant. Since β∗ is consistent, for n large enough β∗ ∈B0. For such n,

1

n

n∑

i=1

h′(Yi, Xi ,β
∗)
≤ 1

n

n∑

i=1

C(Yi, Xi)
P−→ EC(Yi, Xi) <∞.

This completes the proof. �

2.6. Deviance

Definition 2.7. The statistic

D(Y , bβn) = 2ϕ0

�eℓn(Y )− ℓn(
bβn | Y )
�
,

where eℓn(Y ) is the maximized log-likelihood of the saturated model, is called the (unscaled)

deviance of the model with parameters β0 ∈ Rp and observations Y . ∇

Note. In the saturated model, the MLE of µi is Yi (see p. 23) and the MLE of θi is eθi =

(b′)−1(Yi). The maximized log likelihood (2.5) of the saturated model is

eℓn(Y ) =
1

ϕ0

n∑

i=1

�
Yi
eθi − b(eθi)
�
.

In the model with parameters β0 ∈ Rp, the maximized log likelihood (2.5) is

ℓn(
bβn | Y ) =

1

ϕ0

n∑

i=1

�
Yi
bθi − b(bθi)
�
,

where bθi = (b
′)−1(bµi). Obviously, eℓn(Y ) ≥ ℓn(

bβn | Y ).
The unscaled deviance can be expressed as

D(Y , bβn) = 2

n∑

i=1

�
Yi(
eθi − bθi)− b(eθi) + b(bθi)

�
. (2.12)

The deviance is always non-negative, does not depend on ϕ0, and is zero if and only if the

model provides a “perfect fit”.

Note.
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2. Generalized Linear Model: Theory

• The deviance is a goodness-of-fit measure. When the data are normal, the deviance is

equal to the residual sums of squares. It generalizes the term residual sums of squares

to the GLM∗.

• D∗(Y , bβn,ϕ0) = ϕ
−1
0

D(Y , bβn) is called the scaled deviance. If ϕ0 is unknown, use the

moment estimator bϕn defined by (2.11).
The end of

lecture 6

(Mar. 18)

2.7. Asymptotic Results

Asymptotic results for the GLM follow from the general theory of maximum likelihood esti-

mation. The theory is reviewed in the Appendix starting on p. 144.

The following theorem transcribes the results of Theorems A.2 – A.5 from the Appendix

in the context of the GLM. The regularity conditions R1 – R4 are assured by the specification

of the model. Condition R6 has been verified in Theorem 2.3, part (i) and Theorem 2.4,

part (ii).

The Fisher information matrix

I(β0) = E I(β0 | Yi) = varU(β0 | Yi) =
1

ϕ0

EX w(µi)X
⊗2
i

is finite and of full rank by assumptions imposed on the covariates (finiteness of all necessary

moments and linear independence of covariates).

Theorem 2.7.

(i) The MLE bβn is consistent (as long as the likelihood equations (2.7) have a unique

solution).

(ii)

1p
n

Un(β0)
D−→ Np(0, I(β0)).

(iii)

p
n( bβn −β0)

D−→ Np(0, I−1(β0)).

(iv)

2 log
Ln( bβn | Y )
Ln(β0 | Y )

D−→ χ2
p . ♦

∗ The Pearson X 2 is another generalization.
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The information matrix I(β0) can be consistently estimated by

bIn =
1

n bϕn

XTŴX.

According to part (iii) of Theorem 2.7, the estimated asymptotic variance of bβn is

bI−1
n /n= bϕn(X

TŴX)−1. (2.13)

Denote bΣ≡ (XTŴX)−1 so that bϕn
bΣ estimates var bβn .

Let us consider the problem of testing the simple hypothesis

H0 : β = β0 against H1 : β 6= β0.

The test statistics and their null distributions are established by the following theorem, which

is based on Definition A.5 and Theorem A.7 from the Appendix.

Theorem 2.8.

(i) Score (Rao) test. Let µ0
i
= g−1(XT

i β0), W
0 = diag (w(µ0

1
), . . . , w(µ0

n)), denote Σ0 =

(XTW0X)−1. If H0 holds then

Rn =
1

n
Un(β0)

TbI−1
n Un(β0)

=
1

bϕn

� n∑

i=1

w(µ0
i )g
′(µ0

i )(Yi −µ0
i )Xi

�T
Σ

0
� n∑

i=1

w(µ0
i )g
′(µ0

i )(Yi −µ0
i )Xi

�

D−→ χ2
p

(ii) Wald test. If H0 holds then

Wn = n
� bβn −β0

�TbIn

� bβn −β0

�
=

1

bϕn

� bβn −β0

�TbΣ−1
� bβn −β0

� D−→ χ2
p

(iii) Likelihood ratio test. Let θ0
i = (b

′)−1(µ0
i ). If H0 holds then

λn = 2[ℓn(
bβn | Y )− ℓn(β0 | Y )] =

2

bϕn

n∑

i=1

�
Yi(
bθi − θ0

i )− b(bθi) + b(θ0
i )
� D−→ χ2

p ♦

The simple hypothesis is rarely of interest for applications. We are more interested in

composite hypotheses, for example, in testing that the last m components of the regression

parameter vector are all zero (without loss of generality: the components of β can be always

rearranged in this way). Take

H∗
0

:




βp−m+1

βp−m+2
...

βp


= 0 against H∗

1
:




βp−m+1

βp−m+2
...

βp


 6= 0
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for some m < p. If H∗0 is true then the last m parameters attain zero value and the last m

components of the covariate vector can be excluded from the model. The null hypothesis

specifies a submodel (with p−m parameters) of the full model with (p parameters).

DenoteβM = (βp−m+1, . . . ,βp)
T and X M

i = (X i,p−m+1, . . . , X ip)
T. Let bβM = (
bβp−m+1, . . . , bβp)

T

be the MLE of βM under the larger model. Let eβn be the MLE of β under the submodel (sub-

ject to the constraint βM = 0), let eµi = g−1(XT
i
eβn) be the fitted values under the submodel.

Partition the p× p matrix bΣ = bI−1
n /(n bϕn) = (X

TŴX)−1 (the estimated asymptotic vari-

ance of bβn without bϕn) into four blocks

bΣ=
�bΣA
bΣB

bΣT
B
bΣM

�
,

where the lower right block bΣM is of size m×m.

Theorem 2.9.

(i) Score (Rao) test. Let eW = diag (w(eµ1), . . . , w(eµn)). Let eΣM be the m×m lower right

block of the matrix eΣ = (XT eWX)−1. Denote by eϕn the estimator of the dispersion

parameter calculated under the submodel (under H∗
0
). If H∗

0
holds then

R∗n =
1

eϕn

� n∑

i=1

w(eµi)g
′(eµi)(Yi − eµi)X

M
i

�T
eΣM

� n∑

i=1

w(eµi)g
′(eµi)(Yi − eµi)X

M
i

�

D−→ χ2
m.

(ii) Wald test. Denote by bϕn the estimator of the dispersion parameter calculated under

the larger model (not assuming that H∗0 is true). If H∗0 holds then

W ∗n =
1

bϕn

� bβM
�TbΣ−1

M

� bβM
� D−→ χ2

m.

(iii) Likelihood ratio (deviance) test. Let D(Y | eβ) be the (unscaled) deviance of the

submodel, let D(Y | bβ) be the (unscaled) deviance of the larger model. Let the estimate

bϕn be calculated under the larger model (not assuming that H∗
0

is true). If H∗
0

holds

then

λ∗n =
1

bϕn

�
D(Y | eβ)− D(Y | bβ)

� D−→ χ2
m. ♦

Note.

• Theorem 2.9 follows from Definition A.6 and Theorem A.9 in the Appendix. The hy-

pothesis H∗0 is rejected at the asymptotic level of α if the chosen test statistic (it must

be selected in advance) exceeds the 1−α quantile of the χ2
m distribution.
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• Under the standard linear regression model with normal distribution, these three test

statistics are all equal to the F test statistic (1.1) for submodel testing. In that case,

the exact distribution of the test statistics under the null hypothesis is Fm,n−p. When

normality does not hold or the link is not identity, the three test statistics are not the

same and we only know that their asymptotic distribution is χ2
m.

• Generally, the likelihood ratio test statistic is twice the difference in the log likelihoods

between the model and the submodel. However, it can be also expressed as a properly

scaled difference in deviances between the submodel and the model. The deviance test

is the preferred tool for testing submodels in generalized linear models.

• The Wald and Rao statistics are asymptotically equivalent to the likelihood ratio test

statistic. However, in finite samples they may be different. Unlike the likelihood ra-

tio test statistic, the Wald test statistic depends on the parametrization of the model

and tends to have the slowest convergence to the asymptotic distribution. For these

reasons, the Wald statistic is the least desirable of the three.

• An important special case is m = 1 (testing of a single parameter). Then the Wald

statistic for testing zero value of the j-th parameter is

� bβ jÇ
bϕnbσ2

j j

�2
, (2.14)

where bσ2
j j is the j-th diagonal element of bΣ. Before applying the square, these statistics

are asymptotically standard normal; in this form they are automatically provided in

the output of almost any statistical software for fitting the GLM.

• The deviance of the current model D(Y | bβ) is twice the difference in log likelihoods

between the saturated model and the current model. However, the deviance cannot

be in general used as a test statistic to compare the goodness-of-fit of the current

model to the saturated model unless all covariates are discrete (otherwise the number

of parameters of the saturated model grows to infinity and Theorem A.9 from MLE

Summary does not hold). Differences in deviances between a submodel and a larger

model do not have this problem.

Confidence intervals

The simplest confidence intervals for the individual parameters are based on Wald test statis-

tics (2.14). The interval with end points

bβ j ± u1−α/2
Ç
bϕnbσ2

j j
,

covers β j with probability converging to 1−α.

Better confidence intervals would be obtained from inverting acceptance regions of the

Rao or likelihood ratio test statistics or using profile likelihood methods.
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2. Generalized Linear Model: Theory

Wald-type confidence intervals for linear combinations of parameters cTβ0 where 0 6=
c ∈ Rp can be obtained easily from Theorem 2.7 part (iii). An asymptotic confidence interval

with coverage probability converging to 1−α is

cT bβn ± u1−α/2
q
bϕncTbΣc.

The end of

lecture 7

(Mar. 22)
2.8. Diagnostic Methods for the GLM

Diagnostic methods can be derived from the linear model using Theorem 2.5. Let X∗ =
Ŵ1/2X and Y ∗ = Ŵ1/2bZ. Recall that Ŵ = diag (w(bµ1), . . . , w(bµn)) and

bZi = bηi + (Yi − bµi)g
′(bµi).

Write bβn as an ordinary least squares estimator bβn = (X
∗TX∗)−1X∗TY ∗. Let

H∗ = X∗(X∗TX∗)−1X∗T = Ŵ1/2X(XTŴX)−1XTŴ1/2,

and Ŷ ∗ = X∗ bβ = H∗Y ∗ = Ŵ1/2X(XTŴX)−1XTŴbZ.

2.8.1. Pearson residuals

Pearson residuals are defined by the identity r P = Y ∗− Ŷ ∗ = Ŵ1/2bZ − Ŵ1/2X bβ , which gives

the following residuals for the individual observations

rP
i =

Yi − bµip
V (bµi)

.

Sum of squares of Pearson residuals is equal to the Pearson X 2 statistic:

n∑

i=1

�
rP

i

�2
= X 2.

We have r P = (In −H∗)Y ∗ and

varY ∗
.
=W1/2 varZW1/2 =W1/2diag (ϕ0V (µi)[g

′(µi)]
2)W1/2 = ϕ0In.

Because In −H∗ is idempotent,

var r P .
= ϕ0(In −H∗).
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2.8.2. Leverages

It has been shown above that

var rP
i

.
= ϕ0(1− h∗ii),

where h∗ii, the i-th diagonal element of H∗, is called the leverage. Potentially influential

observations can be identified by the rule of thumb h∗ii > 2p/(n− 2p). These observations

are sort of atypical in their covariates and thus may have unduly strong influence on the

results of the model fit.

2.8.3. Standardized Pearson residuals

Standardized Pearson residuals normalize rP
i by division by the square root of its approxi-

mate variance:

rPS
i =

Yi − bµiÆ
bϕnV (bµi)(1− h∗

ii
)
.

They have approximately unit variance.

2.8.4. Deviance residuals

Deviance residuals are signed square roots of the contributions of the observations to the

deviance. Let eθi = (b
′)−1(Yi), di = 2

�
Yi[
eθi − bθi]− b(eθi) + b(bθi)

	
, and define the deviance

residual as

rD
i = sgn (Yi − bµi)

Æ
di.

Sum of squares of deviance residuals is equal to the deviance:

n∑

i=1

�
rD

i

�2
= D(Y | bβ).

2.8.5. Standardized deviance residuals

Standardized deviance residuals use the same normalization as standardized Pearson resid-

uals.

rDS
i =

sgn (Yi − bµi)
p

diÆ
bϕn(1− h∗

ii
)

.

These are the default residuals in R.
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2.8.6. Cook’s distance

Cook’s distance measures the influence of the i-th observation on the estimates of regression

parameters bβ . Let bβ(i) denote the estimates calculated after deletion of the i-th observation

from the data set. Cook’s distance is defined as

C Di =
1

p bϕn

( bβ − bβ(i))TX∗TX∗( bβ − bβ(i)).

In linear regression, it can be shown that

C Di =
1

p bϕn

�
Y ∗i − Ŷ ∗iÆ

1− h∗
ii

�2 h∗ii
1− h∗

ii

=
1

p

�
rPS

i

�2 h∗ii
1− h∗

ii

.

This is how Cook’s distance is calculated in the GLM. An observation is considered influential

if C Di >
8

n−2p .

2.8.7. Residual plots

Residual plots are created and used in a direct analogy with the linear model. However, for

some data types (e.g. binary data) the residual plots are much less informative and require

smoothing to yield any useful information. In general, residual plots are somewhat less

useful in the GLM than they are in the linear model.

2.8.8. Diagnostics of the link function

We only mention two simple methods for checking that the correct link function was se-

lected. Plotting the adjusted dependent variable bZi against the linear predictor bηi provides

a graphical check. If the link is correct the plot should reveal a linear pattern. A formal test

can be obtained by adding (bηi)
2 to the model as an additional covariate and testing that its

parameter is zero. If the hypothesis is rejected the link may be incorrect.

Both methods are sensitive to inappropriate transformations of the regressors. If the

transformations are not chosen well, both methods may indicate a problem even if the link

is correct.

Incorrect link functions do not have a serious effect on deciding which regressors af-

fect the response or on the results of submodel testing. The choice of the link function is

important if the primary goal of the analysis is prediction.

2.9. Model-building strategies

Model-building strategies for generalized linear models do not differ from the strategies

applied to other regression models, including linear regression. The primary tool for model
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2. Generalized Linear Model: Theory

building are deviance tests comparing a larger model with a submodel. If the deviance

test is significant it means that the terms in the larger model cannot be removed without a

significant decrease in the quality of model fit.

Since the development of the final model usually involves repeated applications of de-

viance tests, each performed on a selected level α (usually α = 0.05), it is clear that the

overall procedure does not preserve the desired level. If many tests are done then the final

model is likely to include terms that in fact do not affect the response at all (overfitting).

There is no universal and reliable method for adjusting the levels of the individual tests so

that the overall probability of including irrelevant terms is under control. Nevertheless the

analyst should be aware of this problem and should not interpret the p-values of submodel

tests too dogmatically.

Approaches for developing reasonable models vary with the nature of the problem,

structure of the data and questions to be addressed by the analysis. There is no univer-

sal solution to be recommended. Each problem requires careful consideration by the analyst

taking into account the nature of the problem, the data-collection methods and tools, the

meaning of the variables included in the dataset, their mutual relationships, and the goals

of the analysis.

If prediction is the primary goal, it is useful to consider rich and flexible models. Omis-

sion of an important term from the model or its inclusion with an inappropriate transfor-

mation may have detrimental biasing effects on the predictions. If unnecessary covariates

are left in, the variability in the predicted response is increased but the predictions are not

biased. Interpretation of regression parameters is usually not that important. In prediction

analyses, validation of the prediction model should be performed either by dividing the data

set into disjoint training (used for model building) and validation (used for evaluation of

the predictions) subsets or at least by cross-validation (predictions of each observation by a

model fitted on data excluding that observation). Validation is a very useful tool for selection

of the best prediction model out of several candidates.

If the goal is to evaluate covariate effects (“how does covariate X affect the mean of the

response Y ?”), one must be really careful about several things. First, the covariate of interest

must be kept in the model even if it is not significant – otherwise its effect cannot be evalu-

ated. Second, the regression parameters expressing the influence of the covariate of interest

should have a straightforward interpretation. Thus, we cannot afford to model the effect of

X by a complicated function that cannot be easily summarized (splines of order > 1, polyno-

mials), or to use complex transformations of the response or link functions that are difficult

to interpret. Third, there might be covariates that should be kept in the model regardless of

their significance (suspected confounders) and/or covariates that should not be included in

the model no matter how significant they are (variables on the causal pathway between X

and Y , variables that are influenced by the value of Y ). Thus, making reasonable decisions

about which covariates should be included in the model and which should be dropped is

not based solely on significance tests but also on external expert knowledge of the problem

to be analyzed. It is precisely this issue that makes automated computer-based algorithms
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(unsupervised stepwise regression, regression trees, neural networks, deep learning, etc.)

unable to solve certain problems acceptably.

Another common problem in model-building strategies is the inclusion of interactions,

especially when the number of covariates that can be considered for interactions is quite

large. The strategy that starts with a model that includes a lot of main effects as well as all

possible two-way interactions between them, and tries to gradually eliminate the superfluous

terms usually does not lead to a good model. With this approach, we are likely to end up

with a model that suffers from overfitting, keeps a lot of unnecessary interactions and is

hard to interpret. It is better to fit only the main effects first, eliminate those that are not

contributing to the model, and then try to add two-way interactions of the remaining terms

one by one. This strategy is much more likely to end up only with interactions that really

matter. Considering higher order interactions (three-way, four-way,. . . ) is usually a hopeless

task. It is better not to consider them at all, except in analyses where, for some reason, such

interactions are among the terms of interest.

There is one principle about building models with interactions, which is almost univer-

sally valid and the analyst should take care not to violate it. The models should be built

hierarchically, meaning that if a covariate is present in a higher-order interaction, then all

its corresponding lower-order interactions as well as the main effects should be included in

the model as well, no matter if they are significant or not. This principle should be ignored

only in analyses where there is a sound justification for its violation.

This brief exposition of model-building strategies cannot be complete and should be

understood in the whole context of the particular task to be done. As noted earlier, each

problem should be carefully considered in order to choose a tailor-made strategy that works

well for it. This requires practical experience. The analyst should be aware that there is no

such thing as the true model and that his task is not to discover it. All models are wrong – we

are only looking for an acceptable model that provides satisfactory answers to the questions

of interest. The end of

lecture 8

(Mar. 22)
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3. Generalized Linear Model for Discrete

Responses

3.1. Analysis of Binary Data

3.1.1. Alternative vs. binomial data

Let Y ∗i j ∼ Alt(πi), π ∈ (0,1), be independent variables for i = 1, . . . , K , j = 1, . . . , mi . For

a fixed i, Y ∗i1, . . . , Y ∗imi
are identically distributed. The total number of observations is N =∑K

i=1 mi. Let πi depend on Xi = (X i1, . . . , X ip)
T through the linear predictor ηi = XT

i β , β is

the vector of unknown regression coefficients to be estimated. Therefore Y ∗i1, . . . , Y ∗imi
share

the same covariate vector Xi.

The response Y ∗i j ∼ Alt(πi) has a distribution of exponential family with µi ≡ EY ∗i j = πi

and varY ∗i j = πi(1−πi). The variance function is V (µ) = µ(1−µ), the dispersion parameter

is ϕ = 1, the canonical parameter is θi = log
πi

1−πi
. Finally, b(θi) = log(1+ eθi ) = log 1

1−πi
.

Denote Yi =
∑mi

j=1
Y ∗i j . Then Yi ∼ Bi(mi,πi). Because a binomial response can be always

written as a sum of independent responses with an alternative distribution, the GLM devel-

oped for the alternative distribution can be also used to fit regression models to binomial

responses even though the binomial distribution does not strictly belong to the exponential

family as we defined it.

The dataset with alternative or binomial responses can be arranged in two different

formats (see Figure 3.1) that can be transformed one to the other.

Format A. The dataset is arranged so that there are N rows corresponding to the alternative

responses Y ∗i j and each value of the covariate vector Xi appears in mi different

rows. The row corresponding to the i j-th observation includes Y ∗i j and Xi . This

will be called the Bernoulli format of the data or the alternative format.

Format B. The dataset is arranged so that there are K rows corresponding to the binomial

responses Yi and each value of Xi appears only once in the whole dataset. The

i-th row includes Yi, mi, and Xi . This will be called the binomial format of the

data.

Note. It is a bad idea to mix the two data formats in a single dataset.

Note. If the covariate vector has at least one continuous component (with no rounding)

then mi = 1 for all i, N = K and the two data formats are the same.
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3. Generalized Linear Model for Discrete Responses

Figure 3.1.: Binary data written in the alternative format A (left panel) vs. the binomial

format B (right panel).

Format A.
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...
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Y1 m1 XT
1

Y2 m2 XT
2

...
...

...

YK mK XT
K





K×

The presence or absence of at least one continuous covariate leads to one of two different

kinds of asymptotics when N →∞.

1. When all covariates are discrete with a finite support then K is constant, and mi →∞
at the same rate for all i.

2. When at least one covariate is continuous then K →∞ and all mi are small (typically

mi = 1).

Most of the results are the same for both data formats and both kinds of asymptotics but

there are certain important differences that will be pointed out later.

3.1.2. Link functions for binary data

Because µi ≡ πi ∈ (0,1), suitable link functions are maps (0,1)→ R. Any quantile function

of a continuous distribution on R could be used as a link function for binary responses. Here

are some examples:

Logistic link

Take the quantile function of the standard logistic distribution.

g(µi) = log
µi

1−µi

, µi =
exp{XT

i β}
1+ exp{XT

i
β} .

This is the logistic link, the canonical link function, the most commonly used link for binary

data. The model is called the logistic regression model∗.

∗ Česky logistická regrese
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Probit link

Take the quantile function of the standard normal distribution.

g(µi) = Φ
−1(µi), µi = Φ(X

T
i β).

This is the probit link, the model is called the probit regression model∗. It is used in threshold

analysis, toxicology and pharmacokinetics.

Cauchit link

Take the quantile function of the standard Cauchy distribution.

g(µi) = tan[π(µi − 0.5)], µi =
1

π
arctan(XT

i β) +
1

2
.

This is the cauchit link, the model is called the cauchit regression model†. It is suitable when

πi converges to 0 (1) extremely slowly for ηi →±∞.

Complementary log-log link

Take the quantile function of the negative Gumbel (extreme value) random variable.

g(µi) = log(− log(1−µi)), µi = 1− e− exp{XT
i β}.

This link function does not possess symetry properties. It is used in the analysis of discrete

survival data. Its counterpart is the log-log link

g(µi) = − log(− log(µi)), µi = e− exp{−XT
i β}.

The inverse link functions are plotted in Figure 3.2. The choice of the link function

should be governed by the desired interpretation of the fitted model rather than by the

data. The canonical logistic link should be the first choice unless a different interpretation

is needed or there is a strong prior reason to choose a different link.

3.1.3. Binary data likelihood

There are two different sampling schemes to be considered.

(i) Alternative responses are observed independently of each other together with the co-

variates. Then mi are random variables.

∗ Česky probitová regrese † Česky cauchitová regrese
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3. Generalized Linear Model for Discrete Responses

Figure 3.2.: Inverse link functions for binary data. The linear predictor ηi is on the horizontal

axis, the success probability πi is on the vertical axis.
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(ii) mi is fixed in advance, then mi independent observations are obtained for each com-

bination of the covariates.

The likelihoods for these two schemes only differ by a constant that does not affect

the analysis. If mi is random then the likelihood is a product of independent alternative

distributions
K∏

i=1

mi∏

j=1

π
Y ∗i j

i
(1−πi)

1−Y ∗i j =

K∏

i=1

π
Yi

i
(1−πi)

mi−Yi .

If mi is fixed then the likelihood is a product of independent binomial distributions

K∏

i=1

�
mi

Yi

�
π

Yi

i
(1−πi)

mi−Yi =

K∏

i=1

π
Yi

i
(1−πi)

mi−Yi

K∏

i=1

�
mi

Yi

�
.

The product of the binomial numbers does not include the parameters, so it is not relevant.

The first scheme follows the framework of independent observations from a distribution of

exponential type so the theory of Chapter 2 applies. The second scheme does not follow the
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3. Generalized Linear Model for Discrete Responses

framework of Chapter 2 strictly but the core of the likelihood is the same and all the results

have exactly the same form and properties. Therefore we do not have to distinguish the two

sampling schemes.

3.1.4. Threshold analysis by probit regression

The probit link has an interesting application in threshold analysis of normally distributed

data.

Consider random variables Ui that follow the normal linear regression model

Ui = ZT
i α+ ǫi, (3.1)

where Zi are p-dimensional covariate vectors, α are regression coefficients and ǫi ∼ N(0,σ2)

are error terms. Now suppose that the responses Ui cannot be observed directly. Instead,

a threshold Ci is provided and we learn whether the unobserved response Ui exceeds the

threshold or not.

Assume that Ci is independent of Ui. The observed response is Yi = 1(Ui < Ci), to-

gether with the values of the covariates Zi and the threshold Ci. The goal is to estimate the

regression coefficients α and the residual variance σ2 of the underlying linear regression

model (3.1).

The observations come in the form of iid triplets (Yi , Ci,Zi). The response Yi follows an

alternative distribution with

P [Yi = 1]≡ pi = P [Ui < Ci] .

Conditionally on the value of the observed threshold Ci, we get

pi = P

�
Ui − ZT

i α

σ
<

Ci − ZT
i α

σ

�
= Φ

�
Ci

σ
− ZT

i

α

σ

�
.

Define

Xi =

�
Zi

Ci

�
and β =

�
−α/σ
1/σ

�
.

This translates the problem into binary probit regression model with the linear predictor

XT
i β . The parameters β can be estimated by the usual procedures for the analysis of the

GLM. The parameters of interest can be obtained from bβ as bσ2 = 1
bβ2

p+1

and bα j = −
bβ j

bβp+1

.

Of course, this can only be done if the threshold values Ci are linearly independent of

the covariates Zi. For example, if Ci are all set to the same value, the intercept term cannot be

distinguished from the residual variance and the parameters of the original linear regression

model cannot be determined. The end of

lecture 9

(Apr. 1)
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3.1.5. Logistic regression

The logistic regression model is the most commonly used model for the analysis of binary

and binomial responses.

The logistic link has the form g(πi) = log
πi

1−πi
, where πi/(1−πi) is the odds of success.

The success probabilities can be expressed as πi =
exp{XT

i
β}

1+exp{XT
i
β} .

Interpretation of regression parameters

Let XT
i β = β1 + β2X2 + · · ·+ βpX p. Denote π0 = P

�
Y ∗i j = 1
��X2 = · · ·= X p = 0

�
. Then

log
π0

1−π0

= β1

so eβ1 is the odds of success for an individual with zero values in all covariates.

Now consider two individuals: one with observed covariates x 0 = (1, x2, . . . , xp)
T, the

other with observed covariates increased at the j-th component by one: x j = x 0+e j . Denote

πX0 = P
�
Y ∗i j = 1
��X = x 0
�

and πX j = P
�
Y ∗i j = 1
��X = x j
�
. Then

βTx 0 = log
πX0

1−πX0

and βTx j = βTx 0 + β j = log
πX j

1−πX j

.

It follows that

β j = log

� πX j

1−πX j

· 1−πX0

πX0

�
and eβ j =

πX j(1−πX0)

πX0(1−πX j)
.

Thus eβ j is the odds ratio for success comparing two individuals differing by one unit in the

covariate X j. E.g., if β j = 0.431 one can say that a unit increase in the covariate X j increases

the odds of success e0.431 = 1.539 times (or by 53.9%). When β j = 0 the odds ratio is 1 and

the covariate has no effect on the odds of success (or the probability of success) given the

other covariates.

Consider a two-by-two contingency table of conditional probabilities

Covariates Y = 1 Y = 0

X = x j πX j 1−πX j

X = x 0 πX0 1−πX0

The odds ratio eβ j describes the association between X and Y in this contingency table. The

odds ratio is one if and only if there is independence in this restricted table.
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Estimation of parameters

By Theorem 2.3, the score statistic with the canonical link is

Un(β | Y ) =
K∑

i=1

mi∑

j=1

(Y ∗i j −πi)Xi =

K∑

i=1

(Yi −miπi)Xi

and bβn solves the equations
K∑

i=1

YiXi =

K∑

i=1

mi bπiXi,

where

bπi =
exp{XT

i
bβn}

1+ exp{XT
i
bβn}

.

The IWLS algorithm can be implemented in two different ways depending on the data

format. With the Bernoulli format A, the regression matrix X includes each observed value of

Xi in mi different rows, and its dimension is N × p. Suppose the observations i j are ordered

by the two indices 11, . . . , 1m1, 21, . . . , 2m2, . . . , KmK . Let

Ŵ(k) = diag
�
bπ(k)

1
(1− bπ(k)

1
), . . . , bπ(k)K (1− bπ

(k)
K )
�

be an N × N matrix, where the i-th element is repeated mi times, define

bZ (k)
i j
= XT

i
bβ (k) +

Y ∗i j − bπ
(k)
i

bπ(k)
i
(1− bπ(k)

i
)
,

and create an N -vector bZ(k) = (bZ (k)
11

, . . . , bZ (k)KmK
)T . The IWLS algorithm iterates

bβ (k+1)
n = (XTŴ(k)X)−1(XTŴ(k)bZ(k))

until convergence.

With the binomial format B, the regression matrix XR includes each observed value of

Xi only once, and its dimension is K × p. Let

Ŵ
(k)
R = diag
�
m1 bπ(k)1

(1− bπ(k)
1
), . . . , mK bπ(k)K (1− bπ

(k)
K )
�

be an K × K matrix, where each element appears just once, define

bZ (k)
Ri
= XT

i
bβ (k) +

Yi −mi bπ(k)i

mi bπ(k)i
(1− bπ(k)

i
)
,

and create a K-vector bZ(k)R = (bZ (k)R1
, . . . , bZ (k)RK )

T. The IWLS algorithm iterates

bβ (k+1)
n = (XTRŴ

(k)
R XR)

−1(XTRŴ
(k)
R
bZ(k)R )
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until convergence.

Obviously, XTŴ(k)X = XTRŴ
(k)
R XR and XTŴ(k)bZ(k) = XTRŴ

(k)
R
bZ(k)R , so the two implemen-

tations of the IWLS algorithm for the two data formats are equivalent.

The information matrix is

I(β) = EX bπi(1− bπi)X
⊗2
i ,

and it can be estimated by

bIn =
1

N
XTŴX =

1

N
XTRŴRXR.

The estimated variance of bβn (see (2.13) on p. 33) is

(XTŴX)−1 = (XTRŴRXR)
−1.

It can be easily obtained from the IWLS for either data format.

Deviance

The next thing we need to do is to evaluate the deviance of a logistic model

D(Y , bβ) = 2
�eℓ(Y )− ℓ( bβ | Y )

�
,

(see Def. 2.7 on p. 31, with dispersionϕ = 1), where ℓ( bβ | Y ) is the maximized log-likelihood

of our model and eℓ(Y ) is the maximized log-likelihood of the saturated model.

Let us consider the binomial formulation first. We have K observations with K different

values of the covariate vector Xi, each observed mi times, i = 1, . . . , K . The saturated model

has K parameters that generate K distinct fitted values eπi =
Yi

mi
. The canonical parameter θi

is log
πi

1−πi
and b(θ) = log 1

1−πi
. Hence we can write the deviance as

D(Y , bβ) = 2

K∑

i=1

mi∑

j=1

§
Yi j

�
log

Yi/mi

1− Yi/mi

− log
bπi

1− bπi

�
− log

1

1− Yi/mi

+ log
1

1− bπi

ª

= 2

K∑

i=1

§
Yi

�
log

Yi

mi − Yi

− log
mi bπi

mi −mi bπi

�
−mi

�
log

mi

mi − Yi

− log
mi

mi −mi bπi

�ª

= 2

K∑

i=1

§
Yi log

Yi

mi bπi

+ (mi − Yi) log
mi − Yi

mi(1− bπi)

ª
,

where the first part of the summand for the i-th group summarizes the successes (the number

of successes times the log of the ratio of the observed number of successes divided by the

fitted number of successes) and the second part summarizes the failures (the number of

failures times the log of the ratio of the observed number of failures divided by the fitted

number of failures).
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It is important to realize that the deviance can be calculated even if Yi = 0 or Yi = mi

(then the associated log term that becomes zero is simply omitted).

With the Bernoulli data format, the saturated model has fitted values eπi j = Yi j and the

deviance becomes (consider the special case of the above with mi = 1)

2

K∑

i=1

mi∑

j=1

§
Yi j log

Yi j

bπi

+ (1− Yi j) log
1− Yi j

1− bπi

ª
,

which is different from the deviance calculated from the binomial data format unless mi = 1

for all i.

Which deviance is the right one? The difference between them stems from the selection

of the saturated model. If the data have K distinct values of the covariate vector, the most

general model that can be fitted has K distinct fitted values and hence at most K parameters.

So, the saturated model that was used to develop the deviance for the Bernoulli data format

does not in fact exist. It also follows that the deviance tests that subtract deviances of larger

models from deviances of submodels (Theorem 2.9(iii)) are not affected by the form of the

deviance (the log-likelihood of the saturated model is canceled) as long as the same saturated

model is used in both.

Statistical software will calculate the deviance blindly according to the format the data

are entered in (binomial deviance for binomial data format, alternative deviance for Bernoulli

data format). Thus, the deviance the software reports for the Bernoulli data format will be

wrong but deviance tests of submodels will still be correct.

When all covariates in the dataset are discrete with finite support and data are entered

in the binomial data format, K stays constant. Then the saturated model with K parameters

satisfies the assumptions of maximum likelihood theory and the binomial deviance D(Y , bβ)
converges in distribution to χ2

K−p as mi →∞ for all i if the current model is valid. Thus,

when all mi are sufficiently large, the deviance can be used as a goodness of fit statistic

for deciding whether the current model describes the data sufficiently well (deviance larger

than the quantile χ2
K−p(1−α) indicates that the model does not fit well). However, we must

remember that such tests can be done only when all their assumptions are fulfilled:

1. All covariates are discrete

2. There are enough observations in each group

3. The deviance was calculated from the binomial data format

Deviances calculated from the Bernoulli data format cannot ever be used for goodness-

of-fit testing but work for submodel testing.

Pearson X 2

The situation with Pearson X 2 statistic is similar. Consider first the Pearson residuals calcu-

lated as Ŵ1/2(bZ −X bβ) (see Sec. 2.8.1).
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3. Generalized Linear Model for Discrete Responses

Bernoulli data format

With Bernoulli data format, the Pearson residuals are

rP
i j =

Y ∗i j − bπi
p
bπi(1− bπi)

.

When Y ∗i j = 1, the Pearson residual is

r
1−bπi

bπi
. When Y ∗i j = 0, the Pearson residual is −

r
bπi

1−bπi
.

[Think what happens when you plot these residuals against linear predictor or against one

of the covariates.]

The Pearson X 2 statistic is obtained by summing squares of Pearson residuals. We get

X 2 =

K∑

i=1

�
Yi

1− bπi

bπi

+ (mi − Yi)
bπi

1− bπi

�
=

K∑

i=1

�
Yi

mi bπi

mi(1− bπi) +
mi − Yi

mi(1− bπi)
mi bπi

�
.

For a well-fitting model, Yi ≈ mi bπi and mi − Yi ≈ mi(1− bπi). Hence,

X 2 ≈
K∑

i=1

�
mi(1− bπi) +mi bπi

�
=

K∑

i=1

mi = N .

The Pearson X 2 statistic calculated from the Bernoulli format is about equal to the sample

size, if the model fits well. This is not a desirable behavior of a goodness-of-fit statistic.

Binomial data format

Pearson residuals for the binomial data format are calculated from the reduced data as

Ŵ
1/2
R (
bZR −XR
bβ). There is one residual for each group i = 1, . . . , K and

rP
i =

Yi −mi bπip
mi bπi(1− bπi)

,

which is the binomial variable Yi standardized by subtracting the estimated mean and di-

viding by its estimated standard deviation. For large mi , these residuals are approximately

standard normal.

The Pearson X 2 statistic for the binomial data format is

X 2 =

K∑

i=1

(Yi −mi bπi)
2

mi bπi(1− bπi)
=

K∑

i=1

(Yi −mi bπi)
2

mi bπi

+

K∑

i=1

[(mi − Yi)−mi(1− bπi)]
2

mi(1− bπi)
,

where we used the equality 1
bπi(1−bπi)

= 1
bπi
+ 1

1−bπi
. This is the chi-square statistic for testing

goodness of fit in a 2 × K contingency table with p estimated parameters. In a saturated

model with p = K , the Pearson X 2 statistic is zero. If the fitted model holds and mi →∞ for

all i, then X 2 D−→ χ2
K−p. Thus, when all covariates are discrete and the number of successes

and failures is large enough in each group, we can test the validity of the fitted model by
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Pearson X 2 statistic calculated from the binomial format (but not by the Pearson X 2 statistic

calculated from the Bernoulli format of the same dataset).

Statistical software computes Pearson residuals and Pearson X 2 statistics (and the de-

viance) from the format in which the data are entered. So, it is the responsibility of the

analyst to reshape the data into the binomial format if these statistics are important for the

analysis. Of course, if there is at least one continuous covariate in the model, the two data

formats do not differ from each other (or only negligibly).

Hints on logistic regression practice

For submodel testing, use deviance tests. Do not trust Wald tests of individual coefficients

reported in model output, especially not for factor covariates. These tests depend on the

parametrization of the factor and may give a misleading impression about the significance

of the factor. The recommended way to test model terms in R by deviance tests is

drop1(...,test="Chisq")

These tests work for both Bernoulli and binomial data formats.

Appropriate transformations of continuous covariates can be deduced, e.g., (i) by fac-

torization of the covariate into subintervals (cut(x,c(-Inf,x1,x2,...,xm,Inf))) and

evaluating trends in the estimated parameters or (ii) by adding a few different transforma-

tions to the linear term and testing their significance. Residual plots can be used, too, but

they must be smoothed properly.

A common problem in logistic regression is caused by fitted values converging to zero

or one in some subgroup. E.g., if gender is included in the model and all men have response

Yi j = 1, the MLE ofπi is 1 for all men. This sets the diagonal terms of Ŵ to zero and estimated

coefficients and their standard errors blow up. So if some of the estimated coefficients are

incredibly large in absolute value, and have incredibly large standard errors, or if the IWLS

algorithm fails to converge, this is the likely reason. Data subgroups for which no success or

no failure are observed must be removed from the data set. The end of

lecture 10

(Apr. 1)

3.2. Analysis of Poisson Count Data

Responses with Poisson distribution are typically counts recording the number of occurrences

of some event. When a large number of independent Bernoulli trials are performed, with a

small success probability at each trial, the observed total number of successes will approx-

imately follow a Poisson distribution. Poisson responses can also arise by observations of

independent Poisson processes evaluated at a fixed time. The primary tool for the analysis

of Poisson responses is the loglinear regression model.
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3. Generalized Linear Model for Discrete Responses

3.2.1. Poisson loglinear model

Let Y1, . . . , Yn be independent random variables, Yi ∼ Po(λi). Let λi depend on covariates Xi

through the identity logλi = XT
i β .

Poisson distribution belongs to the exponential family with µi = λi and varYi = λi. The

variance function is V (µ) = µ, the dispersion parameter is ϕ = 1, the canonical parameter

is θi = logλi, b(θi) = eθi . The log link is canonical for Poisson distribution.

We have

E
�
Yi

��Xi

�
= var
�
Yi

��Xi

�
= λi = exp{XT

i β}.

Interpretation of regression parameters

Let XTβ = β1 +β2X2+ · · ·+βpX p. Denote λ0 = E
�
Yi

��X2 = · · ·= X p = 0
�
. Then logλ0 = β1

so eβ1 is the expected value of Yi for an individual with zero values in all covariates.

Now consider two individuals with observed covariates x 0 = (1, x2, . . . , xp)
T and x j =

x 0+e j (the j-th covariate is increased by 1, the others are the same). Denote λX0 = E
�
Yi

��X =
x 0
�

and λX j = E
�
Yi

��X = x j
�
. Then

β j = log
λX j

λX0

and eβ j =
λX j

λX0

.

Thus eβ j is the proportional increase in EYi per unit difference in the covariate X j. When

β j = 0 the ratio of expectations is 1 and the covariate has no effect on the expectation given

the other covariates.

Estimation of parameters

The likelihood is

Ln(β | Y ) =
n∏

i=1

exp{Yi logλi −λi − log(Yi!)}

and the log-likelihood is

ℓn(β | Y ) =
n∑

i=1

[Yi logλi −λi − log(Yi!)].

By Theorem 2.3, the score statistic with the canonical link is

Un(β | Y ) =
n∑

i=1

(Yi −λi)Xi
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and bβn solves the equations
n∑

i=1

YiXi =

n∑

i=1

bλiXi ,

where
bλi = exp{XT

i
bβn}.

The MLE of β is calculated by the IWLS algorithm

bβ (k+1)
n = (XTŴ(k)X)−1(XTŴ(k)bZ(k))

with

Ŵ(k) = diag (bλ(k)
1

, . . . , bλ(k)n )

and bZ(k) = (bZ (k)
1

, . . . , bZ (k)n )
T, where

bZ (k)
i
= XT

i
bβ (k) +

Yi − bλ(k)i

bλ(k)
i

.

The information matrix is I(β) = EXλiX
⊗2
i

, which can be estimated by

bIn =
1

n
XTŴX =

1

n

n∑

i=1

bλiX
⊗2
i .

The estimated variance of bβn is (XTŴX)−1.

Deviance

The MLEs of the saturated model parameters are eλi = Yi The deviance for loglinear model

is

D(Y | bβ) = 2

n∑

i=1

�
Yi log

Yi

bλi

− (Yi − bλi)
�
. (3.2)

According to Theorem 2.9(iii), the difference in deviances between a submodel and a wider

model has a limiting χ2 distribution if the submodel holds. This is used for loglinear model

building.

Pearson X 2

The Pearson residual is

rP
i =

Yi − bλiq
bλi

,

the Pearson X 2 statistic is

X 2 =

n∑

i=1

(Yi − bλi)
2

bλi

. (3.3)
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Aggregated Poisson responses

What if multiple observations share the same covariate vector? Then they have the same

mean and the same fitted value. We can apply an analogue to the binomial data format we

considered in logistic regression context and come to very similar conclusions.

Change our notation as follows: let X1, . . . , XK be K distinct values of the covariate

vector recorded among the n ≥ K observations. Let mi be the number of observations that

share the same covariate vector, so that
∑K

i=1 mi = n. Change the meaning of Yi: now,

let Yi be the sum of the mi independent Poisson responses sharing the covariate vector Xi .

Because the sum of independent Poisson variables is Poisson, we have Yi ∼ Po(miλi). This

distribution is in the exponential family, so all results apply without a change (except writing

the mean as miλi at each occurrence).

With the aggregated data format, the responses are Y1, . . . , YK , the regression matrix is

K × p, and the weight matrix Ŵ is K × K . The data set is written more compactly, especially

when all covariates are categorical and K ≪ n. The IWLS uses

Ŵ= diag (m1
bλ1, . . . , mK
bλK)

and

bZi = XT

i
bβ + Yi −mi
bλi

mi
bλi

.

The MLE of λi in the saturated model are eλi =
Yi

mi
. Hence, the aggregated deviance is

D(Y | bβ) = 2

K∑

i=1

�
Yi log

Yi

mi
bλi

− (Yi/mi − bλi)
�
. (3.4)

This is not the same as the deviance defined by (3.2). When all covariates are categorical, K

is finite and mi →∞ for all i = 1, . . . , K , then our aggregated deviance (3.4) converges in

distribution to χ2
K−p as long as the current model is valid. This is not true for the deviance

defined by (3.2). On the other hand, differences in deviances between a submodel and a

larger model are always correct no matter if we aggregate the data or not.

The Pearson residual for aggregated Poisson data is

rP
i =

Yi −mi
bλiq

mi
bλi

, i = 1, . . . , K ,

and the Pearson X 2 statistic is

X 2 =

K∑

i=1

(Yi −mi
bλi)

2

mi
bλi

.
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This is the χ2 goodness-of-fit test statistic for multinomial distribution with K outcome levels

and p estimated parameters. If all covariates are categorical, K is finite and mi →∞ for all

i = 1, . . . , K , then the aggregated Pearson X 2 statistic converges in distribution to χ2
K−p as

long as the current model is valid.

Pearson X 2 statistic can be used for goodness-of-fit testing of models with categorical

covariates (in any model, not only logistic or loglinear). The deviance can be used for this

purpose as well, and has the same asymptotic distribution. However, only deviance can be

used to compare a model with a submodel. Differences in Pearson X 2 statistics do not have

asymptotic χ2 distribution. This is why we prefer deviance tests, while Pearson X 2 tests are

considered secondary and of limited importance.

3.2.2. Modelling Poisson process intensity

So far we considered independent responses Yi with distribution Po(λi) and expressed the

effect of covariates on λi. However, this assumes that the responses are counts observed over

some standardized time interval, e.g., month, week, year — otherwise the means would be

affected by the different duration.

Imagine that we want to compare the expected number of traffic accidents caused by men

vs. women across different ages. Each observation is one driver and the response is the

number of accidents caused by that driver. The covariates are gender and current age.

But – for how long are those accidents recorded? Over the whole lifetime? That would

induce an artificial age effect, older drivers having more accidents than younger ones. So

we would use the number of accidents over the past five years. That would be OK if we

remove drivers who have had their driver’s licences for less than five years. But they are

a particularly interesting subgroup, suspected of causing more accidents than the more

experienced drivers. We do not want to exclude them. Also, it is quite possible that men

are driving longer trips than women, and younger drivers longer and more frequent trips

than elderly drivers: we should take that into account, too. So the best approach would

be to standardize the number of accidents for the number of km driven during the last five

years and compare the mean number of accidents per 100,000 km driven between men and

women, and between different ages. Suppose that we observe the number of km driven over

the past 5 years for each participant. How do we perform the analysis?

In general, observations of Poisson counts can be understood as realizations of Poisson

processes recorded at some time. A homogeneous Poisson process with intensity λ is a

random process N (t), t ≥ 0, with the following properties:

• N (0) = 0;

• N has independent increments, that is for any t1 < t2 < · · ·< t j , the random variables

N (t2)− N (t1), N (t3)− N (t2), . . . , N (t j)− N (t j−1) are independent;
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• N (t2)− N (t1)∼ Po(λ(t2 − t1)) for any t1 < t2.

It is a non-decreasing piecewise constant process with values in {0,1,2, . . .}. Marginally,

N (t) ∼ Po(λt). It can be shown that the times between successive jumps of N (t) are inde-

pendent variables with distribution Exp(λ).

Now suppose that we observe iid vectors (Yi, t i , Xi), where t i is the observation time

and Yi is a realization of a Poisson process with intensity λi observed at the time t i . We

are interested in estimating the effects of Xi on the intensity λi taking into account the

observation time t i .

Note: The times t i can be measured on some real time scale (days, months, years,. . . ) but

they can also be non-decreasing transformations of time, such as the number of km driven

(see the example with traffic accidents), amount of money spent, etc. The times need not

even be continuous, discrete time scales are OK, too.

We have Yi ∼ Po(λi t i), hence EYi = varYi = λi t i . The intensity λi = EYi/t i describes

the expected number of events observed during a unit time interval. We use the log link for

λi: logλi = XT
i β , hence λi = eXT

i
β . It follows that

EYi = λi t i = t ie
XT

i β = elog ti+XT
i β .

So, the observation time can be simply taken into account by adding log t i to the linear

predictor. We can consider it another covariate, with a regression parameter that is a priori

known to be 1 and hence need not be estimated. Such a term is called an offset in GLM

terminology. Adding an offset to the linear predictor preserves the structure of the GLM, all

formulae and results remain valid without change. In R function glm(), an offset term is

specified by adding +offset(var) to the model formula.

The extension of the Poisson loglinear model to homogeneous Poisson processes is important

because it provides a very simple solution to a frequently encountered practical problem. It

is very useful to remember this.

The end of

lecture 11

(Apr. 8)3.3. Loglinear Models for Contingency Tables

3.3.1. Two-way contingency table

Consider discrete random variables X ∈ {1, . . . , I} and Z ∈ {1, . . . , J}. Observe n independent

realizations (X1, Z1), . . . , (Xn, Zn) of this pair. Denote the observed count of the pair (X =

i, Z = j) by ni j =
∑n

l=1 1(X l = i, Zl = j). The observed counts (also called frequencies) can

be arranged into a two-way contingency table
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Z = 1 · · · Z = J Total

X = 1 n11 · · · n1J n1+

...
...

...
...

X = I nI1 · · · nI J nI+

Total n+1 · · · n+J n++ = n

where ni+ =
∑J

j=1 ni j and n+ j =
∑I

i=1 ni j.

Denote the expected cell frequencies

mi j = Eni j , mi+ =

J∑

j=1

mi j , m+ j =

I∑

i=1

mi j ,

and m++ =
∑I

i=1

∑J
j=1 mi j . The cell probabilities are

πi j = P [X = i, Z = j] , πi+ =

J∑

j=1

πi j = P [X = i] , π+ j =

I∑

i=1

πi j = P [Z = j] .

Obviously, π++ =
∑I

i=1

∑J
j=1πi j = 1.

The cell probabilities can be also arranged into a table:

Z = 1 · · · Z = J Total

X = 1 π11 · · · π1J π1+

...
...

...
...

X = I πI1 · · · πI J πI+

Total π+1 · · · π+J π++ = 1

The expected frequencies are related to the cell probabilities as follows (we allow n to

be random):

mi j = Eni j = E

n∑

l=1

1(X l = i, Zl = j) = EE
� n∑

l=1

1(X l = i, Zl = j)
��n
�
= Enπi j = m++πi j ,

so πi j = mi j/m++.

The conditional probabilities can be expressed as follows:

P
�
X = i
��Z = j
�
=
πi j

π+ j

=
mi j

m+ j

and P
�
Z = j
��X = i
�
=
πi j

πi+

=
mi j

mi+

.

The goal is to use the observed counts ni j to model the cell probabilities πi j, investigate

the marginal distributions of X and Z and the associations between X and Z .
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3.3.2. Distributions of observed counts

In order to analyze a contingency table by maximum likelihood methods, we have to specify

the joint distribution of the observed data, i.e., the counts in the contingency table. There

are three reasonable models that arise by different ways of collecting data summarized in

the table:

Poisson distribution

Poisson distribution of observed counts arises when the observations (X i, Zi) from which the

table is built arrive randomly over a given period of time.

For example, we investigate associations between tooth decay (X = 1 yes, X = 2 no) and

soft drink consumption (Z = 1 never or rarely, Z = 2 sometimes, Z = 3 frequently).

We include young children (age 6–12) who come to a dentist’s office for prevention check-

up between January and June of a certain year (if their parents are willing to provide

the required information). With this data collection method, the total sample size n is

random and the observed cell counts in the resulting table can be assumed to be realizations

of independent Poisson processes with different intensity. Then, the whole table can be

modelled as independent Poisson variables.

Let n11, . . . , nI J be independent random variables with Poisson distributions ni j ∼ Po(mi j).

It follows Eni j = var ni j = mi j . The joint density of the whole table is

P [n11 = k11, . . . , nI J = kI J] =
∏

i, j

1

ki j!
m

ki j

i j
e−mi j , ki j = 0,1,2, . . . .

The total number of observations n =
∑

i, j ni j is a random variable with the distribution

Po(m++).

The asymptotics does not work by observing an increasing number of independent Pois-

son variables (the total IJ is fixed) but by letting m++ →∞. The asymptotic MLE theory

for iid data does not apply to this case.

Multinomial distribution

Multinomial distribution of observed counts arises when the total number of observations n

is fixed in advance.

If, in the previous example, we plan to enroll n = 100 children and collect data until the

planned sample size is reached, we obviously end up with multinomial distribution for the

observed contingency table.
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Let the vector (n11, . . . , nI J) follow the multinomial distribution MultI J(n,π), where π =

(π11, . . . ,πI J)
T. The joint density of the whole table is

P [n11 = k11, . . . , nI J = kI J] = n!
∏

i, j

1

ki j!
π

ki j

i j
, ki j = 0,1, . . . , n,

∑

i, j

ki j = n.

The total number of observations n is fixed, ni j ∼ Bi(n,πi j), Eni j = nπi j, varni j = nπi j(1−
πi j), the counts are not independent.

The contingency table can be expressed by summing n iid random vectors, each with

distribution MultI J(1,π). The asymptotics works through letting n →∞. The asymptotic

MLE theory for iid data applies to this case.

Row multinomial distribution

Row multinomial distribution of observed counts arises when all the row totals ni+ are fixed

in advance.

We obtain row multinomial distribution if, in the previous example, we plan to enroll n1+ =

50 children with tooth decay and n2+ = 50 children without tooth decay and collect data

until the planned sample size is reached in both subgroups.

Let the vectors (ni1, . . . , niJ ), i = 1, . . . , I , be independent with the multinomial distri-

bution MultJ(ni+,πi), where πi = (πi1/πi+, . . . ,πiJ/πi+)
T. The joint density of the whole

table is

P [n11 = k11, . . . , nI J = kI J] =
∏

i

ni+!
∏

j

1

ki j!

� πi j

πi+

�ki j

, ki j = 0,1, . . . , n,
∑

j

ki j = ni+.

The numbers of observations ni+ in the I rows of the table are fixed, ni j ∼ Bi(ni+,
πi j

πi+
),

Eni j = ni+
πi j

πi+
, varni j = ni+

πi j

πi+
(1 − πi j

πi+
), the counts are independent between rows but

dependent within rows.

The asymptotics works through letting ni+→∞ for all i at the same rate. The asymp-

totic MLE theory for iid data applies to this case.

Of course, we could consider column multinomial distribution as well, but it is just a

transposition of the row multinomial case.

Equivalence of Poisson and multinomial models

We start with a result stating that Poisson and multinomial distributions are related through

conditioning on the total count.
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Lemma 3.1. Let X i ∼ Po(λi) be independent random variables, i = 1, . . . , n. Then the con-

ditional joint distribution of the random vector (X1, . . . , Xn)
T given
∑n

i=1 X i = s is Multn(s, p),

where p = (p1, . . . , pn)
T and pi = λi/
∑n

j=1
λ j . ♦

Proof. Calculate the conditional probability

P
�
X1 = k1, . . . , Xn = kn

��
n∑

i=1

X i = s
�
=

P
�
X1 = k1, . . . , Xn = kn,

∑n
i=1 X i = s
�

P
�∑n

i=1 X i = s
� . (∗)

The probability in the numerator is zero unless
∑n

i=1 ki = s; in that case the event
∑n

i=1 X i = s

can be dropped and we have an intersection of independent events. The probability in

the denominator is determined from the known result about summing independent Poisson

variables
∑n

i=1 X i ∼ Po(
∑n

i=1λi). Hence

(∗) =
∏n

i=1
λ

ki

i
e−λi 1

ki!�∑
i λi

�s
e−
∑

i λi
1
s!

=
s!

k1! · · · kn!

λ
k1

1
· · ·λkn

n
�∑

i λi

�k1 · · ·
�∑

i λi

�kn
=

s!

k1! · · · kn!
π

k1

1
· · ·πkn

n

with πi =
λi∑
i λi

. The proof is completed. �

Corollary. Let ni j ∼ Po(mi j) be independent, i = 1, . . . , I , j = 1, . . . , J . Then:

• The conditional joint distribution of (n11, . . . , nI J)
T given n++ = n is MultI J(n,π),

where the components of π are πi j = mi j/m++ (⇒ multinomial distribution).

• The conditional joint distribution of (ni1, . . . , niJ )
T given ni+ is MultJ (ni+,πi), where

the components of πi are πi j = mi j/mi+ = πi j/πi+ (⇒ row multinomial distribution).

The corollary states that both multinomial and row multinomial distributions of a con-

tingency table can be obtained from Poisson distribution by conditioning on some observed

totals.

Assume that the loglinear model holds for the expected frequencies mi j , in particular,

logEni j = α+β
TXi j or mi j = eα+β

TXi j ,

where α is the intercept and Xi j is a vector of covariates characterizing the (i, j)-th cell. The

maximum dimension of Xi j is IJ − 1. The cell probabilities πi j can be expressed as follows:

πi j =
mi j

m++
=

eβ
TXi j

∑
k,l eβ

TXkl
. (3.5)

Theorem 3.2. The likelihood functions for estimation of parameters β in the loglinear

model log mi j = α+ β
TXi j arising from Poisson or multinomial sampling distributions are

equivalent (they differ only by a multiplicative constant that does not depend on β). ♦

Note. Theorem 3.2 does not deal with estimation of the intercept α – in fact, the intercept

is not even identifiable in the multinomial model. This is obvious from expression (3.5).
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Proof. First, write the Poisson likelihood for the loglinear model log mi j = α+ β
TXi j with

data n = (n11, . . . , nI J)
T.

LP(α,β | n) =
∏

i, j

1

ni j!
m

ni j

i j
e−mi j

and express the log-likelihood as

ℓp(α,β) =
∑

i, j

ni j log mi j −m++ −
∑

i, j

log ni j!

︸ ︷︷ ︸
≡ cP

,

where the constant cP can be ignored.

Next, write the multinomial likelihood. When we express cell probabilities in terms of

the expected frequencies using the loglinear model, we get

πi j =
mi j

m++
=

eα+β
TXi j

∑
i, j eα+β

TXi j
=

eβ
TXi j

∑
i, j eβ

TXi j
. (3.6)

The parameter α dropped out, the multinomial likelihood is only a function of β . Hence

LM (β | n) = n!
∏

i, j

1

ni j!

�
mi j

m++

�ni j

and the log-likelihood is

ℓM (β) =
∑

i, j

ni j log mi j − n log m++ + log
n!

n11! · · ·nI J !︸ ︷︷ ︸
≡ cM

.

Now go back to the Poisson log-likelihood ℓp and reparametrize it as a function of pa-

rameters (m++,β) instead of (α,β) – this is a one-to-one transformation of parameters. The

Poisson log-likelihood can be written as

ℓp(m++,β) =
∑

i, j

ni j log mi j − n log m++

︸ ︷︷ ︸
= ℓM (β)− cM

+n log m++ −m++

︸ ︷︷ ︸
denote ℓ∗(m++)

−cp.

The first part is the multinomial log-likelihood (the conditional log-likelihood given the total

size n) without its irrelevant constant, the second part is the marginal log-likelihood for the

sample size n∼ Po(m++). The first part depends only on β but not on α or m++, the second

part depends on m++ but not on β .
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Thus, in both Poisson and multinomial models, the MLE of the parameters β are ob-

tained by maximizing the same function

∑

i, j

ni j log mi j − n log m++ =
∑

i, j

ni j(α+ β
TXi j)− n log
∑

i, j

eα+β
TXi j

=
∑

i, j

ni jβ
TXi j + nα− n logeα − n log

∑

i, j

eβ
TXi j

=
∑

i, j

ni jβ
TXi j − n log
∑

i, j

eβ
TXi j

over β . The likelihoods of both models are equivalent as far as estimation of β is con-

cerned. �

Theorem 3.2 can be extended to row multinomial distribution as follows:

Theorem 3.3. (Palmgren 1981) The likelihood functions for estimation of parameters β

in the loglinear model log mi j = αi + β
TXi j arising from Poisson or row-multinomial sam-

pling distributions are equivalent (they differ only by a multiplicative constant that does not

depend on β). ♦

Note. Row multinomial sampling requires row-specific intercept in the loglinear model.

Corollary. Expressions for any quantity derived from the likelihood function for β (score

function, information matrix, the MLE) and their properties (asymptotic distributions, test

statistics, confidence intervals) are the same no matter which of the three distributions gen-

erated the contingency table.

When the data are generated by the Poisson model, they can be transformed to the

multinomial model by conditioning on the observed cell count total n= n++. The asymptotic

results hold in the multinomial model (the data are equivalent to n independent observations

from Mult1). The formulae can be derived from the theory of GLM for the loglinear model

with Poisson distribution.

In the rest of this section we assume the loglinear model with Poisson distribution but

the results apply to multinomial models without change. The end of

lecture 12

(Apr. 8)
3.3.3. Loglinear models for two-way tables

In this section we will show examples of loglinear models for the analysis of two-way tables.

We will pay attention to the interpretation of the models and their parameters and the form

of the relevant test statistics.
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The independence model (X , Z)

In this model, factor variables X and Z are entered into the model as main effects, without

any interaction. The response is the observed cell count.

The expected cell counts are expressed as

log mi j = α+ β
X
i + β

Z
j . (3.7)

The variable X has I levels, hence the main effects βX
i include I − 1 linearly independent

parameters. The variable Z has J levels, its main effects β Z
j include J − 1 parameters. We

will use the constraints βX
1 = β

Z
1 = 0. With this parametrization, the top-left cell of the table

serves as the reference cell to which all the other cells are compared. The vector of regression

parameters to be estimated is

β = (α,βX
2 , . . . ,βX

I ,β Z
2 , . . . ,β Z

J )
T

and its dimension is p = 1+ I − 1+ J − 1= I + J − 1.

This model is obtained by setting the dummy covariate vector Xi j for the cell (i, j) as

follows:

X11 = (1,0, . . . , 0, . . . , 0, . . . , 0, . . . , 0)T for the cell (1,1),

Xi1 = (1,0, . . . , 1, . . . , 0, . . . , 0, . . . , 0)T for the cell (i, 1), i 6= 1,

X1 j = (1,0, . . . , 0, . . . , 0, . . . , 1, . . . , 0)T for the cell (1, j), j 6= 1,

Xi j = (1,0, . . . , 1, . . . , 0, . . . , 1, . . . , 0)T for the cell (i, j), i 6= 1, j 6= 1.

Recall that πi j = mi j/m++. Because βX
1 = β

Z
1 = 0, we can express the intercept α as

α= log m11 = log m++ + logπ11.

Next,

log mi j = log m++ + logπi j.

It follows that the loglinear model (3.7) can be also stated in terms of cell probabilities:

logπi j = logπ11 + β
X
i + β

Z
j . (3.8)

From (3.8) , we can deduce the meaning of the regression parameters βX
i and β Z

j . For

any j = 1, . . . , J , we have

logπi j − logπ1 j = logπ11 + β
X
i + β

Z
j − logπ11 − β Z

j = β
X
i

and

eβ
X
i = πi j/π1 j
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the ratio of probabilities in the j column. Dividing the numerator and the denominator by

π+ j, we get

eβ
X
i =

πi j

π1 j

=
P
�
X = i
��Z = j
�

P
�
X = 1
��Z = j
� (∗)

for any j = 1, . . . , J , that is, the conditional distribution of X given Z is the same in all

columns of the table.

Similar interpretation holds for β Z
j :

e
β Z

j =
πi j

πi1

=
P
�
Z = j
��X = i
�

P
�
Z = 1
��X = i
� .

for any i = 1, . . . , I . The conditional distribution of Z given X is the same in all rows of the

table.

But we are not done yet. From (∗), it follows

πi j = π1 je
βX

i

for any j = 1, . . . , J , and summing these equalities over j, we get

πi+ = π1+eβ
X
i .

Hence, in this model, eβ
X
i also has the interpretation of ratio of marginal probabilities (and

similarly e
β Z

j ):

eβ
X
i =

πi+

π1+

=
P [X = i]

P [X = 1]
and e

β Z
j =

π+ j

π+1

=
P [Z = j]

P [Z = 1]
, (∗∗)

If we ignore all other outcomes but 1 and i, we can say that eβ
X
i is the odds of observing

X = i rather than observing X = 1.

Now take (∗∗) and plug it into (3.8) to get

logπi j = logπ11 + log
πi+

π1+

+ log
π+ j

π+1

.

From this,

πi j =
π11

π1+π+1

πi+π+ j.

Sum these equations over all i and j to get

1=
π11

π1+π+1

.

We have shown that the cell probabilities satisfy the equation

πi j = πi+π+ j ⇔ P [X = i, Z = j] = P [X = i]P [Z = j] (†)
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for all i and j. So the model (X , Z) holds if and only if the variables X and Z are independent.

The MLE’s ofπi+ andπ+ j are the empirical relative frequencies bπi+ =
ni+

n and bπ+ j =
n+ j

n .

The fitted values (expected cell counts under independence) can be expressed explicitly from

(†):

Òmi j = nbπi j = nbπi+ bπ+ j = n
ni+

n

n+ j

n
=

ni+n+ j

n
. (‡)

The interaction model (X Z)

Now we add interaction between the two factor variables into the previous model. The

model (X Z) for expected cell counts is defined by the equation

log mi j = α+ β
X
i + β

Z
j + β

X Z
i j (3.9)

with the constraints βX
1
= β Z

1
= 0, βX Z

i1 = 0 for all i = 1, . . . , I , and βX Z
1 j = 0 for all j =

1, . . . , J . The number of added interaction terms is (I − 1)(J − 1), so the total number of

parameters in this model is p = I + J − 1+ (I − 1)(J − 1) = IJ . This is the saturated model;

the estimated expected cell counts Òmi j (fitted values) are equal to the observed cell counts

ni j for all i, j.

The equivalent model for cell probabilities is

logπi j = logπ11 + β
X
i + β

Z
j + β

X Z
i j . (3.10)

The interpretation of the main effects is as in (∗), but only at the first level of the other

factor.

eβ
X
i =

πi1

π11

=
P
�
X = i
��Z = 1
�

P
�
X = 1
��Z = 1
� and e

β Z
j =

π1 j

π11

=
P
�
Z = j
��X = 1
�

P
�
Z = 1
��X = 1
� ,

that is, eβ
X
i is the odds of observing X = i compared to observing X = 1 when Z = 1. For

other levels of Z , the conditional distribution of X is different.

From (3.10),

logπi j − logπi1 − logπ1 j + logπ11 = β
X Z
i j .

Hence

e
βX Z

i j =
πi jπ11

πi1π1 j

=
P [X = i, Z = j]P [X = 1, Z = 1]

P [X = i, Z = 1]P [X = 1, Z = j]
=

P
�
X = i
��Z = j
�
P
�
X = 1
��Z = 1
�

P
�
X = 1
��Z = j
�
P
�
X = i
��Z = 1
� ,

which is the odds ratio in the 2 × 2 sub-table that includes the first and the i-th rows and

the first and j-th columns from the original table. The odds ratio expresses the proportional

change in the odds of the event X = i (relative to X = 1) when Z changes from 1 to j.
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Z = 1 · · · Z = j · · · Z = J

X = 1 π11 · · · π1 j · · · π1J
...

...
...

...

X = i πi1 · · · πi j · · · πiJ
...

...
...

...

X = I πI1 · · · πI j · · · πI J

The interaction term βX Z
i j is related to the odds ratio in the sub-table composed of the four

red probabilities.

The cell probabilities can be expressed as

πi j = P [X = i, Z = j] =
e
βX

i +β
Z
j +β

X Z
i j

∑
k,l eβ

X
k
+β Z

l
+βX Z

kl

.

Since this is the saturated model, its deviance D(X Z) is zero. The MLE theory holds

for this model because all covariates are discrete and the number of parameters p = IJ is

constant.

3.3.4. Testing independence in a two-way table

The variables X and Z are independent if and only if the model (X , Z) holds, that is, all the

interaction parameters are zero. So, a test of independence should test all (I − 1)(J − 1)

interaction parameters simultaneously.

Such a test can be based on the deviance D(X , Z) of the independence model (it is a

submodel of (X Z) but its deviance is zero). The fitted values in the independence model are

given by (‡): Òmi j = ni+n+ j/n. From (3.2), the deviance of (X , Z) is

D(X , Z) = 2

I∑

i=1

J∑

j=1

�
ni j log

ni j

Òmi j

− (ni j −Òmi j)
�
,

If independence holds then D(X , Z)
D−→ χ2

(I−1)(J−1)
, so the hypothesis is rejected at the level

of α when D(X , Z)≥ χ2
(I−1)(J−1)

(1−α).

The independence hypothesis can be also tested by the Pearson X 2 statistic. By (3.3),

the Pearson X 2 statistic is

X 2 =

I∑

i=1

J∑

j=1

(ni j −Òmi j)
2

Òmi j

.

This is the classical χ2 statistic for testing independence in a two-way table. Under the null

hypothesis, it also converges in distribution to χ2
(I−1)(J−1)

.
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We will prefer the deviance test to the classical χ2 test of independence because it can

be generalized to tables of higher dimension, while the χ2 test cannot.

Miscellaneous comments

Usually, we do not have to fit the saturated model. We know that its deviance is zero and

the fitted values are equal to the observed cell counts. However, we may want to fit it to get

estimates of the interaction terms. If independence is rejected, the interaction terms will tell

us which levels of X and Z most strongly contribute to the dependence.

In general we have only two candidate models for two-way tables: full independence

and full dependence (which is saturated). Sometimes we may want to get a model, that

allows dependence but is not saturated. We can get it when the levels of X or Z are ordered

in some way (so called ordinal data). Then we can assign some increasing numerical scores

to the levels of X and Z ; for example x1 < · · · < x I and z1 < . . . < zJ and include them in

the interaction as numeric terms instead of as factors. If we do it for both variables, we get

the model

log mi j = α+ β
X
i + β

Z
j + γx iz j .

This model has a single interaction parameter γ, which describes the dependence between

X and Z , and it is not saturated. If we set x1 = z1 = 0, we do not change the interpretation

of the other parameters and the log odds ratio log
πi jπ11

πi1π1 j
gets expressed as γx iz j . Thus, this

is a model for which the dependence of X on Z gets stronger at higher levels of X and Z

(for γ > 0). The test of γ = 0 is an independence test that is particularly sensitive against

alternatives of this kind. The end of

lecture 13

(Apr. 15)
3.3.5. Loglinear models for three-way tables

Three-way contingency table

Consider three categorical random variables X ∈ {1, . . . , I}, Z ∈ {1, . . . , J}, and V ∈ {1, . . . , K}.
Sample n independent subjects and observe n independent realizations of the triplets

(X1, Z1, V1), . . . , (Xn, Zn, Vn). Denote the observed count of the outcome (X = i, Z = j, V = k)

by

ni jk =

n∑

l=1

1(X l = i, Zl = j, Vl = k).

The observed counts ni jk form a three-way contingency table.

Let

ni j+ =

K∑

k=1

ni jk, ni++ =

J∑

j=1

K∑

k=1

ni jk, etc.
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Denote

mi jk = Eni jk and πi jk = P [X = i, Z = j, V = k] =
mi jk

m+++
.

The symbols mi j+, m++k, πi+k, π+ j+ etc. all have the obvious meaning (summation over the

indices replaced by +). Obviously, π+++ =
∑

i, j,kπi jk = 1 and n+++ = n.

The observed cell counts have a joint multinomial distribution in this framework. However,

the equivalence of the likelihood for independent Poisson counts ni jk ∼ Po(mi jk) with the

multinomial likelihood is still true. This result can be extended to multi-way tables, though

we do not try to show this.

Marginal and conditional associations in a three-way table

Suppose we are particularly interested in investigating the associations between the variables

X and Z . The third variable V is a sort of “nuisance covariate,” not of main interest. Its

existence, however, changes the way we look at the associations of the other two variables.

Consider the following idea: we want to investigate the association between X and Z

and we have methods available for the analysis of two-way tables. So we will try to transform

the problem into the context of two-way tables. We can do this in two different ways:

1. Ignore the existence of the variable V and analyze the associations between X and Z

as if V did not exist. This approach leads us to marginal associations between X and

Z .

2. Analyze the associations between X and Z at each level of V — perform separate anal-

yses of K two-way tables. This approach investigates conditional associations between

X and Z .

The problem is, as we will see, that the marginal and conditional associations need not

agree.

Notation for marginal associations

Ignoring the existence of V , we arrive at a two-way contingency table for X and Z . It is

created by collapsing the original three-way table ni jk across the levels of V . The collapsed

two-way table has observed cell counts ni j+. The marginal associations between X and Z

can be described and investigated by the methods for a two-way table introduced in Sec-

tion 3.3.3.

Definition 3.1. Discrete variables X and Z are called marginally independent if and only if

P [X = i, Z = j] = P [X = i]P [Z = j] for all i, j,

that is,
πi j+ = πi++π+ j+ for all i, j, ∇
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Marginal associations between X and Z are described by marginal odds ratios, which

correspond to exponentiated interaction terms in the model (3.10) applied to the collapsed

two-way table.

Definition 3.2. The marginal odds ratio for the i-th level of X and the j-th level of Z are

defined as

θ X Z
i j =

πi j+π11+

πi1+π1 j+

.
∇

X and Z are marginally independent if and only if θ X Z
i j = 1 for all i and j.

Notice that the marginal odds ratios exactly correspond to the alternative expressions for

e
βX Z

i j shown at the bottom of p. 65, in particular,

θ X Z
i j =

P [X = i, Z = j]P [X = 1, Z = 1]

P [X = i, Z = 1]P [X = 1, Z = j]
=

P
�
X = i
��Z = j
�
P
�
X = 1
��Z = 1
�

P
�
X = 1
��Z = j
�
P
�
X = i
��Z = 1
� .

Notation for conditional associations

Let us fix the value of variable V at some value k ∈ {1, . . . , K}. We get K separate two-way

contingency tables for X and Z by considering each of the layers of the three-way table ni jk

formed by fixing V = k. The k-th two-way table has observed counts ni jk (i = 1, . . . , I ,

j = 1, . . . , J) and cell probabilities πi jk/π++k. The conditional associations between X and

Z can be described and investigated by the methods described in Section 3.3.3 applied to

ni jk for each fixed k.

Definition 3.3. Variables X and Z are called conditionally independent given V if and only

if
P
�
X = i, Z = j
��V = k
�
= P
�
X = i
��V = k
�
P
�
Z = j
��V = k
�

for all i, j, k. ∇

The next theorem shows how conditional independence can be characterized in terms

of cell probabilities.

Theorem 3.4. Variables X and Z are conditionally independent given V if and only if

πi jk =
πi+kπ+ jk

π++k

for all i, j, k. ♦

Proof. Write

P
�
X = i, Z = j
��V = k
�
=
πi jk

π++k

, P
�
X = i
��V = k
�
=
πi+k

π++k

, and P
�
Z = j
��V = k
�
=
π+ jk

π++k

.

Plug this into Definition 3.3. �
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The odds ratios that describe conditional associations between X and Z are called con-

ditional odds ratios.

Definition 3.4. The conditional odds ratios for the i-th level of X and the j-th level of Z

given the k-th level of V are defined as

θ X Z
i j(k)
=
πi jkπ11k

πi1kπ1 jk

.
∇

X and Z are conditionally independent if and only if θ X Z
i j(k)
= 1 for all i, j, and k.

Notice that

θ X Z
i j(k)
=

P
�
X = i, Z = j
��V = k
�
P
�
X = 1, Z = 1
��V = k
�

P
�
X = i, Z = 1
��V = k
�
P
�
X = 1, Z = j
��V = k
�

=
P
�
X = i
��Z = j, V = k
�
P
�
X = 1
��Z = 1, V = k
�

P
�
X = 1
��Z = j, V = k
�
P
�
X = i
��Z = 1, V = k
� .

Example: Simpson’s Paradox

We explain the concept of marginal and conditional associations on a hypothetical example:

a study of salaries among university graduates. The example is artificial but it illustrates

several extremely important aspects not only about the analysis of three-way tables but about

statistical reasoning in general. Consider three categorical variables:

Gender denoted by X , with levels 1= female and 2=male,

Salary denoted by Z , with levels 1= low and 2= high,

Field of education denoted by V , with levels 1= Humanities and 2= Natural Sciences &

Technology.

These variables generate a three way contingency table with I = J = K = 2, containing

a total of 8 cells. We want to study the association between gender X and salary Z . The table

of cell probabilities πi jk — the true joint distribution of (X , Z , V )— is given by Table 3.1.

First, let’s look at the marginal association between gender and salary. We must collapse

the 3-way table into a 2× 2 table, ignoring field of education. We get Table 3.2.

The marginal odds ratio for having high salary comparing men to women is

θ X Z
22 =

0.4 · 0.2

0.2 · 0.2
= 2.

Hence, men have twice the odds for a high salary than women. “Discrimination!! But. . .

wait a minute.” Let’s look at the conditional associations now. They can be determined from

Table 3.1 by looking at gender-salary sub-table at each level of the field of study.
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Table 3.1.: Example about salaries of university graduates: True cell probabilities.

Salary (Z)
Field (V ) Gender (X )

low ( j = 1) high ( j = 2)

Humanities Female (i = 1) 0.18 0.12

(k = 1) Male (i = 2) 0.12 0.08

Nat. Sci & Tech. Female (i = 1) 0.02 0.08

(k = 2) Male (i = 2) 0.08 0.32

Table 3.2.: Example about salaries of university graduates: Marginal probabilities.

Salary (Z)
Gender (X )

low ( j = 1) high ( j = 2)

Female (i = 1) 0.20 0.20

Male (i = 2) 0.20 0.40

For humanities (k = 1), we get

θ X Z
22(1)

=
0.08 · 0.18

0.12 · 0.12
= 1.

Hence, men who studied humanities have the same odds for a high salary as women who

studied humanities.

For natural sciences & technology (k = 2), we get

θ X Z
22(2)

=
0.32 · 0.02

0.08 · 0.08
= 1.

Hence, men who studied natural sciences & technology have the same odds for a high salary

as women who studied natural sciences & technology.

So, there is no difference in salaries between men and women in any field of study, men

and women are perfectly equal. However, overall, men have twice the odds for a high salary

than women. How is this possible and what does it mean?

The explanation is that the field of study is strongly associated with both gender and

salary. The marginal odds ratio between field of study and gender is 6 (see Table 3.3) mean-

ing that men have 6-times the odds of studying natural sciences & technology than women.

Similarly, the marginal odds ratio between field of study and salary is also 6 (see Table 3.4)

meaning that graduates of natural sciences & technology have 6-times higher odds for high
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salary than graduates of humanities. So, men are much more likely to study the field that is

much more likely to provide a high salary. Otherwise, there is no difference in the salaries

between men and women.

Table 3.3.: Example about salaries of university graduates: Association of field of study with

gender.

Gender (X )
Field of study (V )

Female (i = 1) Male (i = 2)

Humanities (k = 1) 0.30 0.20

Nat. Sci & Tech. (k = 2) 0.10 0.40

θ X V
22
=

0.3 · 0.4

0.1 · 0.2
= 6.

Table 3.4.: Example about salaries of university graduates: Association of field of study with

salary.

Salary (Z)
Field of study (V )

Low ( j = 1) High ( j = 2)

Humanities (k = 1) 0.30 0.20

Nat. Sci & Tech. (k = 2) 0.10 0.40

θ ZV
22
=

0.3 · 0.4

0.1 · 0.2
= 6.

Simpson’s paradox and confounding: statistics and causality

The apparent contradiction we have seen in the previous example is called Simpson’s para-

dox. It is an example of the fact that marginal and conditional associations of two variables

in the presence of a third variable need not be the same. They can even reverse themselves:

marginal associations may show a positive relationship while conditional associations are

negative (or vice versa). This feature is not limited to categorical variables or contingency

tables. It can be observed between any three variables and is frequently encountered in all

kinds of regression problems.

In epidemiology, this phenomenon is called “confounding”. Confounding occurs when

there exists a third variable that distorts the association between the two variables that we

want to investigate.

A situation where the variable V acts as a confounder for the effect of X on Z is demon-
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Figure 3.3.: A causal diagram: variable V confounds the effect of X on Z .

X Z

V

strated in Figure 3.3. This a causal diagram: the variables are displayed as the nodes of an

oriented graph, the edges are associations between the variables and arrows show causality.

We want to know whether X is a cause of Z (in other words, whether X has any effect on Z).

This is the dashed arrow in the graph. The third variable V acts as a confounder if it is a di-

rect cause of both X and Z . In this situation, the marginal association between X and Z will

give a false result; it will indicate an effect even if X does not actually have any influence on

Z at all. The correct conclusion could be determined from the conditional association of X

and Z given V – that is, by inclusion of V in the regression model as an additional covariate.

An intuitive illustration of confounding is provided by the following example: let X

be “carrying matches or lighters in the pocket”, Z is lung cancer, and V is smoking. So,

we want to know whether carrying matches or lighters in the pocket causes lung cancer.

In a marginal analysis of these two variables, we are sure to find a positive association and

would be incorrectly tempted to conclude that matches and lighters indeed cause lung cancer.

However, this is a false result brought about by the confounding effect of smoking, which

is the real cause of both X (smokers carry matches and lighters) and Z (smokers are at

increased risk of lung cancer). From the marginal analysis, we would arrive at the erroneous

decision that matches and lighters are detrimental to the population’s health and should be

banned immediately.

A different situation is illustrated by Figure 3.4. Here, the variable V is not the cause

but a consequence of X . Thus, a part of the effect of X on Z is mediated through V . In this

case, the full effect of X on Z can be only determined from the marginal association that

ignores V . The conditional association would only reveal the part of the effect of X on Z

that is not mediated through V (and there may be none).

Figure 3.4.: A causal diagram: variable V acts as a mediator of the effect of X on Z .

X Z

V
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The difference between the two figures is only in the direction of the arrow between X

and V . The direction of causality between these two variables decides whether (1) V is a

confounder, must be measured, taken into account, and included in the model as a covariate

or (2) V is a mediating variable and should be ignored. The distinction between these two

possibilities cannot be made from the data alone. If we analyze the data to evaluate the

relationship of X and V , we only find out that these variables are correlated but we cannot

infer the direction of causality between them. We need a deep external knowledge of the

problem we are solving, we need to understand what the variables really mean in the context

of the problem and what mechanisms govern their relationships. If we view the variables

contained in the dataset just as some abstract objects we cannot construct a valid model and

reach the correct conclusions.

We cannot make this problem disappear by ignoring it. The distorting effect of a con-

founder persists even if the confounder is not measured, and even if we do not have any

idea about the existence of the confounder. This is the reason why statistical analyses of

observational studies (“routinely collected data”) are fraught with problems. If such studies

do not have a thoughtfully chosen design (= data collection mechanism) and if they are

not analyzed with sufficient expertise in both statistical methodology and the field of ap-

plication, their results are likely to be false. The only reliable way to prevent confounding

is to conduct active experiments which assign levels of the variable X in such a way that

associations between X and any external variables cannot arise. These topics are covered by

courses in experimental design. However, many practical problems do not allow the conduct

of active experiments.

The problem of making false causal conclusions from observational data affected by

confounding is aggravated by the availability of large databases containing routinely col-

lected data. Such databases often contain haphazard sets of data items whose collection

mechanism is not under control and therefore do not allow appropriate measures to remove

confounding.∗ As noted above, this leads to invalid regression models which do not produce

correct conclusions. Building such regression models on larger and larger data sets (“big

data”) only leads to producing larger and larger errors.

The confounding issue also represents a substantial weakness of the recently popular data

analysis methods called “artificial intelligence”, “neural networks”, “deep learning” etc.

Even though these methods focus on making predictions, there is a danger that differences

in the predictions between various subjects will be interpreted causally. Also, predictions

made from models that suffer from confounding will become wrong if there is any change

in the associations of the unaccounted confounder with the predictors or the response. The

fundamental problem of all these methods is that they work on data collected in a haphaz-

ard way and analyze the data by automated computer algorithms. It is inherent for them

that they pay no attention to the way the data were collected and that they treat them

as exchangeable abstract objects with irrelevant meaning. So, the current approaches to

artificial intelligence have very strong limitations.

∗ The presence or absence of a certain data item in the database represents a potential very strong confounding

factor that cannot be adjusted for.
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Finally, let’s provide an interpretation for the gender-salary example. We want to know

whether gender X has an effect on the salary Z . The third variable is V = field of study. Be-

cause gender cannot be changed by the field of study, we know that we are in the framework

of Fig. 3.4: the field of study acts as a mediator for the effect of gender on the salary. In the

conditional analysis (after controlling V ), gender has no effect on salary. In the marginal

analysis (ignoring V ), men have twice the odds for high salary than women. We can con-

clude that men indeed are paid better, but only because they study the fields that provide

better salaries more frequently than women. If the choice of the field of study is the result

of the free will rather than the result of coercion or discrimination in admission procedures,

we can conclude that there is no salary discrimination (in this artificial example, at least). The end of

lecture 14

(Apr. 15)
The independence model (X , Z , V )

This model includes only main effects and no interactions. Its equation is

log mi jk = α+ β
X
i + β

Z
j + β

V
k . (3.11)

Again, we adopt the constraints that set any parameter with subscript 1 to zero. Here, we

have βX
1 = β

Z
1 = β

V
1 = 0.

Because mi jk = πi jkm+++, the model can be also written as

logπi jk = logπ111 + β
X
i + β

Z
j + β

V
k . (3.12)

The dimension of the parameter vector is p = 1+ I − 1+ J − 1+ K − 1= I + J + K − 2.

Interpretation of the main effects:

The interpretation of the main effects can be determined in the same way as with the model

(X , Z) for a two way table. In particular, start with

log
πi jk

π1 jk

= βX
i for any j, k.

Transform it into

πi jk = π1 jkeβ
X
i for any j, k,

sum it over all j and k to get

πi++ = π1++eβ
X
i

and thus

eβ
X
i =

πi++

π1++

=
P [X = i]

P [X = 1]
.

This can be repeated for the other main effects, so

eβ
X
i =

πi++

π1++

=
P [X = i]

P [X = 1]
, e

β Z
j =

π+ j+

π+1+

=
P [Z = j]

P [Z = 1]
, eβ

V
k =

π++k

π++1

=
P [V = k]

P [V = 1]
.
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Expressing the cell probabilities:

To express the cell probabilities, plug the main effects into (3.12) to get

πi jk = π111

πi++

π1++

π+ j+

π+1+

π++k

π++1

for all i, j, k. Summing these equations over i, j, k gives

1= π+++ =
π111

π1++π+1+π++1

and hence

πi jk = πi++π+ j+π++k

for all i, j, k.

Interpretation of the model:

The model (X , Z , V ) holds if and only if

P [X = i, Z = j, V = k] = P [X = i]P [Z = j]P [V = k] for all i, j, k,

that is, if the variables X , Z and V are all marginally independent. Conditional independence

follows from marginal independence – see Theorem 3.4 and use fact that πi+k = πi++π++k

and π+ jk = π+ j+π++k, πi j+ = πi++π+ j+.

Model (X V, Z)

Now, add a single two-way interaction, for example between variables X and V .

The model (X V, Z) for expected cell counts is defined by the equation

log mi jk = α+ β
X
i + β

Z
j + β

V
k + β

X V
ik (3.13)

with the constraints βX
1 = β

Z
1 = β

V
1 = 0, βX V

i1 = 0 for all i, and βX V
1k
= 0 for all k. The

number of parameters in this model is p = I + J + K − 2+ (I − 1)(K − 1) = IK + J − 1.

The model for cell probabilities is

logπi jk = logπ111 + β
X
i + β

Z
j + β

V
k + β

X V
ik . (3.14)

Interpretation of the main effects:

Because Z does not enter any interaction term, the interpretation of the main effect β Z
j is

the same as in the previous model, i.e.,

e
βZ

j =
π+ j+

π+1+

=
P [Z = j]

P [Z = 1]
. (∗)
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For the main effect of X , we get from (3.14)

βX
i = logπi j1 − logπ1 j1 for any j and πi j1 = π1 j1eβ

X
i .

Sum this over all j to get

eβ
X
i =

πi+1

π1+1

=
P [X = i, V = 1]

P [X = 1, V = 1]
=

P
�
X = i
��V = 1
�

P
�
X = 1
��V = 1
� .

Similarly,

eβ
V
k =

π1+k

π1+1

=
P [V = k, X = 1]

P [V = 1, X = 1]
=

P
�
V = k
��X = 1
�

P
�
V = 1
��X = 1
� .

Interpretation of the interaction:

The interaction parameter βX V
ik

can be separated directly from (3.14) as follows:

βX V
ik = logπi jk − logπ1 jk − logπi j1 + logπ1 j1. (†)

Thus,

eβ
X V
ik =

πi jkπ1 j1

π1 jkπi j1

= θ X V
ik( j)

,

the conditional odds ratio between X and V given Z = j. But the same interaction parameter

also expresses the marginal odds ratio between X and V , which can be shown as follows.

Start from the expression for πi+k based on (3.14):

πi+k =

J∑

j=1

π111eβ
X
i e
βZ

j eβ
V
k eβ

X V
ik

and see from (∗) that
∑J

j=1 e
β Z

j = 1/π+1+. This gives us the equation

logπi+k = logπ111 − logπ+1+ + β
X
i + β

V
k + β

X V
ik

and, from this,

βX V
ik = logπi+k − logπi+1 − logπ1+k + logπ1+1. (∗∗)

We confirmed that

eβ
X V
ik =

πi+kπ1+1

πi+1π1+k

= θ X V
ik ,

the marginal odds ratio between X and V .

Expressing the cell probabilities:
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Plug the expression (∗∗) for the interaction term and the expressions for the main effects

into the model equation (3.14). We get

logπi jk = logπ111 + log
πi+1

π1+1

+ log
π+ j+

π+1+

+ log
π1+k

π1+1

+ log
πi+kπ1+1

πi+1π1+k

.

Delete the terms that cancel each other out and rearrange the rest to get

πi jk =
π111

π1+1π+1+

πi+kπ+ j+.

It is easy to find out by summation that
π111

π1+1π+1+
= 1 and hence the cell probabilities satisfy

the equation

πi jk = πi+kπ+ j+

for all i, j, k.

Interpretation of the model:

In the model (X V, Z), we have

P [X = i, Z = j, V = k] = P [X = i, V = k]P [Z = j] for all i, j, k.

Hence in this model,

• the pair (X , V ) is independent of Z ,

• X is both marginally and conditionally independent of Z ,

• X is associated with V , and

• the marginal and conditional associations between X and V are the same.

Model (X V, ZV )

Add another two-way interaction to the preceding model, this time between Z and V .

The model (X V, ZV ) for expected cell counts is defined by the equation

log mi jk = α+ β
X
i + β

Z
j + β

V
k + β

X V
ik + β

ZV
jk (3.15)

with the constraints βX
1 = β

Z
1 = β

V
1 = 0, βX V

i1 = 0 for all i, βX V
1k
= 0 for all k, β ZV

j1 = 0 for all

j, and β ZV
1k
= 0 for all k. The number of parameters in this model is p = IK + J − 1+ (J −

1)(K − 1) = K(I + J − 1).

The model for cell probabilities is

logπi jk = logπ111 + β
X
i + β

Z
j + β

V
k + β

X V
ik + β

ZV
jk . (3.16)

Interpretation of the main effects:
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The main effects for X have the same interpretation as in the previous model. The interpre-

tation of the main effects for Z is analogous to X (X and Z can be exchanged and the model

still applies). The main effects of V can be only separated when i = j = 1 and no summation

is possible (because V is simultaneously present in two interaction terms). Hence

eβ
X
i =

πi+1

π1+1

=
P
�
X = i
��V = 1
�

P
�
X = 1
��V = 1
� ,

e
β Z

j =
π+ j1

π+11

=
P
�
Z = j
��V = 1
�

P
�
Z = 1
��V = 1
� , and

eβ
V
k =

π11k

π111

=
P
�
V = k
��X = 1, Z = 1
�

P
�
V = 1
��X = 1, Z = 1
� .

Interpretation of the interactions:

For βX V
ik

, the expression (†) is still valid. Hence,

eβ
X V
ik =

πi jkπ1 j1

π1 jkπi j1

= θ X V
ik( j)

,

which is the conditional odds ratio between X and V given Z = j. The interaction β ZV
jk

can

be interpreted by analogy in the same way:

e
β ZV

jk =
πi jkπi11

πi j1πi1k

= θ ZV
jk(i)

,

which is the conditional odds ratio between Z and V given X = i.

The lack of the X Z interaction term means that X and Z are conditionally independent

given V . It is easy to verify that their conditional odds ratios are all one:

θ X Z
i j(k)
=
πi jkπ11k

πi1kπ1 jk

= 1.

Expressing the cell probabilities:

In order to express cell probabilities in the model (X V, ZV ) and to investigate marginal as-

sociations, we need to start with expressions for πi+k, π+ jk and π++k obtained from (3.16).

We have

logπi+k = logπ111 + β
X
i + β

V
k + β

X V
ik + log

J∑

j=1

e
β Z

j +β
ZV
jk

︸ ︷︷ ︸
denote ≡ γk

, (‡)
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logπ+ jk = logπ111 + β
Z
j + β

V
k + β

ZV
jk + log

I∑

i=1

eβ
X
i
+βX V

ik

︸ ︷︷ ︸
denote ≡ δk

,

and

logπ++k = logπ111 + β
V
k + log

I∑

i=1

eβ
X
i
+βX V

ik

︸ ︷︷ ︸
= δk

+ log

J∑

j=1

e
βZ

j +β
ZV
jk

︸ ︷︷ ︸
= γk

.

Now we can calculate

P
�
X = i, Z = j
��V = k
�
=
πi jk

π++k

= e
βX

i +β
Z
j +β

X V
ik
+β ZV

jk
−δk−γk = eβ

X
i +β

X V
ik
−δk e

β Z
j +β

ZV
jk
−γk =

πi+k

π++k

π+ jk

π++k

.

Thus, the cell probabilities satisfy the equation

πi jk =
πi+kπ+ jk

π++k

for all i, j, k. This means that X and Z are conditionally independent given V . However, X

and Z are not marginally independent because their marginal odds ratio is

θ X Z
i j =

πi j+π11+

πi1+π1 j+

and this cannot be equal to 1 for all i, j.

From (‡), we can express the marginal odds ratios between X and V :

θ X V
ik =

πi+kπ1+1

πi+1π1+k

= eβ
X V
ik .

We can see that they are equal to the conditional odds ratios. The same is true for the

marginal and conditional associations between Z and V .

Interpretation of the model:

In the model (X V, ZV ), X is conditionally independent of Z given V but marginally depen-

dent. This is the setup of Simpson’s paradox.

Also, (i) X is associated with V and the marginal and conditional associations between

X and V agree, (ii) Z is associated with V and the marginal and conditional associations

between Z and V agree.
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Model (X V, ZV, X Z)

At this step, we add another two-way interaction. The model (X V, ZV, X Z) includes all pos-

sible two-way interactions between the three factors. The model equation is

log mi jk = α+ β
X
i + β

Z
j + β

V
k + β

X V
ik + β

ZV
jk + β

X Z
i j (3.17)

with the constraints βX
1
= β Z

1
= βV

1
= 0, βX V

i1 = 0 for all i, βX V
1k
= 0 for all k, β ZV

j1 = 0 for all

j, β ZV
1k
= 0 for all k, βX Z

i1 = 0 for all i, and βX Z
1 j = 0 for all j. The number of parameters in

this model is p = K(I + J − 1) + (I − 1)(J − 1) = KI + KJ + IJ − (I + J + K) + 1.

The model for cell probabilities is

logπi jk = logπ111 + β
X
i + β

Z
j + β

V
k + β

X V
ik + β

ZV
jk + β

X Z
i j (3.18)

Interpretation of the main effects:

The main effects have the same expressions as the main effects for V in the previous model.

They compare probabilities of a given level to the first level of the factor, when the other

factors are at the first level.

eβ
X
i =

πi11

π111

, e
βZ

j =
π1 j1

π111

, eβ
V
k =

π11k

π111

.

Interpretation of the interactions:

All the interaction parameters can be interpreted as the conditional odds ratios:

e
βX Z

i j =
πi jkπ11k

πi1kπ1 jk

= θ X Z
i j(k)

eβ
X V
ik =

πi jkπ1 j1

π1 jkπi j1

= θ X V
ik( j)

e
βZV

jk =
πi jkπi11

πi j1πi1k

= θ ZV
jk(i)

Expressing the cell probabilities:

The cell probabilities πi jk cannot be expressed in terms of marginal probabilities. Marginal

odds ratios are all different from conditional odds ratios and do not have convenient expres-

sions.

Interpretation of the model:

In the model (X V, ZV, X Z),

• all three variables are marginally and conditionally dependent,

• marginal associations are different from conditional associations,

• conditional associations do not depend on the value of the conditioning variable (e.g.,

associations between X and Z are the same at each level k of V ).
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Model (X ZV )

The model (X ZV ) includes a three-way interaction (in addition to all two-way interactions)

and is saturated. Its model equation is

log mi jk = α+ β
X
i + β

Z
j + β

V
k + β

X V
ik + β

ZV
jk + β

X Z
i j + β

X ZV
i jk (3.19)

with the usual constraints (any parameter with 1 anywhere among the indices is set to 0).

The number of parameters in this model is equal to the number of cells in the table, p = IJK .

It is the saturated model for the three-way table.

The model for cell probabilities is

logπi jk = logπ111 + β
X
i + β

Z
j + β

V
k + β

X V
ik + β

ZV
jk + β

X Z
i j + β

X ZV
i jk (3.20)

Interpretation of the main effects:

The interpretation of the main effects is the same as in the model (X V, ZV, X Z).

Interpretation of the interactions:

The second-order interactions determine the conditional odds ratios at the first level of the

conditioning variable:

e
βX Z

i j =
πi j1π111

πi11π1 j1

= θ X Z
i j(1)

eβ
X V
ik =

πi1kπ111

π11kπi11

= θ X V
ik(1)

e
β ZV

jk =
π1 jkπ111

π1 j1π11k

= θ ZV
jk(1)

The third-order interaction parameters determine how the conditional odds ratios change

if the conditioning variable is not on the first level:

e
βX ZV

i jk =
θ X Z

i j(k)

θ X Z
i j(1)

=
θ X V

ik( j)

θ X V
ik(1)

=
θ ZV

jk(i)

θ ZV
jk(1)

.

Expressing the cell probabilities:

The cell probabilities πi jk cannot be expressed in terms of marginal probabilities. Marginal

odds ratios are all different from conditional odds ratios and do not have nice expressions.

Interpretation of the model:

In the model (X ZV ),
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• all three variables are marginally and conditionally dependent,

• marginal associations are different from conditional associations,

• conditional associations depend on the value of the conditioning variable (e.g., asso-

ciations between X and Z vary with the level k of V ).

Model selection

The model selection strategy that usually works best is to start from the saturated model

(X ZV ) and test whether the interactions can be removed, starting with the three-way inter-

action. Model selection should be hierarchical (do not remove lower order terms if a higher

order term involving the same variable is still in the model). Deviance tests are used to de-

cide whether a term can be removed. Because the saturated model satisfies the MLE theory

assumptions, the deviance of each fitted model can be compared with a quantile of a suitable

χ2 distribution to check whether the current model fits well.

The final model that cannot be further reduced reveals the structure of the associations

between the three variables, according to the interpretations provided above. The end of

lecture 15

(Apr. 22)
3.3.6. Loglinear models for multi-way tables

Theoretically, a loglinear model can fit contingency tables of arbitrarily high dimension. The

interpretation of the main effects, two-way and three-way interaction remains the same as

in a three-way table, unless there are interactions of even higher order.

The dependence structure among multiple categorical variables can be deduced from an

undirected graph where each variable plays the role of a node and two-way interactions are

the edges between the nodes. If there is at least one path connecting two nodes, then the two

variables corresponding to the nodes are marginally dependent. If all the paths connecting

the two nodes can be interrupted by removing a certain set of nodes from the graph, then

the two variables are conditionally independent given the set of variables corresponding to

the removed nodes.

Example:

Suppose we have observations of seven categorical variables X , Z , U , V , R, S, and T . We

build a seven-way contingency table of observed counts out of this data, fit a sequence of

loglinear models and test significance of various interactions. We end up with the model

(X Z , ZUV, UT, URS).

There are

• two three-way interactions:

– between Z , U , and V (plus all possible two-way interactions between these vari-

ables) and
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Figure 3.5.: Graphical repesentation of model (X Z , ZUV, UT, URS).

X

Z V

U T

R S

– between U , R, and S (plus all possible two-way interactions between these vari-

ables), and

• additional two two-way interactions:

– between X and Z and

– between U and T .

Suppose we have enough data to fit such a complex model. Then, what does it tell us about

the associations between variables?

Let us create a graph, put variables in the nodes and turn each two-way interaction that

was included in the model into an edge connecting two nodes. The graphical representation

of our model looks is shown in Figure X.1.

What are the associations between the variables?

• all variables are marginally dependent with each other (there is a path leading from

any variable to any other);

• X and V are conditionally independent given Z (the only path that connects X and V

leads through Z);

• (X , Z , V ), T , and (R,S) are conditionally independent given U (the three vectors are

subgraphs that are only connected with each other through U).

Notes on model selection for multi-way tables

• Model building proceeds by performing deviance tests comparing a model vs. a sub-

model.

• The number of possible models in a multi-way table can be very large. There is no

way to fit all of them.
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3. Generalized Linear Model for Discrete Responses

• The starting model cannot be too complex. In most cases, we cannot start by the

saturated model. Interactions of the fourth or higher orders are difficult to interpret

and we try to avoid them even if they seem to be statistically significant. A reasonable

strategy could be to start with a model containing all three-way interactions, test its

goodness-of-fit using deviance, and remove the insignificant three-way (and then two-

way) interactions in a backward step-wise procedure. It is better to do this interactively

rather than to use some automated model-building procedure.

• Multi-way tables require a lot of data. If there are four or five factors with a moderate

number of levels, the number of cells in the table is huge and the observed counts

can be quite low even if the total number of observations is in the thousands. If too

many of the fitted cell counts are below 5, the asymptotic approximations tend to be

unreliable. The analyst must make sure that there are enough observations in the cells,

otherwise some of the variables must be removed from the analysis or their levels must

be merged to reduce the number of cells in the table.

3.3.7. Equivalence of loglinear and logistic models

Consider three categorical variables: an outcome Y with two possible values {1,2} (where 2

codes a success), and covariates X ∈ {1, . . . , I} and Z ∈ {1, . . . , J}. The data from n indepen-

dent observations of (X , Z , Y ) can be summarized as a 3-way contingency table of the size

I × J × 2 with observed counts ni jk of the combinations X = i, Z = j and Y = k, expected

counts mi jk, and cell probabilities πi jk.

We are interested in estimating the conditional probabilities pi j of success given the

covariates, that is pi j = P
�
Y = 2
��X = i, Z = j
�
= mi j2/mi j+ = πi j2/πi j+. The problem can

be addressed either by logistic regression or by a loglinear model. We will show that, with an

appropriately selected loglinear model, the results from the two approaches are equivalent.

Let the correct logistic model be

log
pi j

1− pi j

= γ0 + γX
i + γ

Z
j , (3.21)

where γX
1 = γ

Z
1 = 0. The left-hand side of the model can be rewritten as

log
pi j

1− pi j

= log
mi j2

mi j1

= log
πi j2

πi j1

.

The regression parameters of the logistic model have the following interpretation:

eγ
X
i =

P
�
Y = 2
��X = i, Z = j
�

P
�
Y = 1
��X = i, Z = j
�

P
�
Y = 1
��X = 1, Z = j
�

P
�
Y = 2
��X = 1, Z = j
�

=
pi j

1− pi j

1− p1 j

p1 j

=
πi j2π1 j1

πi j1π1 j2

= θ X Y
i2( j)

,

85



3. Generalized Linear Model for Discrete Responses

which is the conditional odds ratio for the association between X and Y given Z = j (and it

does not depend on j). Next,

e
γZ

j =
P
�
Y = 2
��X = i, Z = j
�

P
�
Y = 1
��X = i, Z = j
�

P
�
Y = 1
��X = i, Z = 1
�

P
�
Y = 2
��X = i, Z = 1
�

=
pi j

1− pi j

1− pi1

pi1

=
πi j2πi11

πi j1πi12

= θ ZY
j2(i)

,

which is the conditional odds ratio for the association between Z and Y given X = i (and it

does not depend on i).

Now consider the loglinear model with all two-way interactions, that is (X Y, ZY, X Z):

log mi jk = α+ β
X
i + β

Z
j + β

Y
k + β

X Y
ik + β

ZY
jk + β

X Z
i j (3.22)

with the usual constraints on the parameters. In this model,

log
pi j

1− pi j

= log
mi j2

mi j1

= βY
2 + β

X Y
i2 + β

ZY
j2 .

Thus, the loglinear model (3.22) induces the same structure on the conditional log odds of

success as the logistic model (3.21). Clearly, βX Y
i2 = γ

X
i , β ZY

j2 = γ
Z
j , and βY

2
= γ0. Thus, the

logistic model estimates a subset of the parameters of the loglinear model that determine

the associations between Y and (X , Z). The results about these associations (parameter

estimates, hypotheses tests) are the same no matter if they were obtained from the logistic

model (3.21) or the loglinear model (3.22).

The only difference between the logistic model (3.21) and the loglinear model (3.22) is

that the loglinear model also estimates the associations between X and Z . These associations

are not estimated by the logistic model (they are not of interest).

One can easily generalize this observation about equivalence between loglinear and

logistic models to arbitrary categorical covariates.

Note. The logistic model Y ∼ M is equivalent to the loglinear model (MY,I(M)), where

MY includes all the interactions between the terms in M with Y and I(M) is the most general

interaction between all the terms in M .
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Models

In this chapter, we will show in several steps that the assumptions of the GLM can be substan-

tially relaxed. The conclusions will be similar to linear regression with normally distributed

data: we can show that the results obtained for linear regression under the normality as-

sumption hold asymptotically even if the distribution of the data is not normal. Next, we can

show that the assumption of equal variances can be also removed, if we replace the ordinary

variance estimator by the sandwich. In this chapter, we will see that something similar is

true for the GLM as well. So, we can extend the methods for the analysis of the GLM to

distributions that do not belong to the exponential family and we even do not need to know

what distribution the responses really have.

4.1. Quasi-likelihood and Overdispersion

This section is motivated by the problem of overdispersion, which we discuss first. We will

show that even if we start with variables that have distributions in the exponential family, we

can easily get into situations where the responses do not follow those distributions. Such sit-

uations violate the assumptions of the GLM. The idea of quasi-likelihood offers an approach

to deal with such data.

4.1.1. Overdispersion in binomial data

Consider the following example. We have iid random variables Y1, . . . , Yn ∼ Bi(m,π0). Their

moments are EYi = mπ0 and var Yi = mπ0(1−π0). Such variables are sums of independent

Bernoulli variables and can be analyzed by the methods of the previous chapters.

But let us change the setup slightly. Instead of

Yi ∼ Bi(m,π0)

take

Yi ∼ Bi(m,πi), (∗)
where π1, . . . ,πn are iid random variables with Eπi = π0. So, the groups do not have the

same success probability π0 any more. Each of them has a different (unobserved) success

probability πi and π0 is the mean of all those.
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4. Extensions of Generalized Linear Models

We want to estimate π0 from the observations Y1, . . . , Yn that are still iid random vari-

ables. However, their distribution is not binomial when π1, . . . ,πn are not observed.

Denote g(π) the density of πi . The expectation of πi is Eπi = π0, as required above.

Denote the variance of πi by varπi = σ
2
π

Let us calculate the moments of Yi. Conditionally on πi, we have from (∗) E
�
Yi

��πi

�
=

mπi and var
�
Yi

��πi

�
= mπi(1−πi). So,

EYi = EE
�
Yi

��πi

�
= Emπi = mπ0,

var Yi = Evar
�
Yi

��πi

�
+ varE
�
Yi

��πi

�
= Emπi(1−πi) + varmπi

= mπ0 −m(σ2
π +π

2
0) +m2σ2

π = mπ0(1−π0) +m(m− 1)σ2
π ≥ mπ0(1−π0).

When m = 1, the distribution of Yi is Bernoulli no matter if the success probabilities

are random or not. There is no problem. However, when m > 1, the distribution of Yi

is not binomial and the variance of Yi is larger than that of a binomial distribution. This

phenomenon is called overdispersion. It arises because the Bernoulli variables that sum into

Yi are no longer independent; the random πi induces a positive correlation between them.

Now let us be more specific about the distribution of πi. As a special case, consider

πi ∼ B(α,β) (the beta distribution) for some unknown α > 0 and β > 0. The moments of

the beta distribution are

π0 = Eπi =
α

α+ β
,

σ2
π = varπi =

αβ

(α+ β)2(α+ β + 1)
=

1

α+ β + 1
π0(1−π0).

Plugging the variance σ2
π into the expression for var Yi, we get

varYi = mπ0(1−π0) +
m(m− 1)

α+ β + 1
π0(1−π0) = ϕmπ0(1−π0),

where

ϕ = 1+
m− 1

α+ β + 1
> 1

is a dispersion parameter. The distribution of Yi has the same variance function as binomial

(or Bernoulli) distribution but with an additional dispersion parameter that is > 1: overdis-

persion. This distribution cannot belong to the exponential family.

We can calculate what this distribution is. Start with writing down the density of π:

g(π) =
1

B(α,β)
πα−1(1−π)β−1, π ∈ (0,1),
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4. Extensions of Generalized Linear Models

where

B(α,β) =
Γ (α)Γ (β)

Γ (α+ β)

is the beta function.

Take j = 0, . . . , m and calculate the density of Yi using f (y) =
∫

f (y|x) f (x)d x

P [Yi = j] =

∫ 1

0

�
m

j

�
π j(1−π)m− j 1

B(α,β)
πα−1(1−π)β−1dπ

=
1

B(α,β)

�
m

j

�∫ 1

0

π j+α−1(1−π)m− j+β−1dπ=

�
m

j

�
B(α+ j,β +m− j)

B(α,β)
,

where, at the last step, the integral was recognized as a beta density without the normalizing

constant. This distribution is called a beta-binomial distribution with parameters m = 1,2, . . .,

α > 0, and β > 0. Its first and second moments have been calculated above.

When α and β are both natural numbers, we can get a more explicit expression for

the density. Using the relationship between beta and gamma functions and the fact that

Γ (p) = (p − 1)! for a natural p, we have

B(α,β) =
(α− 1)!(β − 1)!

(α+ β − 1)!
, B(α+ j,β +m− j) =

(α+ j − 1)!(β +m− j − 1)!

(α+ β +m− 1)!
,

and

P [Yi = j] =
m!

(m− j)! j!

(α+ β − 1)!

(α− 1)!(β − 1)!

(α+ j − 1)!(β +m− j − 1)!

(α+ β +m− 1)!

=

�
α+ j − 1

j

��
m− j + β − 1

m− j

�

�
m+α+ β − 1

m

� .

This distribution arises in so called Pólya urn scheme.

Suppose there are α white balls and β black balls in an urn. Conduct a sampling

experiment as follows: draw a ball from the urn randomly, note its color, return it

into the urn, add another ball of the same color as the last drawn ball, mix the balls.

Continue the process in the same way until you have drawn m balls.

Then the number of white balls that were drawn in m steps of this process has the

beta-binomial distribution given above.

If the drawn ball is returned into the urn but no additional balls are added (sampling

with replacement), the number of white balls drawn has a binomial distribution.

If the drawn ball is not returned into the urn (sampling without replacement), the

number of white balls drawn has a hypergeometric distribution.

Beta-binomial distribution does not belong to the exponential family and we would like

to extend the theory of GLM to responses following distributions of this type. The end of

lecture 16

(Apr. 22)
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4.1.2. Overdispersion in Poisson data

By a similar consideration, overdispersion can be induced in Poisson distribution as well.

Start with independent random variables Y1, . . . , Yn ∼ Po(λ0). We have EYi = varYi = λ0.

Now modify their distribution as follows. Take λ1, . . . ,λn as iid random variables with

Eλi = λ0 and varλi = σ
2
λ

and generate Yi from

Yi ∼ Po(λi).

We want to estimate λ0 from the iid observations Y1, . . . , Yn. However, their distribution

is not Poisson.

Let us calculate the moments of Yi . Conditionally on λi, we have E
�
Yi

��λi

�
= λi and

var
�
Yi

��λi

�
= λi. So,

EYi = EE
�
Yi

��λi

�
= Eλi = λ0,

varYi = Evar
�
Yi

��λi

�
+ varE
�
Yi

��λi

�
= Eλi + varλi = λ0 +σ

2
λ > λ0.

Thus, the variance of Yi is larger than that of a Poisson distribution. Again, we have

encountered overdispersion.

As a special case, consider λi ∼ Γ (a, aλ0) (the gamma distribution) for some unknown

a > 0. The moments of this distribution are

Eλi =
aλ0

a
= λ0,

σ2
λ = varλi =

aλ0

a2
=

1

a
λ0

Plugging the variance σ2
λ

into the expression for varYi, we get

var Yi = λ0 +
1

a
λ0 =
�
1+

1

a

�
λ0 = ϕλ0,

where

ϕ = 1+
1

a
> 1

is a dispersion parameter. The distribution of Yi has the same variance function as the Poisson

distribution but with an additional dispersion parameter: overdispersion. This distribution

cannot belong to the exponential family.

Let us calculate the density of this distribution. The density of λi is

g(λ) =
aaλ0

Γ (aλ0)
λaλ0−1e−aλ, λ > 0.
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So, for k = 0,1,2, . . . ,

P [Yi = k] =

∫ ∞

0

λk

k!
e−λ

aaλ0

Γ (aλ0)
λaλ0−1e−aλdλ

=
aaλ0

Γ (aλ0)

1

k!

∫ ∞

0

λk+aλ0−1e−(a+1)λdλ=
aaλ0

Γ (aλ0)

1

k!

Γ (k + aλ0)

(a + 1)k+aλ0

=
1

kB(k, aλ0)

�
a

a + 1

�aλ0 1

(a + 1)k
.

This distribution is called a Poisson-gamma distribution with parameters a > 0 and λ0 > 0.

Its first and second moments have been calculated above.

The Poisson-gamma distribution has an interesting special case: the negative binomial

distribution NB(m, p) is obtained by setting aλ0 = m ∈ N and a/(a + 1) = p. In turn, the

geometric distribution Geo(p) is a special case of negative binomial, with m = 1.

4.1.3. Quasi-likelihood

Regression analyses of overdispersed responses (and other cases) can be put in the frame-

work of the GLM by so called quasi-likelihood.

Consider n independent copies of random vectors (Yi , Xi), i = 1, . . . , n, where Xi =

(X i1, . . . , X ip)
T are the covariates and Yi is the response.

Assumptions.

1. Y1, . . . , Yn are independent

2. The mean µi = EYi satisfies the identity g(µi) = ηi , where ηi = XT
i β0 is the linear

predictor and g is a known strictly monotone, twice continuously differentiable link

function.

3. The variance varYi satisfies the identity varYi = ϕV (µi), where ϕ > 0 is a dispersion

parameter and V is a known positive continuously differentiable variance function.

Note. Compared to the GLM the assumptions have changed. We do not require the distri-

bution of the response to belong to the exponential family. Instead, we assume we know the

variance function of the response.

Note. The original GLM was a parametric model. This is a semi-parametric model: the form

of the distribution of Yi is not specified, we only specify conditions on the first two moments

of Yi.

Because this is not a parametric model maximum likelihood estimator cannot be used.

Instead, the regression parameters are estimated by the maximum quasi-likelihood estimator.
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The strategy is to specify a quasi-likelihood function so that its score function is the same as in

the GLM. That score only depends on quantities that have been specified in the assumptions

above.

Definition 4.1. (Wedderburn 1974) The quasi-(log)likelihood Q(β) is defined as Q(β) =∑n
i=1

Q i(β), where

Q i(β) =

∫ µi

Yi

Yi − t

ϕV (t)
d t.

The maximum quasi-likelihood estimator bβn is the point that maximizes the quasi-likelihood∗.∇

The maximum quasi-likelihood estimator solves the system of equations Un(
bβn) = 0,

where

Un(β) =

n∑

i=1

Ui(β)

is the quasi-score† with the terms

Ui(β) =
∂Q i(β)

∂β
=

Yi −µi

ϕV (µi)

∂ µi

∂β
.

The quasi-score has exactly the same form as the score in the GLM, that is, it can be

written as a sum of the terms

1

ϕ
w(µi)g

′(µi)(Yi −µi)Xi .

This fact was the primary motivation to introduce the quasi-likelihood in the form specified in

Definition 4.1. The following lemma says that the quasi-score has exactly the same properties

as the GLM score.

Lemma 4.1. (Wedderburn 1974)

(i) Ui(β), i = 1, . . . , n, are iid random vectors.

(ii) If β0 is the true parameter then EUi(β0) = 0.

(iii) If β0 is the true parameter then varUi(β0) = −E ∂
∂βT Ui(β0) = I(β0), where I(β0) is

defined by (2.8). ♦

The proof of lemma 4.1 follows the same steps that were done in Section 2.3.

The asymptotic properties of the maximum quasi-likelihood estimator follow from the

general theory on consistency and asymptotic normality of Z-estimators (see Lecture notes

for NMST434 Modern Statistical Methods).

∗ Česky kvazivěrohodnost † Česky kvaziskóre
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Proposition 4.2. There exists a sequence bβn of solutions to the quasi-likelihood equations

such that bβn

P−→ β0. ♦

The proposition claims consistency as long as the solutions exist and are unique. The key

for the validity of the proposition is Lemma 4.1 (ii). Proposition 4.2 together with Lemma 4.1

justify the validity of two of the key asymptotic results that hold in the GLM. The results that

we are getting in this section generalize Proposition 1.2.

Theorem 4.3.

(i) 1p
n
Un(β0)

D−→ Np(0, I(β0)),

(ii)
p

n( bβn −β0)
D−→ Np(0, I−1(β0)). ♦

The asymptotic variance of bβn does not have the sandwich form because the two com-

ponents of the sandwich are the same by Lemma 4.1 (iii).

Thus, Wald tests and score tests (and confidence intervals) derived for the GLM also

hold when quasi-likelihood is used instead of full likelihood. On the other hand, likelihood

ratio (and hence deviance) tests do not work.

The dispersion parameter ϕ can be estimated by the method of moments based on

Pearson X 2 statistic as described in Section 2.5.

The theory of GLM (except deviance tests) holds even for distributions that are not of

exponential type as long as the data are independent and the variance function is correctly

specified. Thus, we can fit GLM to distributions such as beta-binomial, negative binomial or

geometric (and many more).

4.1.4. Quasi-likelihood: Advice on practical use

In order to use quasi-likelihood methods appropriately, one has to correctly specify both the

mean and the variance function. Let us illustrate the principles on two instructive examples.

This part shows you how to use quasi-likelihood to solve two specific examples. There

could be many other similar examples and we do not have time to go through each of

them. The important thing is to be able to take advantage of the flexibility of quasi-

likelihood by thinking about the problem to be solved.

Beta-binomial distribution

Beta-binomial distribution should be used when we observe numbers of successes and fail-

ures from groups of observations that are correlated by sharing their specific success proba-

bility.
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In Section 3.1, we had Y ∗i j ∼ Alt(πi), i = 1, . . . , K , j = 1, . . . , mi , where πi = eηi/(1+eηi )

and the linear predictor was ηi = β1+β2X2i+ · · ·+βpX pi. These Bernoulli variables were iid

and their sum (the number of successes in the group) Yi =
∑mi

j=1
Y ∗i j had binomial distribution

Yi ∼ Bi(mi ,πi).

Now suppose that the covariates X2i, . . . , X pi do not fully describe the differences in

πi between the groups — for example because some important covariate was not recorded

among those that we measured. This can be captured by considering πi a random variable

with the meanµi = eηi/(1+eηi) and some variability expressing the effect of that unobserved

covariate (or any other influences on πi). Now, Y ∗i1, . . . , Y ∗imi
are not independent and their

sum Yi does not have a binomial distribution. A reasonable model for such data is the beta-

binomial model, through the specification

• E
�
Yi

��Xi

�
≡ miµi = mi

eηi

1+ eηi
and

• var
�
Yi

��Xi

�
= ϕmiµi(1−µi).

This model can be fitted by quasi-likelihood using the GLM formulae for aggregated

binary data (the reduced “binomial” format) from Section 3.1.5. The dispersion parameter

is estimated as

ϕ̂ =
1

K − p

K∑

i=1

(Yi −mibµi)
2

mibµi(1− bµi)
.

Here, each group contributes one term to the Pearson X 2 statistic. If bϕ ≈ 1, we can suspect

that there was not a serious overdispersion after all and that the binomial model would have

fitted the data well (but remember: have not introduced a formal test of H0 : ϕ = 1 that

controls the Type I error).

Negative binomial and geometric distributions

Another application of quasi-likelihood allows fitting negative binomial or geometric distri-

bution. Suppose Yi have negative binomial distributions with a known common parameter

m and mean µi. This means that Yi is the number of failures suffered before the m-th success

is observed (in a sequence of independent Bernoulli trials with success probability pi depend-

ing on the subject). We’ll choose a loglinear model for the mean, i.e., E
�
Yi

��Xi

�
= µi = eXT

i β

and want to estimate and test the components of β .

The general Poisson-gamma distribution has the expectationλ0 and variance (1+1/a)λ0.

Negative binomial distribution is a special case with λ0 = m/a and a/(a + 1) = p. Hence,

a = p/(1− p). In the regression case, the parameter p (and hence, a) depends on the index

i while m is constant. The mean is

E
�
Yi

��Xi

�
= µi =

m

ai

=
m(1− pi)

pi

.

The variance can be expressed in two ways: as a function of the parameters m and pi like
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this

var
�
Yi

��Xi

�
=
�
1+

1

ai

�
µi =

ai + 1

ai

µi =
m(1− pi)

p2
i

or as a function of the mean µi like this

var
�
Yi

��Xi

�
=
�
1+

1

ai

�
µi = µi +

µi

ai

= µi +
µ2

i

m
.

This is the variance function of the negative binomial distribution. So, we take

• E
�
Yi

��Xi

�
≡ µi = eXT

i
β and

• var
�
Yi

��Xi

�
= V (µi) = µi +

µ2
i

m .

Note that the dispersion parameter is ϕ = 1.

Now, quasi-likelihood can be used to fit this model. If m = 1, we have the geometric

distribution as a special case. If m varied by observations, we would need to extend the

approach to allow variance functions of the form V (µi, mi) with observed mi plugged in.

Last, you can notice this: the loglinear model for the expectation of the response gives

you
m(1− pi)

pi

= eXT
i
β

and hence

log
1− pi

pi

= − log m+ XT
i β .

This means that the model can be also interpreted as a logistic model for the success proba-

bilities pi! The exponentiated parameters give you the odds ratios for success per unit change

in the covariate. The end of

lecture 17

(Apr. 29)

4.2. Sandwich Variance Estimation in the GLM

We start this section with a topic that may seem a bit out of place at first but later will become

incredibly useful. The question is: what happens with the maximum likelihood estimator

when the distribution used to derive it is not correct (the data we work with have a different

distribution). The the results we summarize were obtained by White (1982).

4.2.1. Behavior of the MLE under a misspecified model

Let X1, . . . , Xn be iid random variables (vectors) on the space (X ,A ) with distribution P

and density p with respect to a σ-finite masure µ.

Consider the model P = {Pθ : θ ∈ Θ} on the space (X ,A ) with densities pθ with

respect to µ. Let Θ ⊆ Rd . Suppose the model P is regular.
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So far everything is arranged as if we were doing maximum likelihood theory. However,

we do not assume that P ∈ P . The data we observe need not satisfy the model, there need

not exist any θ ∈ Θ such that P = Pθ .

Model

P

Data

P

We use the data X1, . . . , Xn
iid∼ P and the model P to estimate θ by the method of

maximum likelihood. Define the likelihood, MLE, the score function and the score statistic

as usual.

ℓn(θ ) =

n∑

i=1

log pθ (X i),

bθn = arg max
θ∈Θ

ℓn(θ ),

Ui(θ ) =
∂

∂ θ
log pθ (X i),

Un(θ ) =

n∑

i=1

Ui(θ ).

The estimator bθn solves the system of equations Un(
bθn) = 0. White (1982) calls it the

quasi-maximum likelihood estimator but we will prefer the term pseudo-maximum likelihood

estimator. What does this estimator estimate when the model does not hold?

Theorem 4.4. (White 1982) bθn

P−→ θ0 as n→∞, where

θ0 = arg min
θ∈Θ

K(P, Pθ ) = arg max
θ∈Θ

EP log pθ (X i)

and

K(P, Pθ ) = EP log
p(X i)

pθ (X i)
≥ 0. ♦

Here, K(P, Pθ ) is called the Kullback-Leibler distance between the distributions P and Pθ .

It has all the properties of a distance measure except that it is not symmetric, K(P, Pθ ) 6=
K(Pθ , P).∗

The pseudo-MLE converges to the point θ0 that minimizes the Kullback-Leibler distance

between the distributions belonging to the model and the true distribution of the data.

So, the pseudo-MLE converges somewhere after all but what is it? What is the pseudo-

MLE actually estimating? The answer is provided by the first point of this theorem:

∗ Therefore it is sometimes called the Kullback-Leibler divergence instead of distance.

96



4. Extensions of Generalized Linear Models

Theorem 4.5. (White 1982)

(i) The probability limit θ0 of bθn satisfies EPUn(θ0) = 0.

(ii)

1p
n

Un(θ0)
D−→ Nd(0,Σ),

where

Σ= varP
∂

∂ θ
log pθ0

(X i).

(iii)

p
n(bθn − θ0)

D−→ Nd(0,D−1
ΣD−1),

where

D = −EP

∂ 2

∂ θ∂ θ T
log pθ0

(X i). ♦

Thus, the incorrectly applied MLE procedure tries to estimate the point θ0, which solves

the set of equations EPUn(θ0) = 0 (there may be multiple solutions, of course – only one of

them is the point of convergence). This identifies the distribution that is “closest” to P within

the model, in the sense of the Kullback-Leibler distance. This is illustrated by the following

picture.

Model

P

Data

P

K(P, Pθ ) := min

Pθ0

The other parts of the theorem show that the pseudo-score statistic (when evaluated at

θ0) and the estimator are asymptotically normal.

The asymptotic variance of bθn has the sandwich form. The matrix D plays the role of

an information matrix. However, D is (in general) not equal to the asymptotic variance Σ of

the pseudo-score statistic.

Theorem 4.6. The asymptotic variance matrix D−1
ΣD−1 of

p
n(bθn−θ0) can be consistently

estimated by bD−1bΣbD−1, where

bD = −1

n

n∑

i=1

∂ 2

∂ θ∂ θ T
log pbθn

(X i)

and

bΣ= 1

n

n∑

i=1

Ui(
bθn)
⊗2.

♦
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4. Extensions of Generalized Linear Models

This is the sandwich estimator∗ of the asymptotic variance. Compare this to Proposi-

tion 1.3 and its use in linear regression.

Note.

• If the model holds, that is ∃θ0 ∈ Θ such that P = Pθ0
, then bθn

P−→ θ0 and D ≡ Σ.

• The sandwich estimator bD−1bΣbD−1 of the asymptotic variance tends to underestimate

the true variance D−1
ΣD−1 unless n is very large. Various modifications have been

proposed to reduce the small sample bias of the sandwich estimator.

• This theory is especially useful when at least some components of θ0 are equal to the

true parameters that we wish to estimate.

4.2.2. Applications to the GLM

Consider n independent copies of random vectors (Yi , Xi), i = 1, . . . , n, where Xi = (X i1, . . . , X ip)
T

are the covariates and Yi is the response.

Assumptions.

1. Y1, . . . , Yn are independent

2. The mean µi = EYi satisfies the identity g(µi) = ηi , where ηi = XT
i β0 is the linear

predictor and g is a known strictly monotone, twice continuously differentiable link

function.

Note.

• We will choose a working variance function† V (µi) and use it in the estimation of β0

but we will not asume that this variance function is correct.

• No assumptions are made about the form of the density of Yi.

The estimation of β0 proceeds as if Yi had a distribution from the exponential family

with mean µi = EYi = g−1(ηi) and variance varYi = ϕV (µi). The pseudo-score function‡ is

the same as in the GLM,

Ui(β) =
Yi −µi

ϕV (µi)

∂ µi

∂β
=

1

ϕ
w(µi)g

′(µi)(Yi −µi)Xi .

The estimator bβn is the solution to the system of pseudo-score equations

Un(
bβn) =

n∑

i=1

w(bµi)g
′(bµi)(Yi − bµi)Xi = 0,

where bµi = g−1(XT
i
bβn). This system can be solved by the IWLS algorithm.

∗ Česky sendvǐcový odhad † Česky pracovní rozptylová funkce ‡ Česky pseudoskórová funkce

98



4. Extensions of Generalized Linear Models

Lemma 4.7.

(i) Ui(β), i = 1, . . . , n, are iid random vectors.

(ii) If β0 is the true parameter then EUi(β0) = 0. ♦

We use the theory from the previous section to derive the probability limit and the

asymptotic distribution of bβn. Let

I(β0) = −E
∂

∂βT
Ui(β0) =

1

ϕ
EX w(µi)X

⊗2
i

and

Σ= varUi(β0) =
1

ϕ2
EX w2(µi)[g

′(µi)]
2var Yi X⊗2

i 6= I(β0).

It follows from Theorem 4.5 (note that I(β0) plays the role of the matrix D) that

Theorem 4.8.

(i) bβn converges in probability to β0.

(ii) 1p
n
Un(β0)

D−→ Np(0,Σ),

(iii)
p

n( bβn −β0)
D−→ Np(0, I−1(β0)ΣI−1(β0)). ♦

Corollary. The asymptotic variance matrix of
p

n( bβn−β0) can be consistently estimated by
bI−1bΣbI−1, where bI is defined by (2.9) and

bΣ= 1

n bϕ2

n∑

i=1

�
w(bµi)g

′(bµi)(Yi − bµi)
�2

X⊗2
i .

The corollary follows from Theorem 4.6. The dispersion parameter ϕ can be estimated by

the Pearson X 2 statistic (see Section 2.5) but it is not needed to calculate either bβn or its

estimated asymptotic variance bI−1bΣbI−1.

Likelihood ratio (deviance) tests cannot be used but Wald tests and score tests based

on Theorem 4.8 are available. Thus, even if the distribution of the responses is not of expo-

nential family and the variance function is unknown, the theory of the GLM can be used for

parameter estimation and asymptotic variance can be estimated by the sandwich estimator.

If the working variance function V (µ) is guessed correctly then Σ ≈ I(β0) and the results

will be close to those obtained by the quasilikelihood approach. If the working variance

function V (µ) is far from the truth the asymptotic variance will increase and estimates will

be less efficient. The most serious danger of this approach is the potential underestimation

of the true variance by the sandwich.
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4. Extensions of Generalized Linear Models

4.2.3. Sandwich variance: Advice on practical use

In order to use sandwich methods appropriately, one needs to correctly specify the mean,

make a best guess about the variance function and use it as the working variance in the

estimating procedures. You should be careful with the sandwich variance estimator: it is

known to underestimate the true variability and does not work well with small to moderate

sample sizes. You can use, e.g., bootstrap to improve it but remember that bootstrap is also

an asymptotic method and cannot do miracles with small sample sizes.

In R, sandwich estimation can be performed with the functions available in libraries

sandwich and lmtest. Both libraries work for model fits obtained from the function glm().

The end of

lecture 18

(Apr. 29)
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5. Generalized Estimating Equations

5.1. Group-Dependent Data

In this chapter, we extend the generalized linear model even further: we will develop a

regression model that can be used for certain kinds of correlated data.

Suppose we observe K independent random vectors Y1, . . . , YK , where

Yi = (Yi1, . . . , Yini
)T, i = 1, . . . , K .

So the data consists of K independent groups (subjects), which include different numbers

of correlated observations. Within each group, the observations are dependent but between

groups, they are independent.

We will call such data structures group-dependent data∗ but they may by called by several

different terms depending on the context or application field.

Clustered data are measurements collected on groups of objects such as teeth, animal

litters, or siblings. The measurements in the same group do not have a well defined

ordering.†

Repeated measures are measurements made repeatedly on the same subject so that there

is ordering among them (first, second, third,. . . ).‡

Longitudinal data are repeated measures with captured time information. This means,

each measurement is made at a different time, which is recorded in the data. Longi-

tudinal data arise by observing independent short pieces of time series.§

Panel data is the term used for group-dependent data in econometrics.¶

Each observation Yi j is accompanied by a vector of covariates Xi j of the size p. We would

like to describe the dependence of µi j = EYi j on the covariates Xi j by a regression model.

As in the GLM, we will assume that g(µi j) = XT
i jβ0, where g is a known strictly monotone,

twice continuously differentiable link function and β0 is an unknown true parameter vector.

Thus, we assume that

EYi = µi = (µi1, . . . ,µini
)T,

where µi j = g−1(XT
i jβ0). Like in Section 4.2.2, we leave var Yi unspecified – we do not

impose any assumptions on variances and covariances of the measurements.

∗ Česky skupinově závislá data † Česky shluková data ‡ Česky opakovaná měření § Česky longitudinální

data ¶ Česky panelová data
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5. Generalized Estimating Equations

5.2. Estimation of Regression Parameters by Generalized

Estimating Equations

A method for estimating regression parameters under this general extension of the GLM to

group-dependent data was first proposed by Liang and Zeger (1986). They called it gener-

alized estimating equations∗ [GEE]. Let

Xi =




XT

i1
...

XT
ini





ni×p

and

�
∂µi

∂β

�

p×ni

= XTi




g′(µi1) . . . 0

0
. .. 0

0 . . . g′(µini
)




−1

.

Recall that the score function in the GLM (with ni = 1 for all i) can be written as

Ui(β) =
∂ µi

∂β

1

ϕV (µi)
(Yi −µi).

When written in this way, the score can be easily generalized to multivariate Yi . We define

a pseudo-score function

Ui(β) =

�
∂µi

∂ β

�
Q−1

i (µi)(Yi −µi),

where

Qi(µi) = ϕV
1/2
i
(µi)RiV

1/2
i
(µi)

represents our guess about var Yi. The diagonal ni×ni matrix Vi provides working variances

of the observations, V (µi1), . . . , V (µini
), on its diagonal. The ni × ni matrix Ri is a working

correlation matrix†, our guess about cor (Yi j, Yik).

Neither the variance function V (·) nor the correlation matrix Ri is assumed to be be

correct. If we knew varYi j and corYi we would use them in place of ϕV (µi j) and Ri. Since

we do not know them, we just use our best guess.

Because EYi = µi , we easily get the moments of Ui(β0):

EUi(β0) = 0 and varUi(β0) ≡ Σ= E

�
∂ µi

∂ β

�
Q−1

i (µi)var YiQ
−1
i (µi)

�
∂µi

∂β

�T
.

The estimator bβK is defined as the solution to the system of equations

UK(
bβK) ≡

K∑

i=1

Ui(
bβK) = 0. (5.1)

This is called the GEE estimator. It is another special case of the methods of Section 4.2.1.

Heuristically, the properties of bβK follow from Theorem 4.5, though a rigorous proof of

consistency would require more work.

∗ Česky zobecněné odhadovací rovnice † Česky pracovní korelační matice
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5. Generalized Estimating Equations

Let

D = −E ∂

∂βT
Ui(β0) = E

�
∂ µi

∂ β

�
Q−1

i (µi)

�
∂ µi

∂ β

�T
.

Proposition 5.1. (Liang and Zeger 1986) As K →∞,

(i) bβK

P−→ β0,

(ii) 1p
K

UK(β0)
D−→ Np(0,Σ),

(iii)
p

K( bβK −β0)
D−→ Np(0,D−1

ΣD−1). ♦

Notice that the asymptotics requires that the number K of independent groups tends to

infinity. The number of observations within the groups is irrelevant. By Theorem 4.6, the

asymptotic variance of D−1
ΣD−1 can be consistently estimated by the sandwich bD−1bΣbD−1,

where

bD = 1

K

K∑

i=1

�
∂ bµi

∂β

�
Q−1

i (bµi)

�
∂ bµi

∂β

�T

and

bΣ = 1

K

K∑

i=1

Ui(
bβK)
⊗2.

The system of equations (5.1) can be solved by a modified IWLS method. The solver

iterates

bβ =
� K∑

i=1

�
∂ bµi

∂β

�
Q−1

i (bµi)

�
∂ bµi

∂β

�T�−1� K∑

i=1

�
∂ bµi

∂β

�
Q−1

i (bµi)bZi

�
,

where

bZi = (bZi1, . . . , bZini
)T and bZi j =

bηi j + (Yi j − bµi j)g
′(bµi j)

g′(bµi j)
.

The dispersion parameter ϕ can be estimated by

bϕ = 1

n− p

K∑

i=1

ni∑

j=1

(Yi j − bµi j)
2

V (bµi j)
,

which is based on a modified Pearson X 2 statistic (ignoring the correlations). Here, n =∑K
i=1

ni is the total sample size. This estimator is consistent if the variance function V is

correctly specified, but it is not efficient. Estimated ϕ is not needed to calculate either bβn or

its estimated asymptotic variance bD−1bΣbD−1.

5.3. Correlation Structures

How should we choose the working covariance matrix Qi(µi) = ϕV
1/2
i
(µi)RiV

1/2
i
(µi)? The

variance function V (·) expresses our belief about the dependence of the variance on the
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5. Generalized Estimating Equations

mean. It is more complicated to choose a suitable working correlation matrix Ri for each of

the independent groups. The current section is devoted to this problem.

5.3.1. Working independence

We take Ri = Ini
(identity matrix). ThenQi(µi) = ϕVi(µi) is diagonal and β0 is estimated as

if the data were independent, by fitting the standard IWLS. After the estimates are obtained

under the independence assumption (they are still consistent), their variance is adjusted

by the sandwich to take into account correlations and also perhaps the wrong choice of

V (·). This is the easiest way to fit GEE. The estimates will be consistent but inefficient if the

correlations are strong.

5.3.2. Parametrized correlations

The other option is to introduce some non-independent correlation structure and parametrize

it by an m-dimensional parameter vector α ∈ Rm. We take Ri = Ri(α),

Qi(µi) ≡ Q i(µi ,α) = ϕV
1/2
i
(µi)Ri(α)V

1/2
i
(µi)

and
bQi(µi) ≡ Q i(µi , bα) = bϕV1/2

i
(µi)Ri(bα)V1/2

i
(µi),

where bα is a
p

K-consistent estimator of α, for example some moment estimator.

The score is modified as follows

bUi(β) =

�
∂µi

∂ β

�
bQ−1

i (µi)(Yi −µi),

but these vectors are no longer independent for i = 1, . . . , n. One needs to show that

1p
K

K∑

i=1

bUi(β0) =
1p
K

K∑

i=1

Ui(β0) + oP(1).

(see Liang and Zeger 1986). The estimator bβ solves
∑K

i=1
bUi(
bβ) = 0 and Proposition 5.1

still holds.

Here is a general strategy how to estimate parametrized correlations by the method of

moments:

1. Estimate β under working independence (take Ri = Ini
).

2. Calculate Pearson residuals

rP
i j =

Yi j − bµi jÆ
V (bµi j)

.
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5. Generalized Estimating Equations

3. If the mean structure and variance function are correct we have

E rP
i j ≈ 0, var rP

i j ≈ ϕ, E rP
i j r

P
ik ≈ ϕRi jk(α).

We can use moment estimators of α based on the products rP
i j r

P
ik

of Pearson residuals

from the same group. The next section shows examples of such estimators for selected

correlation structures.

1-band correlation

Let

cor (Yi j , Yik) =





1 if j = k,

α if | j − k|= 1,

0 if | j − k|> 1.

The parameter α is consistently estimated by

bα = 1

bϕ
1

N − K − p

K∑

i=1

ni−1∑

j=1

rP
i j r

P
i, j+1.

m-band correlation

Take some positive whole number m. Let

cor (Yi j, Yik) =





1 if j = k,

αl if | j − k| = l, l = 1, . . . , m,

0 if | j − k| > m.

For l ∈ {1, . . . , m}, the parameter αl is consistently estimated by

Òαl =
1

bϕ
1

N − Kl − p

K∑

i=1

ni−l∑

j=1

rP
i j r

P
i, j+l .

Note that m should not be too large; especially it should not exceed too many ni ’s.

Exchangeable correlation

Let

cor (Yi j , Yik) =

¨
1 if j = k,

α if j 6= k.

The parameter α is consistently estimated by

bα= 1

bϕ
1
∑K

i=1

�
Ni

2

�
− p

K∑

i=1

ni∑

j=1

ni∑

k= j+1

rP
i j r

P
ik.
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AR(1) correlation

Let Yi1, . . . , Yini
form an AR(1) series. Then

cor (Yi j, Yik) = α
| j−k|.

Since

E rP
i j r

P
ik ≈ ϕα

| j−k|

and logE rP
i j r

P
ik ≈ logϕ + | j − k| logα,

we can estimate logα as the slope in the linear regression problem with log rP
i j r

P
ik

as the

response and | j − k| as the covariate.

Other correlation structures

See methods for estimating correlations from time series data.

5.3.3. Joint estimation of mean and correlation structures

Prentice (1988) and Prentice and Zhao (1991) proposed to estimate the correlation param-

eters by introducing another set of estimating equations for α and solving them jointly with

the generalized estimating equations (5.1) for β . Yan and Fine (2004) extended this idea

even further: they proposed a third set of estimating equations for ϕ and allow ϕ to depend

on the covariates and thus vary between subjects.

For details, see the references.

5.3.4. Summary of GEE methods

1. GEE works for regression analysis of data with K independent groups, which are corre-

lated within each group. The number K of independent groups must be large enough

for the asymptotics to work.

2. It is not necessary to correctly specify the distribution of the response, the variance of

the response, or the correlations within each group. If the variance and the correlations

are seriously misspecified, the variance of the estimators increases but the estimators

are still consistent and asymptotically normal.

3. The parameters β have population-averaged interpretation, not subject-specific inter-

pretation (see the discussion in Chapter 7).
The end of

lecture 19

(May 6)
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6. Linear Mixed Effects Models

In this chapter, we will continue to consider group dependent data structures and return to

the assumption of normality. The topic will be: parametric models for group-dependent data

assuming a multivariate normal distribution of the response vectors. Remember that such

data can be also analyzed by the distribution-free GEE models so we are in fact introducing

two different models and methods for the same data structure. In the end, we will compare

the strengths and weaknesses of both methods.

6.1. Introduction

We start by considering the simplest case of a linear model: one-way analysis of variance.

First, let’s do a brief review of this well-known topic.

6.1.1. One-way ANOVA

Take I independent subjects and obtain ni independent observations of the response Yi j

on the i-th subject distributed as Yi j ∼ N(µi,σ
2
e ). Subjects are denoted by the subscript

i = 1, . . . , I , observations on the same subject are distinguished by the subscript j = 1, . . . , ni .

The total number of observations is n=
∑I

i=1 ni.

The responses are normally distributed with potentially different means and a common

variance and they are mutually independent of each other. The subjects can be regarded as

the levels of a factor variable A.

We would like to know whether all the subjects have the same mean, that is, whether

the null hypothesis

H0 : µ1 = µ2 = · · ·= µI

is true or not.

By decomposing the means µi into the common part µ and subject-specific part βi, we

can write the model in the form

Yi j = µ+ βi + ǫi j ,

where β1, . . . ,βI are unknown fixed parameters expressing the main effects of the subjects

and ǫi j are random error terms with zero mean and constant variance σ2
e . This is a linear

model. In order to make the parameters identifiable, we need to adopt contraints on βi.
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Figure 6.1.: Parametrization of the group means (left panel) and example of data generated

with σ2
e = 4, ni = 10 (right panel).

In this case, we choose the zero-sum constraint
∑I

i=1 βi = 0, so that the intercept µ can be

interpreted as the overall mean of the response and βi are deviations of the subject-specific

means from the overall mean.

There are I+1 unknown parameters in this model, in particular µ,β1, . . . ,βI−1,σ2
e . The

null hypothesis of equal means can be written in the form

H0 : β1 = β2 = · · · = βI = 0.

The hypothesis test in one-way ANOVA can be presented in the form of ANOVA table

(Table 6.1). The second column (SS= sums of quares) contains sums of squares for subjects

SSA =

I∑

i=1

ni(Y i· − Y··)
2,

where Y i· = n−1
i

∑ni

j=1
Yi j and Y·· = n−1

∑I
i=1

∑ni

j=1
Yi j , and residual sums of squares

SSe =

I∑

i=1

ni∑

j=1

(Yi j − Y i·)
2.

It can be shown that

SSA = ZTAZ,

where

Z =




Y1·
...

Y I ·



−µ1I and A = diag (n1, . . . , nI )−
1

n
n⊗2,

n = (n1, . . . , nI)
T and 1I is a column vector of 1’s of length I .
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6. Linear Mixed Effects Models

Table 6.1.: One way ANOVA table with fixed effects

Source SS df MS EMS F

Subject (A) SSA I − 1 MSA =
SSA

I − 1
σ2

e +Qβ FA =
MSA

MSe

Residual SSe n− I MSe =
SSe

n− I
σ2

e

Total SST n− 1

Also,

SSe =

I∑

i=1

ZT

i AiZi,

where

Zi =




Yi1
...

Yini



−µi1ni
and Ai = Ini

− 1

ni

1⊗2
ni

.

Proposition 6.1. Let X be a random vector of length n with mean EX = µ and variance

matrix varX = V. Let A be any n× n matrix. Then

EXTAX = µTAµ+ trAV. ♦

According to Proposition 6.1,

ESSA = EZTAZ = (I − 1)σ2
e +

I∑

i=1

ni(µi −µ)2,

where µ= n−1
∑

niµi = µ+ n−1
∑

niβi = µ+ β , and

ESSe =

I∑

i=1

EZT

i AiZi = (n− I)σ2
e .

Hence the expectations of mean squares (Table 6.1, column EMS) are

EMSA = σ
2
e +

1

I − 1

I∑

i=1

ni(µi − µ)2 = σ2
e +

1

I − 1

I∑

i=1

ni(βi − β)2 = σ2
e +Qβ ,

EMSe = σ
2
e ,

not assuming that H0 holds and that the data are normal. EMSA is the sum of the residual

variance σ2
e and weighted between-subject variability (sample variance of βi).

When H0 is true, EMSA = EMSe and, under normality, F = MSA/MSe has an F distri-

bution with I − 1 and n− I degrees of freedom.
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6.1.2. One-way ANOVA with random effects

Now imagine that the subjects that we have in the study (the levels of factor A) are not

the only people in the world but represent a random sample from some general population

of subjects. We still want to test the differences between the means of the subjects but

acknowledging the fact that the subjects are representatives of some larger population. We

are interested whether the subjects in that general population have different means, not just

the subjects that we included in the study.

To do this, we must to take into account the fact that we may have included differ-

ent subjects with different means and consider the variability between the subjects in the

analysis. This can be done by changing the model as follows:

Take

Yi j = µ+ bi + ǫi j,

where µ is the overall mean for the outside population, ǫi j are iid error terms satisfying

Eǫi j = 0, varǫi j = σ
2
e , and b1, . . . , bI are iid random variables with E bi = 0, var bi = σ

2
b
.

These variables are called random effects∗ and they represent the differences between the

means of different subjects. The fact that they are considered random acknowledges that

we might have included different I subjects from the general population and they could have

had different means.

The random effects (b1, . . . , bI) are assumed to be independent from the error terms

(ǫ11, . . . ,ǫI nI
).

There are 3 unknown parameters in this model, in particular µ,σ2
b
,σ2

e , regardless of

the number of subjects I . The parameter σ2
b

expresses how different are the subjects in the

general populations in terms of the subject-specific mean response.

It is easy to calculate the conditional (given subject) and unconditional (in the general

∗ Česky náhodné efekty
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Figure 6.2.: Illustration of the conditional group means generated with σ2
b
= 25 (left panel)

and example of data generated with σ2
e = 4, ni = 10 (right panel).
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population) moments of Yi j:

E
�
Yi j

��bi

�
= µ+ bi, EYi j = µ,

var
�
Yi j

��bi

�
= σ2

e , varYi j = σ
2
b +σ

2
e .

The parameters σ2
b

and σ2
e are called variance components∗ because the total variability in

Yi j is decomposed into variability between subjects σ2
b

(how different are the subjects from

each other) and variability within subjects σ2
e (how different are the observations made on

the same subject from each other).

Unlike in classical one-way ANOVA, the observations are not independent:

cov (Yi j , Yi′ j′) = 0 for i 6= i′,

but, for j 6= j′,

cov (Yi j , Yi j′) = cov (µ+ bi + ǫi j,µ+ bi + ǫi j′)

= var bi + cov (bi,ǫi j′) + cov (ǫi j, bi) + cov (ǫi j,ǫi j′)

= var bi = σ
2
b.

Hence, still for j 6= j′,

cor (Yi j, Yi j′) =
σ2

b

σ2
b
+σ2

e

≥ 0

and the observations are positively correlated within each subject unless σ2
b
= 0. The data

has a group-dependent structure. The correlations arise because the differences between

subjects are not expressed in the mean structure (the mean µ is constant) but accounted for

in the random component of the model (bi + ǫi j). In classical ANOVA, the mean structure

(µ+βi) captures the differences between subjects and the random component of the model

(ǫi j) consists of independent variables.†

We would like to test the hypothesis that all subjects in the general population have the

same mean response. Within our model, this hypothesis can be expressed as

H0 : σ2
b = 0 against H1 : σ2

b > 0.

The analysis proceeds exactly as in the classical one-way ANOVA. Define SSA, SSe, MSA and

MSe as in the previous section. It can be shown using Proposition 6.1 that

EMSA = σ
2
e +

1

I − 1

�
n−
∑

n2
i

n

�
σ2

b,

EMSe = σ
2
e .

∗ Česky komponenty rozptylu † This an illustration of the fact that difference between dependence and inde-

pendence can be a matter of point of view. The same observations can be considered independent by one analyst

and dependent by another analyst without any of them being wrong.
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If the null hypothesis is true then EMSA = EMSe = σ
2
e . If the null hypothesis is true

and normality holds for both ǫi j and bi then F = MSA/MSe has an F distribution with I −1

and n − I degrees of freedom. Thus, the analysis proceeds according to Table 6.1 but the

null hypothesis and the interpretation of the results are different.

The residual variance σ2
e can be unbiasedly estimated by MSe. The expressions for the

expected mean squares allow us to find an unbiased estimator of σ2
b

as well. It is

bσ2
b = (MSA−MSe)

I − 1

n−
∑

n2
i

n

.

So we have available unbiased moment estimators for both variance components. How-

ever, the estimator bσ2
b

has a problem. Because the probability that MSA < MSe is positive

it can sometimes generate negative estimates of variance. One could be tempted to fix a

negative variance by setting it to zero but the estimator is no longer unbiased after such

manipulation.

It is important to understand the differences between fixed and random effects. The

data alone do not tell us which of the two models is more appropriate. However, we can do
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Figure 6.3.: Four datasets generated from the model with fixed effects (same parameters as

in Figure 6.1).
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Figure 6.4.: Four datasets generated from the model with random effects (same parameters

as in Figure 6.2).

the mental exercise of running the experiment again and creating several different data sets.

Then the difference becomes apparent, as illustrated in Figures 6.3 and 6.4. The end of

lecture 20

(May 6)
6.1.3. Two-way ANOVA with random effects

Now consider two classification factors A and B, both with randomly selected levels from

some general populations. Let

Yi jk = µ+ bA
i + bB

j + bAB
i j + ǫi jk,

where i = 1, . . . , I are levels of factor A, j = 1, . . . , J are levels of factor B, and k = 1, . . . , m

indexes observations made for each combination of the levels of A and B. The design is

balanced (equal number of observations for each combination of i and j). The total number

of observations is n= mIJ .

The parameter µ is the overall mean (a constant), bA
i , bB

j , and bAB
i j are mutually in-

dependent random effects∗ satisfying E bA
i = 0, var bA

i = σ
2
A, E bB

j = 0, var bB
j = σ

2
B, and

∗ The random effects are independent from each other as well as from random effects pertaining to other levels

of A and B
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E bAB
i j = 0, var bAB

i j = σ
2
AB. Finally, ǫi jk are iid error terms satisfying Eǫi jk = 0, varǫi jk = σ

2
e ,

independent from all the random effects.

There are 5 unknown parameters in this model, in particular µ,σ2
A,σ2

B,σ2
AB,σ2

e .

We get

E
�
Yi jk

��bA
i , bB

j , bAB
i j

�
= µ+ bA

i + bB
j + bAB

i j

var
�
Yi jk

��bA
i , bB

j , bAB
i j

�
= σ2

e

EYi jk = µ

varYi jk = σ
2
A+σ

2
B +σ

2
AB +σ

2
e .

The total variability in Yi jk is decomposed into four variance components.

The covariances depend on how many levels of A and B are shared by the observations:

cov (Yi jk, Yi jl) = σ
2
A+σ

2
B +σ

2
AB for k 6= l,

cov (Yi jk, Yi j′ l) = σ
2
A < cov (Yi jk, Yi jl) for j 6= j′,

cov (Yi jk, Yi′ jl) = σ
2
B < cov (Yi jk, Yi jl) for i 6= i′,

cov (Yi jk, Yi′ j′ l) = 0 for i 6= i′, j 6= j′.

The covariance (and correlation) is largest between two observations made on the same

levels of both A and B. It is smaller between two observations made on the same level of

either A or B (not both). Two observations made on different levels of both A and B are

independent. This data does not have group-dependent structure, there are no mutually

independent groups.

Define the sums of squares and mean squares exactly as in the balanced two-way ANOVA

problem with fixed effects:

SSA= mJ

I∑

i=1

(Y i·· − Y···)
2, MSA =

SSA

I − 1
,

SSB = mI

J∑

j=1

(Y· j· − Y···)
2, MSB =

SSB

J − 1
,

SSAB = m

I∑

i=1

J∑

j=1

(Y i j· − Y i·· − Y· j· + Y···)
2, MSAB =

SSAB

(I − 1)(J − 1)
,

SSe =

I∑

i=1

J∑

j=1

m∑

k=1

(Yi jk − Y i j·)
2, MSe =

SSe

(m− 1)IJ
.

Rewriting the sums of squares as quadratic forms and using Proposition 6.1, we get expected
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mean squares as follows:

EMSA = mJσ2
A +mσ2

AB +σ
2
e ,

EMSB = mIσ2
B +mσ2

AB +σ
2
e ,

EMSAB = mσ2
AB +σ

2
e ,

EMSe = σ
2
e .

(6.1)

Consider testing the null hypothesis H0 : σ2
A = 0. The only mean squares term that involves

the tested parameter is MSA. Under the null hypothesis, EMSA = EMSAB and the test statistic

is FA = MSA/MSAB, distributed as FI−1,(I−1)(J−1) under normality and validity of the null

hypothesis. This is different from two-way ANOVA with fixed effects, where the test statistic

for testing factor A main effects is MSA/MSe, distributed as FI−1,(m−1)I J under normality and

validity of the null hypothesis. So here, the test for random effects is different from the test

for fixed effects. Because EMSAB ≥ EMSe, the test usually results in smaller test statistic

than the test for fixed effects and rejects less frequently. Thus, in more complex models than

simple one-way ANOVA, it is more difficult to demonstrate violation of the null hypothesis

when the subjects represent a random sample than if they are considered fixed.

The null hypothesis H0 : σ2
B = 0 is tested by the statistic FB = MSB/MSAB, distributed

as FJ−1,(I−1)(J−1) under normality and validity of the null hypothesis. The null hypothesis

H0 : σ2
AB = 0 is tested by the statistic FAB = MSAB/MSe, distributed as F(I−1)(J−1),(m−1)I J

under normality and validity of the null hypothesis. This is the only test in this model that

is the same with random effects as with fixed effects.

The system of equations (6.1) is linear in the parameters. It can be used to derive these

unbiased moment estimators of the variance components:

bσ2
e = MSe,

bσ2
AB =

1

m
(MSAB −MSe),

bσ2
A =

1

mJ
(MSA−MSAB),

bσ2
B =

1

mI
(MSB −MSAB).

All these estimators except bσ2
e may be negative.

The idea of generalizing the results known from classical ANOVA theory to random

effects can be followed for more complex models than this one. However, the results quickly

become too difficult to derive and apply. Even the two-way ANOVA model with unbalanced

data (number of observations ni j vary with i and j) results in very complicated expressions

for EMS. The F-test statistics get more complex and do not have exact F distribution even

under normality. Various approximations to the denominator degrees of freedom are used

to find approximate F distributions of these statistics (one of them is called Satterthwaite’s

approximation).
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6.1.4. Random intercept and slope

Let Yi j be measured on a subject i at the time t i j , i = 1, . . . , K , j = 1, . . . , ni . The number

of observations on a subject and the timing of the observations may vary. Suppose that EYi j

depends linearly on time.

Consider the model

Yi j = β0 + β1 t i j + ǫi j, (6.2)

where ǫi j are independent, Eǫi j = 0, varǫi j = σ
2
e . This is the classical linear model. It

assures that EYi j is a linear function of time but implies that Yi1, . . . , Yini
are mutually inde-

pendent. This is not a realistic assumption for observations that are measured sequentially

on the same subject.

Now let us extend the model so that different subjects follow different lines. Let b0
i

be the deviation of the intercept of the i-th subject from the population intercept β0 and

let b1
i be the deviation of the slope of the i-th subject from the population slope β1. We

could include these parameters as fixed effects into model (6.2). However, if the number

of subjects grew to infinity the number of subject-specific parameters would grow also and

we would not be able to find their consistent estimators. It is better to view the subjects

as a random sample coming from some general population of subjects and to consider their

parameters random.

This consideration leads us to the model

Yi j = β0 + b0
i + (β1 + b1

i )t i j + ǫi j,

where Eǫi j = 0, varǫi j = σ
2
e , E b0

i = 0, var b0
i = σ

2
0, E b1

i = 0, var b1
i = σ

2
1, ǫi j are indepen-

dent, (b0
i , b1

i ) are independent, ǫi j and (b0
i , b1

i ) are independent, and cov (b0
i , b1

i ) = σ01.

Separating the fixed and random part, we get

Yi j = β0 + β1 t i j︸ ︷︷ ︸
fixed

+ b0
i + b1

i t i j + ǫi j︸ ︷︷ ︸
random

. (6.3)

The fixed part of (6.3) is the same as in the linear model (6.2). However, the random part is

richer, it involves time and induces correlations between measurements taken on the same

subject.

We have E
�
Yi j

��b0
i , b1

i

�
= β0 + b0

i + (β1 + b1
i )t i j , hence EYi j = β0 + β1 t i j . The lin-

ear dependence on time is preserved, with the same parameters as in model (6.2). Also,

var
�
Yi j

��b0
i
, b1

i

�
= σ2

e and hence

varYi j = σ
2
e + var (b0

i + b1
i t i j) = σ

2
e +σ

2
0
+ 2t i jσ01 + t2

i jσ
2
1
.

So, under model (6.3), the population variance varYi j is a quadratic function of time. Also,

cov (Yi j , Yik) = cov (b0
i + b1

i t i j , b0
i + b1

i t ik) = σ
2
0 + (t i j + t ik)σ01 + t i j t ikσ

2
1.
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It can be shown that cov (Yi j , Yik) ≥ (σ0 − t i jσ1)(σ0 − t ikσ1).

This model can be written as

Yi = Xiβ +Zibi + ǫi, i = 1, . . . , K

where Yi = (Yi1, . . . , Yini
)T, ǫi = (ǫi1, . . . ,ǫini

)T,

Xi = Zi =




1 t i1
...

...

1 t ini



 ,

β = (β0,β1)
T, bi = (b

0
i
, b1

i
)T, E bi = 0, var bi = Ψ =

� σ2
0 σ01

σ01 σ
2
1

�
, Eǫi = 0, and var ǫi = σ

2
e Ini

.

This is an example of a linear mixed effects model to be studied in the next sections.

6.2. Definition of Linear Mixed Effects Model

6.2.1. Single-level LME model

Consider subjects i = 1, . . . , K and denote the vector of responses for the i-th subject by

Yi = (Yi1, . . . , Yini
)T. The following definition was proposed by Laird and Ware (1982).

Definition 6.1. The responses Y1, . . . , YK satisfy a (single-level) linear mixed effects model∗

[LME model] if they are independent and can be written as

Yi = Xiβ +Zibi + ǫi, i = 1, . . . , K , (6.4)

where β is a p-vector of fixed effects, Xi is an ni × p regression matrix for fixed effects, Zi

is an ni × q regression matrix for random effects, bi are independent vectors of (the random

effects†) that satisfy

bi ∼ Nq(0,D),

ǫi are independent vectors of error terms that satisfy

ǫi ∼ Nni
(0,σ2

e Ini
),

and the error terms (ǫ1, . . . ǫK)
T are independent of the random effects (b1, . . . , bK)

T. ∇

The conditional mean of the response vector Yi depends on the covariates Xi but not on

the covariates Zi:

E
�
Yi

��Xi,Zi

�
= Xiβ .

∗ Česky lineární smíšený model † Česky náhodné efekty
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This is called the mean structure of the model. The regression parameters β (fixed effects)

describe the effects of the columns of Xi on the conditional mean (in the same way as in the

linear model).

The randomness of the observations Yi is captured by the term Zibi + ǫi. It is called the

random structure of the model. This term has zero mean and describes the variability in Yi .

The conditional variance matrix of Yi depends on the covariates Zi but not on the covariates

Xi:

var
�
Yi

��Xi,Zi

�
= varZibi + ǫi = ZiDZ

T
i +σ

2
e Ini

.

The parameters in the random part are:

• the variance of the error terms σ2
e , and

• the covariance matrix of the random effects D, a q × q symmetric positive definite

matrix.

The random effects bi are unobserved latent random variables, not parameters of the

model.

The regression matrix for random effects Zi is usually taken as a subset of the columns

of the regression matrix for fixed effects Xi. In some models, such as the model with random

intercept and slope, Zi = Xi. Commonly, the number of columns q of Zi is smaller than the

number of columns p of Xi, sometimes much smaller. If a covariate included in Zi is not

present in Xi it means that it affects only the variance of Yi but not the mean of Yi.

In order to investigate this model, it is convenient to reparametrize D by another matrix

∆ such that∆T
∆ = σ2

eD
−1. The matrix∆ (which is not unique) is called the relative precision

factor. From this reparametrization, we get

D = σ2
e

�
∆

T
∆

�−1
.

The matrix ∆ can be obtained e.g. from Choleski decomposition.

Choleski decomposition: For any positive definitive matrix A there exists a lower trian-

gular matrix L such that A = LLT.

So, take (σ2
e )
−1D, which is positive definite, and apply Choleski decomposition. Take the

resulting lower triangular matrix L and define ∆ = L−1. It is also a lower triangular ma-

trix. It has q positive numbers on the diagonal and q(q− 1)/2 arbitrary numbers below the

diagonal.

Model (6.4) is a special case of the model

Yi ∼ Nni
(Xiβ ,σ2

eΣi), (6.5)

where

Σi = ZiDZ
T
i /σ

2
e + Ini

= Zi

�
∆

T
∆

�−1
ZTi + Ini
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is positive definite. This is called the marginal form of the LME model. The random effects

structure is hidden in this formulation.

Not every model of the form (6.5) is necessarily a mixed effects model (6.4) – it may

happen that the matrix Σi is positive definite but the matrix D is not.

In turn, the marginal form is a special case of the model

Y ∼ Nn(Xβ ,σ2
eΣ),

where n=
∑K

i=1 ni,

Y =




Y1
...

YK



 , X =




X1
...

XK



 ,

and Σ is a block-diagonal matrix with diagonal blocks Σ1, . . . ,ΣK .

6.2.2. Multi-level LME model

Another grouping level can be added to the LME as follows. Consider primary groups

i = 1, . . . , K , and secondary groups j = 1, . . . , mi nested within the primary groups (such

as family j within town i). Observe a multivariate vector Yi j = (Yi j1, . . . , Yi jni j
)T for each

combination of grouping levels i and j.

Definition 6.2. The independent vectors Y11, . . . , YKmK
satisfy a two-level linear mixed effects

model if

Yi j = Xi jβ +Zi, j bi +Zi j bi j + ǫi j, i = 1, . . . , K , j = 1, . . . , mi , (6.6)

where bi are independent first-level random effects

bi ∼ Nq1
(0,D1),

bi j are independent second-level random effects

bi j ∼ Nq2
(0,D2),

ǫi j are independent residual terms

ǫi j ∼ Nni j
(0,σ2

e Ini j
)

(all the random effects and residual terms are mutually independent), Xi j is an ni j × p

regression matrix for fixed effects, β is a p-vector of fixed effects, Zi, j is an ni j×q1 regression

matrix for first-level random effects, and Zi j is an ni j×q2 regression matrix for second-level

random effects. ∇

This model can be further extended to three or more levels (multilevel modelling). In

the subsequent sections, however, we will only deal with single-level LME. The end of

lecture 21

(May 13)
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6.3. Parameter Estimation

Consider a single-level LME model satisfying Definition 6.1. The unknown parameters are

β , σ2
e , and θ , which is a parameter that uniquely determines the matrix ∆ such that∆T

∆ =

σ2
eD
−1.

6.3.1. Marginal likelihood

Consider the marginal form of the model

Yi ∼ Nni
(Xiβ ,σ2

eΣi),

where

Σi = ZiDZ
T

i /σ
2
e + Ini

= Zi(∆
T
∆)−1ZTi + Ini

is a function of parameters θ only. The log-likelihood can be written as

ℓn(β ,θ ,σ2
e ) = c − n

2
logσ2

e −
1

2

K∑

i=1

log |Σi| −
1

2σ2
e

K∑

i=1

(Yi −Xiβ)
T
Σ
−1
i (Yi −Xiβ). (6.7)

When θ and σ2
e are fixed, maximizing the log-likelihood with respect to β is equivalent to

minimizing the weighted least squares criterion

bβ = arg min
β∈Rp

K∑

i=1

(Yi −Xiβ)
T
Σ
−1
i (Yi −Xiβ).

The solution is the weighted least squares estimator

bβ(θ ) =
� K∑

i=1

XTiΣ
−1
i Xi

�−1 K∑

i=1

XTiΣ
−1
i Yi .

This estimator depends on θ but not onσ2
e . Next, maximize the profile likelihood ℓn( bβ(θ ),θ ,σ2

e )

with respect to σ2
e given θ . The estimator is the residual weighted least squares divided by

n:

bσ2
e (θ ) =

1

n

K∑

i=1

�
Yi −Xi
bβ(θ )
�T
Σ
−1
i

�
Yi −Xi
bβ(θ )
�
.

So, if the variance matrix Σi were known, the problem would be easy to solve.

Finally, take bβ(θ ) and bσ2
e (θ ), plug them into ℓn to get profile likelihood for θ

ℓ∗n(θ ) = ℓn( bβ(θ ),θ , bσ2
e (θ )),

and maximize it over θ . The form of this profile likelihood is very complicated; analytical

calculation of the score statistic and information matrix is possible only in simple special
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cases. The problem can be handled by numerical optimization methods that do not rely on

analytical derivatives.

In the next sections, we will develop a different approach to parameter estimation in

LME models that takes advantage of the random effects structure combined with a clever

decomposition of the log-likelihood.

6.3.2. Henderson’s mixed model equations

In this section, we will propose a method for joint estimation of regression parameters β

and random effects bi. At first, we will assume that the variance parameters are known.

Write the model in a single equation for all observations together

Y = Xβ +Zb + ǫ,

where X has n rows and p columns, Z has n rows and q∗ columns, b ∼ Nq∗(0,D∗), ǫ ∼
Nn(0,Λ∗), cov (b,ǫ) = 0, and Σ= varY = ZD∗Z

T +Λ∗.

This is a more general model; our single-level LME model can be obtained as a special

case with

q∗ = Kq, n=

K∑

i=1

ni, Y =




Y1
...

YK



 , X =




X1
...

XK



 , Z=




Z1 0 · · · 0

0 Z2 · · · 0
...

. . .
...

0 0 · · · ZK


 ,

b =




b1
...

bK



 , D∗ =




D 0 · · · 0

0 D · · · 0
...

. . .
...

0 0 · · · D


 , Λ∗ = σ

2
e In.

Consider D∗ and Λ∗ known and write the joint density of (Y , b) using

f (y , b;β) = f (y | b;β) f (b)

In our current model, the conditional distribution of Y given b is Nn(Xβ +Zb,Λ∗) and the

marginal distribution of the random effects b is Nq∗(0,D∗). Hence we take a product of these

two multivariate normal densities

f (y , b;β) = f (y | b;β) f (b) =
1

(2π)n/2 |Λ∗|1/2
exp
¦
−1

2
(y −Xβ −Zb)TΛ−1

∗ (y −Xβ −Zb)
©

× 1

(2π)q∗/2 |D∗|1/2
exp
¦
−1

2
bTD−1
∗ b
©

.
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6. Linear Mixed Effects Models

Plug in the observed data Y and treat the result as a likelihood for unknown parameters

(β , b). Maximize it jointly to obtain estimators of both β and b. This means minimizing

(Y −Xβ −Zb)TΛ−1
∗ (Y −Xβ −Zb) + bTD−1

∗ b.

This can be rewritten as a single quadratic form

( bβ , bb) = arg min
β ,b

�
Y −Xβ −Zb

b

�T�
Λ
−1
∗ 0

0 D−1
∗

��
Y −Xβ −Zb

b

�
.

and the problem has turned into minimizing weighted sum of squares

arg min
β ,b

��
Y

0

�
−
�
X Z

0 −Iq∗

��
β

b

��T�
Λ
−1
∗ 0

0 D−1
∗

���
Y

0

�
−
�
X Z

0 −Iq∗

��
β

b

��
.

Now remember that, with weighted least squares, the minimizer of (Y − Xβ)TW(Y −Xβ)
solves the system of equations (XTWX) bβ = XTWY . Apply this to our case to see that the

estimators ( bβ ,bb) satisfy the system of linear equations

�
XT 0

ZT −Iq∗

��
Λ
−1
∗ 0

0 D−1
∗

��
X Z

0 −Iq∗

�� bβ
bb

�
=

�
XT 0

ZT −Iq∗

��
Λ
−1
∗ 0

0 D−1
∗

��
Y

0

�
.

Calculate the product of three matrices on the left-hand side and the product of two matrices

on the right-hand side to get Henderson’s mixed model equations (Henderson 1984):

�
XTΛ−1

∗ X XTΛ−1
∗ Z

ZTΛ−1
∗ X Z

T
Λ
−1
∗ Z+D

−1
∗

��bβ
bb

�
=

�
XTΛ−1

∗ Y

ZTΛ−1
∗ Y

�
. (6.8)

Now, assuming that X and Z are of full rank, we can calculate the inverse of the matrix

on the left-hand side using the formula for an inverse of a 2× 2 block matrix. We will not

go through this calculation but only show the final solution

bβ =
�
XTΣ−1X
�−1�
XTΣ−1Y
�
,

bb = D∗ZTΣ−1(Y −X bβ),

where Σ= ZD∗Z
T +Λ∗.

The estimator for the fixed effects has the familiar weighted least squares form we have

already discovered. However, here we also obtained an estimator for the random effects.

Returning from the general multivariate normal model back to our single-level LME model

(realizing that Z, D∗, and Σ are all block-diagonal matrices), we can write the estimated

random effects for the i-th subject in the form

bbi = DZ
T
i (ZiDZ

T
i +σ

2
e Ini
)−1(Yi −Xi
bβ).

There are a few interesting properties of these estimators that can be shown to hold.
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6. Linear Mixed Effects Models

Note.

1. bβ is the best linear unbiased estimator (BLUE) and consistent estimator ofβ regardless

of the distribution of Y .

2. bb is the best linear unbiased predictor (BLUP) of b. This means that ∀c ∈ Rq∗ E (cTeb−
cTb)2 is minimized by bb among all zero-mean linear functions eb of Y .

3. bb is the posterior mean of b given Y and bβ (the prior mean is 0).

4. bb is a weighted average of 0 (the prior mean) and b estimated by weighted least

squares as fixed effects from the same data. bb is called shrinkage estimator because it

shrinks the estimated fixed effects towards zero.

The last note is revealing. Its meaning can be illustrated on the model with random inter-

cept and slope (Sec. 6.1.4). We mentioned that subject-specific intercept and slope can be

estimated by fixed effects, adding subjects as main effects (intercept) and subject-by-time in-

teraction (slope) into the model. If all subjects have at least two observations, we can obtain

estimates of these parameters by least squares. However, if we include subject-specific inter-

cept and slope as random effects and obtain their estimates by Henderson’s equations, we do

not obtain the same results as with fixed effects. The estimated subject-specific intercept will

be somewhere between the population intercept and the subject-specific intercept estimated

as a fixed effect. The same is true for the slope. Thus, Henderson’s equations somehow

“moderate” the fixed effect estimates, reduce their “extremeness” towards the population

means, “shrink” them. Henderson’s random effect estimates for the slope also work for

subjects that have only one observation (their individual slope is simply set equal to the

overall population slope). Random effects can be estimated even if the subjects do not have

sufficient data to estimate subject-specific fixed effects.

Denote

C ≡
�
C11 C12

C21 C22

�
=

�
XTΛ−1

∗ X XTΛ−1
∗ Z

ZTΛ−1
∗ X Z

T
Λ
−1
∗ Z+D

−1
∗

�−1

.

It can be shown that C11 =
�
XTΣ−1X
�−1

.

The next proposition summarizes some additional properties of Henderson’s estimates.

All of them hold for known variance parameters. In practice, variance parameters are un-

known and must be replaced by estimates. In that case, the claims of the proposition are no

longer true but they will be “approximately correct” as the number of subjects K grows to

infinity.

Proposition 6.2. (Henderson 1984) Suppose D∗ and Λ∗ are known. Then

(i) bb maximizes cor (eb, b) among all linear unbiased predictors eb.

(ii) E
�
b
��bb
�
= bb.

(iii) varA bβ = AC11A
T = A
�
XTΣ−1X
�−1
AT.
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6. Linear Mixed Effects Models

(iv) cov ( bβ ,bb) = 0, cov ( bβ , b) = −C21.

(v) varbb = cov (bb, b) = D∗ −C22.

(vi) var (bb − b) = C22. ♦

We omit the proofs of all the six statements of this proposition.

Corollary. For a single-level LME model with known D and σ2
e , the following holds:

(i) var bβ =
�∑K

i=1X
T
iΣ
−1
i
Xi

�−1
,

(ii) varbbi = DZ
T
i

�
Σ
−1
i
−Σ−1

i
Xi

�∑K
i=1X

T
iΣ
−1
i
Xi

�−1
XTiΣ

−1
i

�
ZiD,

(iii) var (bbi − bi) = D− varbbi.

The first statement of the corollary is straightforward and could be arrived at by simpler

route. The second statement is useful for assessing uncertainty in the estimated random

effects. But since no derivation is provided you are not expected to remember the formula.

It is shown as a reference. The end of

lecture 22

(May 13)
6.3.3. Maximum likelihood estimation of variance parameters

Using the random effects structure, we can express the likelihood in a more convenient form.

By conditioning on the random effects, the likelihood function for a single-level LME model

can be rewritten as follows

L(β ,θ ,σ2
e | Y ) =

K∏

i=1

f (Yi | β ,θ ,σ2
e ) =

K∏

i=1

∫
f (Yi | bi,β ,σ2

e ) f (bi | θ ,σ2
e ) dbi,

where

f (Yi | bi,β ,σ2
e ) =

1

(2πσ2
e )

ni/2
exp
¦
− 1

2σ2
e

‖Yi −Xiβ −Zibi‖2
©

and

f (bi | θ ,σ2
e ) =

1

(2π)q/2 |D|1/2
exp
¦
−1

2
bT

i D
−1bi

©
=

=
1

(2πσ2
e )

q/2 |∆|−1
exp
¦
− 1

2σ2
e

‖∆bi‖2
©

,

where∆ is a relative precision factor matrix of size q×q such that |∆|> 0 and∆T
∆ = σ2

eD
−1.

Plug this into the likelihood to get

L(β ,θ ,σ2
e | Y ) =

K∏

i=1

|∆|
(2πσ2

e )
ni/2

∫
1

(2πσ2
e )

q/2
exp
¦
− 1

2σ2
e

�
‖Yi −Xiβ −Zibi‖2+‖∆bi‖2

�©
dbi.
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Now merge the two squared norms into one by the same trick that was used in the derivation

of Henderson’s equations. Define

eYi =

�
Yi

0

�
, eXi =

�
Xi

0

�
, and eZi =

�
Zi

∆

�
.

All of them now have ni + q rows. Then the likelihood can be written as

L(β ,θ ,σ2
e | Y ) =

K∏

i=1

|∆|
(2πσ2

e )
ni/2

∫
1

(2πσ2
e )

q/2
exp
¦
− 1

2σ2
e

eYi − eXiβ − eZibi

2© dbi. (∗)

For fixed β , the Euclidean norm
eYi − eXiβ − eZibi

2 is minimized over bi for

bbi = (eZTi eZi)
−1eZTi (eYi − eXiβ), (∗∗)

which is basically the least squares estimator for regression matrix eZi and response eYi− eXiβ .

Because

eZTi (eYi − eXiβ − eZi
bbi) = eZTi (eYi − eXiβ)− eZTi eZi

bbi
(∗∗)
= 0,

we can write

eYi − eXiβ − eZibi

2 =
eYi − eXiβ − eZi
bbi


2

+ (bi − bbi)
TeZTi eZi(bi − bbi).

The first term does not involve bi so it gets factored out of the integral in (∗). The rest of

the integral turns into

∫
1

(2πσ2
e )

q/2
exp
¦
− 1

2σ2
e

(bi − bbi)
TeZTi eZi(bi − bbi)
©

dbi.

But this is almost the integral of the multivariate normal density except that the square root

of the determinant of the variance matrix is missing. So we add it in to make the integral

one and get

∫
1

(2πσ2
e )

q/2
exp
¦
− 1

2σ2
e

(bi − bbi)
TeZTi eZi(bi − bbi)
©

dbi =
1q
|eZT

i
eZi|

. (6.9)

Because
��eZTi eZi

�� =
��ZTi Zi +∆

T
∆

��, we get

L(β ,θ ,σ2
e | Y ) =

1

(2πσ2
e )

n/2
exp
¦
− 1

2σ2
e

K∑

i=1

eYi − eXiβ − eZi
bbi


2© K∏

i=1

|∆|q��ZT
i
Zi +∆

T∆

�� .

This can be maximized in three steps:
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1. For fixed θ and σ2
e , minimize
∑K

i=1

eYi − eXiβ − eZibi

2 jointly with respect to β and

bi. Henderson’s equations provide explicit formulae for bβ(θ ,σ2
e ) and bbi(θ ,σ2

e ).

2. Maximize L( bβ(θ ,σ2
e ),θ ,σ2

e ) with respect to σ2
e for fixed θ . This step yields

bσ2
e (θ ) =

1

n

K∑

i=1

eYi − eXi
bβ − eZi
bbi


2

.

3. Plug bβ , bbi, and bσ2
e into L(· | Y ) and get the profiled likelihood

L∗(θ ) = L( bβ(θ ),θ , bσ2
e (θ ) | Y ) =

exp{−n/2}
(2πbσ2

e (θ ))
n/2

K∏

i=1

|∆|q��ZT
i
Zi +∆

T∆

�� .

The profile log-likelihood is

ℓ∗(θ ) = log L∗(θ ) = −1

2

�
n+n log2π+n log bσ2

e (θ )−2K log |∆|+
K∑

i=1

log
��ZTi Zi +∆

T
∆

���.

This can be simplified further by QR and/or Choleski decompositions. Once the MLE
bθ is found, it is plugged into bσ2

e (
bθ ) and then into bβ(bθ , bσ2

e ) and bbi(
bθ , bσ2

e ). For details,

see Jennrich and Schluchter (1986) and Lindstrom and Bates (1988).

6.3.4. Restricted maximum likelihood (REML) estimation of variance

parameters

The main idea of REML is to get rid of the fixed effects before the variance parameters are

estimated. There are two different ways to derive REML estimators, which lead to the same

result. Both derivations are shown for the general case Y ∼ Nn(Xβ ,σ2
eΣ). The single-level

LME model is a special case of this model.

Derivation of REML estimators by zero-mean contrasts

The REML method was first proposed by Patterson and Thompson (1971), who took the

following strategy to derive it. Take a matrix A such that EAY = 0 and use the likelihood of

AY instead of the likelihood of Y .

The matrix In−X(XTΣ−1X)−1XTΣ−1 generates the residuals of weighted least squares,

is idempotent and has rank n− p. Take A a (n− p)× n matrix such that

ATA = In −X(XTΣ−1X)−1XTΣ−1 and AAT = In−p.

Since ATAX = 0 then also AX = 0 and EAY = AXβ = 0. We have

AY ≡ YA ∼ Nn−p(0,σ2
eAΣA

T).
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6. Linear Mixed Effects Models

Take G = (XTΣ−1X)−1XTΣ−1. It is a p × n matrix such that GX = Ip, GY = bβ (the WLS

estimator of β) and

GY ≡ bβ ∼ Np(β ,σ2
e (X

T
Σ
−1X)−1).

The random vector (YA, bβ) is a linear one-to-one transformation of Y , hence it is multivariate

normal. Because cov (AY ,GY ) = 0, the components AY and GY are independent.

Because of independence, the joint density of f
YA, bβ of (YA, bβ) is the product of the

marginal densities fYA
and f bβ , so we can express fYA

= f
YA, bβ/ f bβ . Instead of this ratio, we

take fY/ f bβ and use it as a likelihood function for estimating σ2
e and θ .

We have

fY (y) =
1

(2πσ2
e )

n/2

1

|Σ|1/2
exp

§
− 1

2σ2
e

(y −Xβ)TΣ−1(y −Xβ)
ª

. (6.10)

and

f bβ (
bβ) = 1

(2πσ2
e )

p/2

��XTΣ−1X
��1/2 exp

§
− 1

2σ2
e

( bβ −β)TXTΣ−1X( bβ −β)
ª

.

Realizing that XTΣ−1(Y −X bβ) = 0, we get

(Y −Xβ)TΣ−1(Y −Xβ) = (Y −X bβ)TΣ−1(Y −X bβ) + ( bβ −β)TXTΣ−1X( bβ −β). (6.11)

The ratio fY (Y )/ f bβ (
bβ), simplified by the equality (6.11), does not depend on β . We call it

the restricted (residual) likelihood. It is not a proper likelihood because the ratio of densities

in not in general a density.

Definition 6.3. The restricted (REML) likelihood is

LR(θ ,σ2
e ) =

1

(2πσ2
e )
(n−p)/2

|Σ|−1/2
��XTΣ−1X
��−1/2×

× exp
¦
− 1

2σ2
e

(Y −X bβ)TΣ−1(Y −X bβ)
©

. ∇

Note. The REML log-likelihood is

ℓR(θ ,σ2
e ) = C − n− p

2
logσ2

e −
1

2
log |Σ| − 1

2
log
��XTΣ−1X
��

− 1

2σ2
e

(Y −X bβ)TΣ−1(Y −X bβ), (6.12)

where Σ and bβ depend on θ . It differs from the marginal log-likelihood (6.7) as follows:

ℓR(θ ,σ2
e ) = ℓn( bβ(θ ),θ ,σ2

e ) +
p

2
logσ2

e −
1

2
log
��XTΣ−1X
��+ C1.
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Maximizing (6.12) over σ2
e for fixed θ yields the following REML estimator of σ2

e

bσ2
e (θ ) =

1

n− p
(Y −X bβ)TΣ−1(Y −X bβ).

This differs from the MLE by the subtraction of the number of parameters p from the number

of observations n in the denominator. Unlike the MLE, the REML estimator is unbiased

when θ is known and agrees with the usual unbiased estimator of residual variance in linear

models.

Repeating the steps leading to the derivation of the usual profile likelihood in Sec-

tion 6.3.3, we end up with REML profile log-likelihood for estimating θ in the single-level

LME model written in the form

ℓ∗R(θ ) = ℓR(θ ,σ2
e (θ )) = −

1

2

�
(n− p) log bσ2

e (θ )− 2K log |∆|+

+

K∑

i=1

log
��ZT

i Zi +∆
T
∆

��+ log

�����
K∑

i=1

XTiΣ
−1
i Xi

�����

�
+ C1.

This is maximized to obtain the REML estimator bθR of of θ .

Next, we calculate bσ2
e (
bθR) and, finally, bθR is plugged into the weighted least squares

estimator to obtain bβ .

Derivation of REML estimators by integration over β

This is a completely different way to derive REML estimators, which nevertheless leads to

the same result. It was proposed by Harville (1974).

We want to get rid of the unknown β in the likelihood. We can do this by averaging

the density of Y over all possible values of β and take the result as a new likelihood for

estimation of σ2
e and θ .

So the idea is to take

LR(θ ,σ2
e ) =

∫
L(β ,θ ,σ2

e ) dβ .

This can be also viewed in a Bayesian context. Consider β random and assign a non-

informative improper prior density h(β) = 1 on Rp to the random β . Calculating the expec-

tation of L(β ,θ ,σ2
e ) over β yields LR(θ ,σ2

e ).

We will show that this likelihood is the same as the REML likelihood from Definition 6.3.

We need to calculate

∫
L(β ,θ ,σ2

e ) dβ =

∫
fY (Y ;β ,θ ,σ2

e ) dβ ,
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where fY (y) is defined by (6.10). From the decomposition (6.11), we get

∫
fY (Y ;β ,θ ,σ2

e ) dβ =
1

(2πσ2
e )

n/2

1

|Σ|1/2
exp
¦
− 1

2σ2
e

(Y −X bβ)TΣ−1(Y −X bβ)
©
×

×
∫

exp

§
− 1

2σ2
e

( bβ −β)TXTΣ−1X( bβ −β)
ª

dβ . (6.13)

Using the same trick as in (6.9), we can see that

∫
exp

§
− 1

2σ2
e

( bβ −β)TXTΣ−1X( bβ − β)
ª

dβ = (2πσ2
e )

q/2
��XTΣ−1X
��−1/2

.

Thus, the expression calculated from (6.13) is the same as the restricted likelihood in Defi-

nition 6.3. Both approaches to deriving REML estimators lead to the same result.

6.3.5. Comparison of REML versus ML estimators

To understand REML estimation, one has to realize three important facts:

• REML likelihood only estimates the variance parameters, not the fixed effects;

• REML likelihood is not a proper likelihood;

• the difference between REML likelihood and ordinary likelihood is asymptotically neg-

ligible.

We can summarize the strengths and weaknesses of REML (relative to MLE) as follows:

Advantages of REML

• The variance estimators agree with those used in the analysis of variance and linear

regression.

• Under certain conditions (balanced design), REML estimators of variance parameters

are unbiased.

Disadvantages of REML

• Because of the extra term
��XTΣ−1X
��−1/2

in REML likelihood, the estimates of σ2
e and

θ depend on the parametrization of the fixed part of the model.

Consider X 6= X∗ such thatM (X) =M (X∗). If MLE is used, then the likelihood, vari-

ance parameter estimates, residuals, and fitted values, are the same for both parametriza-

tions. If REML is used, then the likelihood, variance parameter estimates, residuals,

and fitted values differ even though the two models are equivalent.
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• REML likelihood (or any quantity derived from the likelihood, e.g. AIC or BIC) can-

not be used to compare two models with different fixed effects structures or even

parametrizations of fixed effects.
The end of

lecture 23

(May 20)

6.4. Hypothesis Testing and Confidence Intervals

6.4.1. Asymptotic approach based on MLE theory

It can be shown that in the single-level LME model the terms that express the difference

between the regular likelihood and REML likelihood vanish as the number of groups K grows.

Thus, the asymptotic theory for ML and REML estimators is the same, with some exceptions

explained below.

Theorem 6.3. If the model holds and regularity assumptions for the MLE theory are satis-

fied

(i) The estimators bβ , bσ2
e and bθ are consistent as K →∞.

(ii) Let r be the dimension of θ . Then

p
K




bβ −β
bσ2

e −σ2
e
bθ − θ



 D−→ Np+r+1(0, I−1) as K →∞,

where I is the Fisher information matrix with the following structure

I =




Iβ 0 0

0 Iσ2
e

Iσ2
e ,θ

0 Iθ ,σ2
e

Iθ



 .

(iii) Let M be a model, ℓM its log-likelihood, and bβ , bσ2
e , and bθ parameter estimates.

Let S be a submodel, ℓS its log-likelihood, and eβ , eσ2
e , and eθ parameter estimates.

If the submodel holds and if the submodel does not specify parameters to be at the

boundary of the parameter space then

LR= 2[ℓM (
bβ , bσ2

e , bθ )− ℓS(
eβ , eσ2

e , eθ )] D−→ χ2
m,

where m is the difference in the number of parameters between the model M and the

submodel S. ♦

The meaning of Theorem 6.3 needs to be carefully explained in a series of important

notes.

Note.
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1. The asymptotic results require that the number of independent groups K grows to

infinity. It is not enough to keep K bounded and to increase all ni.

2. Estimation of fixed effects:

•
p

K( bβ−β) D−→ Np(0, I−1
β
) as K →∞ if the model holds, where Iβ = EXTiΣ

−1
i
Xi/σ

2
e .

• bβ is consistent even if the random part of the model is incorrectly specified but

its asymptotic variance is different from I−1
β

.

• If the model holds then the asymptotic variance I−1
β

can be consistently estimated

by
� 1

K

K∑

i=1

XTi (bσ2
e Ini
+Zi D(bθ )ZTi )−1Xi

�−1
.

3. Likelihood ratio tests:

• Theorem 6.3(iii) also holds for REML log-likelihood as long as the fixed part X is

the same in the model as in the submodel.

• Likelihood ratio tests for reduction in the dimension of β (tests of the fixed part

of the model) are not recommended because of slow convergence to the limiting

χ2 distribution; these tests are more suitable for testing variance components.

• Theorem 6.3(iii) does not hold when the submodel involves a removal of a vari-

ance component. This issue is discussed in more detail in the next section.

6.4.2. Likelihood ratio tests

Likelihood ratio tests are not recommended for testing hypotheses about β but they are

useful for testing hypotheses about variance components (functions of θ ). However, vari-

ance component testing frequently violates the regularity assumptions of MLE theory, which

makes the asymptotic distribution of the LR test statistic specified by Theorem 6.3(iii) in-

valid.

Consider a model with a single random intercept bi added to the linear predictor de-

scribing the fixed part of the model. Let the variance of bi be denotedσ2
b
≥ 0. The parameter

space for the variance component σ2
b

is not an open set because it includes the zero value.

Indeed, testing the presence of the random intercept in the model is equivalent to testing

the hypothesis H0 : σ2
b
= 0 against the alternative H1 : σ2

b
> 0. The null hypothesis specifies

a value of the parameter σ2
b

that lies at the border of the parameter space. Because of this,

the LR test statistic comparing log-likelihoods with and without the random intercept does

not converge to the usual χ2
1 distribution.

This problem persists in all likelihood ratio tests about a removal of a variance compo-

nent (which reduces the dimension of θ from q to q − m). Such test statistics violate the

conditions of Theorem 6.3(iii) and do not have asymptotic χ2
m distribution.
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6. Linear Mixed Effects Models

We provide several examples of the true limiting distributions of likelihood ratio test

statistics in important special cases addressed by Stram and Lee (1994; 1995). Proofs are

omitted. Recall that D = var bi and consider a few important hypotheses about D.

1. H0 : D = 0 against H1 : D = d11 > 0

This is a test for the presence of a single variance component, the number of tested

parameters is m = 1. If the null hypothesis is true then LR
D−→ Z where the random

variable Z is distributed as an equal mixture of the constant 0 and the χ2
1

distribution.

If the observed value of the LR test statistic is λ the correct asymptotic P-value for the

LR test can be calculated as 0.5P
�
χ2

1
≥ λ
�
.

2. H0 : D =

�
D11 0

0T 0

�
against H1 : D =

�
D11 d12

dT
12 d22

�
,

where the dimension of D11 is q × q and d22 > 0 is a scalar. This is a test for adding a

single variance component to q > 0 existing ones, the number of tested parameters is

m = q + 1. If the null hypothesis is true then LR
D−→ Z where the random variable Z

is distributed as an equal mixture of the χ2
q and the χ2

q+1 distributions.

The correct asymptotic P-value for the LR test is 0.5P
�
χ2

q ≥ λ
�
+ 0.5P
�
χ2

q+1 ≥ λ
�
.

3. H0 : D =

�
D11 0

0T 0

�
against H1 : D =

�
D11 D12

DT12 D22

�
,

where the dimension of D11 is q × q and the dimension of D22 > 0 is k × k. This is

a test for adding k variance components to q > 0 existing ones, the number of tested

parameters is m = k(k+1)/2+ qk. If the null hypothesis is true then LR
D−→ Z where

the random variable Z is distributed as an unequal mixture of χ2 distributions, all of

them with degrees of freedom not larger than k(k + 1)/2 + qk. The weights in the

limiting mixture are rather difficult to calculate.

In all these special cases, the true limiting distribution of the LR statistic is stochastically

smaller than the asymptotic distribution χ2
m implied by Theorem 6.3(iii). Therefore, the

critical values and p-values based on the standard MLE theory are larger than the true critical

values and p-values. Likelihood ratio tests of variance components based on standard MLE

theory are conservative; they provide tests with true level much smaller than the desired α

and have much smaller power to detect deviations from the null hypothesis.

6.4.3. t tests and F tests for fixed effects

Suppose Σ is known and take bβ = (XTΣ−1X)−1(XTΣ−1Y ). Consider the problem of estima-

tion and testing linear combinations cTβ of fixed effects for some vector of constants c 6= 0.
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6. Linear Mixed Effects Models

Suppose that σ2
e is known, too. Then it is easy to show that for any c 6= 0

cT bβ − cTβÆ
σ2

e cT(XTΣ−1X)−1c
∼ N(0,1).

This could be used to test H0 : cTβ = c0 and build exact confidence intervals for cTβ if the

true variance parameters were known.

Now let σ2
e be unknown and use the REML estimator

bσ2
e =

1

n− p
(Y −X bβ)TΣ−1(Y −X bβ).

Then it is equally easy to show that for any c 6= 0

cT bβ − cTβÆ
bσ2

e cT(XTΣ−1X)−1c
∼ tn−p.

This could be used to test H0 : cTβ = c0 and build exact confidence intervals for cTβ if Σ

were known and σ2
e unknown.

With both Σ and σ2
e unknown, take ML or REML estimators bΣ and bσ2

e of Σ and σ2
e ,

respectively and redefine bβ = (XTbΣ−1X)−1(XTbΣ−1Y ). By Theorem 6.3(ii) and the note

below it,

cT bβ − cTβq
bσ2

e cT(XTbΣ−1X)−1c

D−→ N(0,1)

for any c 6= 0. However, the asymptotics requires K →∞ and the approximation may not

work well in practical data analyses. Unfortunately, it is no longer possible to obtain the

exact small-sample distribution of the left hand side.

There are several options for better approximations of the small-sample distribution

than by standard normal:

• Use tn−p as if Σ were known. This is implemeted in the R library nlme.

• Use a better approximation t bf , where bf is calculated from the data.

– Satterthwaite approximation (Satterthwaite 1946)

– Kenward-Roger approximation (Kenward and Roger 1997)

These approximations should be more precise than tn−p. Kenward-Roger approxima-

tion is the preferred one. Both are implemeted in the SAS procedure proc MIXED.

Now take a fixed m × p matrix A, where m < p, r(A) = m. Consider the problem of

testing the hypothesis H0 : Aβ = γ0 against H1 : Aβ 6= γ0, where γ0 is some vector of

constants, usually zeros.
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If σ2
e and Σ are known then

A bβ ∼ Nm

�
Aβ ,σ2

eA(X
T
Σ
−1X)−1AT
�

and

(A bβ −Aβ)T
�
σ2

eA(X
T
Σ
−1X)−1AT
�−1
(A bβ −Aβ) ∼ χ2

m.

If σ2
e is unknown and Σ is known then

F =
1

m
(A bβ −Aβ)T
�
bσ2

eA(X
T
Σ
−1X)−1AT
�−1
(A bβ −Aβ) ∼ Fm,n−p.

If σ2
e and Σ are unknown then the statistic F does not have exact Fm,n−p distribution but

it can be used as an approximation valid for large K . This is implemented in R library

nlme. Alternatively, one can use an approximation Fm,bf , where bf is calculated from the

data (Satterthwaite approximation). However, bf is different from and more complicated

than bf used in the t-test.

Satterthwaite approximation for t-test

Let us briefly describe how Satterthwaite approximation for t-test can be obtained.

Write

cT bβ − cTβq
bσ2

e cT(XTbΣ−1X)−1c
=

cT bβ−cTβp
σ2

e cT(XTΣ−1X)−1cs
f bσ2

e cT(XTbΣ−1X)−1c

σ2
e cT(XTΣ−1X)−1c

1
f

.

The numerator has standard normal distribution. To show that the distribution of this statis-

tic can be approximated by χ2
f
, we seek constants f and ψ such that

f bσ2
e cT(XTbΣ−1X)−1c

ψ

·∼ χ2
f .

We use the method of moments to find f and ψ from the two equations

f

ψ
E bσ2

e cT(XTbΣ−1X)−1c = f ,

f 2

ψ2
var bσ2

e cT(XTbΣ−1X)−1c = 2 f .

We get

f =
2
�
E bσ2

e cT(XTbΣ−1X)−1c
�2

var bσ2
e cT(XTbΣ−1X)−1c

.
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6. Linear Mixed Effects Models

Hence the number of degrees of freedom f is estimated by bf = (2bE2)/bV , where

bE = bσ2
e cT(XTbΣ−1X)−1c

df
= h(bσ2

e , bθ ),
bV = bg TbI−1bg ,

bI−1 is the estimated covariance matrix of (bσ2
e , bθ T)T, and

bg = ∂

∂ (σ2
e ,θ )

h(bσ2
e , bθ ).

The end of

lecture 24

(May 20)6.5. Extended Linear Mixed Effects Model

6.5.1. Introduction

So far we have considered the model

Yi = Xiβ +Zibi + ǫi, i = 1, . . . , K ,

where bi ∼ Nq(0,D) and ǫi ∼ Nni
(0,σ2

e Ini
).

Now we remove the assumption of independence and homoskedasticity on the residual

terms and assume instead

ǫi ∼ Nni
(0,σ2

eΛi),

where Λi is ni × ni positive definite matrix parametrized by a vector of parameters λ of a

fixed dimension. Marginally,

Yi ∼ Nni
(Xiβ ,ZiDZ

T
i +σ

2
eΛi).

Thus, a part of the variance and covariance structure is ascribed to the random effects

bi, another part is ascribed to the residual terms ǫi. For a given covariance structure, there

may be multiple ways to partition it between the random effects and residual terms, so one

has to be careful with the specification of this model to make sure that all the parameters

are identifiable.

6.5.2. Parameter estimation

There exists an invertible square root of Λi such that

Λi = (Λ
1/2
i
)TΛ

1/2
i

and Λ
−1
i = Λ

−1/2
i
(Λ
−1/2
i
)T.

Transform the observations, regressors and residual terms

Y ∗i = (Λ
−1/2
i
)TYi , X

∗
i = (Λ

−1/2
i
)TXi, Z

∗
i = (Λ

−1/2
i
)TZi, ǫ∗i = (Λ

−1/2
i
)Tǫi.
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6. Linear Mixed Effects Models

Then varǫ∗i = σ
2
e Ini

and Y ∗i satisfy the standard one-level LME model

Y ∗i = X
∗
iβ +Z

∗
i bi + ǫ

∗
i .

The Jacobian of the transformation is |Λi |−1/2. The likelihood of the extended LME model is

L(β ,θ ,σ2
e ,λ | Y ) = L(β ,θ ,σ2

e ,λ | Y ∗)
K∏

i=1

|Λi|−1/2 .

The first part is the likelihood of the standard LME model. The same holds for REML:

LR(θ ,σ2
e ,λ | Y ) = LR(θ ,σ2

e ,λ | Y ∗)
K∏

i=1

|Λi |−1/2 .

The parameters are estimated by the same decompositions of the log-likelihood as be-

fore, with an additional term −1/2
∑K

i=1 log |Λi |.

6.5.3. Generalized least squares

Consider a special case of the extended LME model with no random effects

Y = Xβ + ǫ.

where ǫ ∼ Nn(0,σ2
eΛ). Suppose λ is known. Then

Y ∗ = X∗β + ǫ∗

satisfies the classical linear model. The LSE of β is bβ(λ) =
�
(X∗)TX∗
�−1
(X∗)TY ∗. The pa-

rameter σ2
e is estimated by the residual sum of squares

bσ2
e (λ) =

1

n− p

Y ∗ −X∗ bβ(λ)


2

.

(this is REML estimator). Plug this into the likelihood to get

ℓM (λ) = C − n log

Y ∗ −X∗ bβ(λ)
− 1

2
log |Λ|

and maximize it over λ to get the MLE. Or use the REML log-likelihood

ℓR(λ) = C − (n− p) log

Y ∗ −X∗ bβ(λ)
− 1

2
log |Λ| − 1

2
log
��(X∗)TX∗
��

and maximize it over λ to get the REML estimator.

This method is called generalized least squares.
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6. Linear Mixed Effects Models

6.5.4. Decomposing variance structure

The ability to specify arbitrary Λi (subject to identifiability assumption) allows to include in

the model correlated residual terms with time series or spatial structure and/or to model

unequal variances of residual terms.

Decompose

ǫi j =Wi j +ηi j ,

where ηi j are independent variables with equal variance σ2
e and Wi j are values of a random

Gaussian processes with zero mean, independent of ηi j . We can take, for example:

• Wi j = Wi( j) random processes in discrete time ( j = 1, . . . , ni are indices of ordered

observations within subject), independent between subjects.

• Wi j =Wi(t i j) random processes in continuous time (t i j is the time of the observation

Yi j), independent between subjects.

• Wi j = Wi(ui j , vi j) random fields on the plane ([ui j , vi j] are the coordinates of the ob-

servation Yi j), independent between subjects.

Consider Wi j =Wi(t i j) as an example. Let Wi(t) be weakly stationary with EWi(t) = 0,

varWi(t) = τ
2, cor (Wi(t),Wi(s)) = ρ(|t − s|). Then the variance is decomposed into three

components

varYi j = ZT

i jDZi j +τ
2 +σ2

e ,

the random effects variance ZT
i jDZi j that depends on regressors Zi j, the variance of the serial

component τ2 and the white noise variance σ2
e . The covariance has two components

cov (Yi j, Yik) = ZT
i jDZik +τ

2ρ(
��t i j − t ik

��).

Denote by Ri the correlation matrix of (Wi(t i1), . . . ,Wi(t ini
)). We get

varYi = ZiDZ
T
i +τ

2Ri +σ
2
e Ini

and

Λi =
τ2

σ2
e

Ri + Ini
.

The process Wi(t) is chosen to generate the desired autocorrelation function, for exam-

ple

• exponential correlation ρ(u) = exp{−λu}
• Gaussian correlation ρ(u) = exp{−λu2}
• compound symmetry ρ(u) = λ (beware nonidentifiability of the random intercept)

• AR(1) process Wi j = λWi, j−1 + νi j , with correlations ρ(u) = λ| j−k|

• ARMA(p,q) process

For spatial correlations, one can take some distance function d (Euclidean, L1, maximal)

and calculate distances between measurements di jk = d([ui j , vi j], [uik, vik]). Then specify
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6. Linear Mixed Effects Models

ρ(d), the correlation between two measurements taken at the distance d of each other, for

example

• exponential correlation ρ(d) = exp{−λd}
• Gaussian correlation ρ(d) = exp{−λd2}
• linear correlation ρ(d) = (1−λd)1(d < 1/λ)

There are graphical methods for the choice of the right correlation structure (sample au-

tocorrelation function, sample variogram). For more details, see Diggle et al. (2002, Chap-

ter 5).

6.6. Comparison of LME and GEE Approaches

Group-dependent data with linear mean structure can be analyzed either by LME or by GEE

methods. Both methods provide consistent estimators of mean effects β as long as the mean

structure is correct and the number of independent groups K grows to infinity.

However, LME and GEE differ in some important aspects:

LME

• specifies a detailed model for varYi

• assumes normality of bi and ǫi

• yields important information on the variance structure (decomposition of variance,

estimates of variance components, random effects, hypotheses tests about variance

structure)

• inference on β (tests, confidence intervals) is invalid if the variance structure is not

correctly specified

• needs relatively large K , its performance when K is moderate or small is uncertain

GEE

• uses a working model for var Yi, which is not assumed to be correct

• does not make assumptions on the distribution of Yi

• does not provide much information on the variance structure

• inference on β is valid even if the working variance structure is incorrect, as long as

K is large enough

• needs relatively large K , fails when K is small The end of

lecture 25

(May 27)
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7. Generalized Linear Mixed Models

7.1. Model and Assumptions

Again, we observe K independent random vectors Y1, . . . , YK , where

Yi = (Yi1, . . . , Yini
)T, i = 1, . . . , K .

In this chapter, we develop a model for non-normal group-dependent data by introducing

random effects into the generalized linear model.

Definition 7.1. The data Yi satisfy the generalized linear mixed model∗ [GLMM] if

1. Y1, . . . , YK are independent.

2. There exist unobserved iid q-dimensional random vectors bi with density h(b;ψ)

parametrized by an s-dimensional parameterψ such that Yi1, . . . , Yini
are conditionally

independent given bi and the conditional density of Yi j given bi has the form of the

GLM

f (y | bi) = exp

§
y θi j − b(θi j)

ϕ
+ c(y,ϕ)

ª
.

3. The canonical parameter θi j depends on the p-dimensional fixed effects covariates Xi j ,

fixed regression parameters β ∈ Rp, random effects covariates Zi j of dimension q ≤ p,

and random effects bi through the linear predictor

ηi j = XT
i jβ + ZT

i j bi. ∇

4. There exists a link function g such that g(µi j) = ηi j , where µi j = b′(θi j)≡ E
�
Yi j

��bi

�
.

Note.

• Conditionally on bi, the response Yi j satisfies the GLM. The presence of the common

bi in all Yi1, . . . , Yini
brings in within-group correlations.

• The random effects covariates Zi j are usually taken as a subset of the fixed effects

covariates Xi j .

∗ Česky zobecněný lineární smíšený model
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• Commonly, the random effects are assumed to be normally distributed

bi ∼ Nq(0,D),

where the covariance matrix D is parametrized by a vector of parameters ψ. Then

h(b;ψ) is a multivariate normal density.

Note. The conditional moments of Yi j given bi are

E
�
Yi j

��bi

�
= g−1(XT

i jβ + ZT
i j bi)

var
�
Yi j

��bi

�
= ϕV (µi j),

where V (µ) = b′′(θ) is the variance function. The expectation of Yi j given the covariates is

EYi j = EE
�
Yi j

��bi

�
= E g−1(XT

i jβ + ZT
i j bi),

where the expectation on the right-hand side is over the distribution of the random effects

(conditionally on all covariates). Unless g is linear, the distribution of Yi j given the covariates

does not follow the generalized linear model.

7.2. Parameter Estimation

The likelihood for data that satisfy Definition 7.1 can be written as

L(β ,ψ | Y ) =
K∏

i=1

∫ ni∏

j=1

f (Yi j | β , bi)h(bi |ψ) dbi.

Unlike in the linear mixed effects model, here the integral cannot be calculated explicitely

even if h is normal.

If the link g is canonical and h is multivariate normal, the likelihood can be expressed

as

L(β ,ψ | Y ) =
K∏

i=1

(2π)−q/2 |D|−1/2×

×
∫

exp

§
1

ϕ

�
Y T

i (Xiβ +Zibi)− 1T

ni
b(Xiβ +Zibi)
�
+ 1T

ni
c(Yi ,ϕ)−

1

2
bT

i D
−1bi

ª
dbi,

where the functions b and c are applied to vectors by element-by-element calculation. The

log-likelihood has the form

ℓ(β ,ψ | Y ) = −K

2
log |D|+

K∑

i=1

log

∫
exp
¦
· · ·
©

dbi + C .
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Many different approaches have been suggested to maximize ℓ(β ,ψ | Y ), the use of the

Laplace approximation is one among them.

The Laplace approximation is

∫

Rq

eQ(b)db ≈ (2π)q/2
���−Q′′(eb)
���
−1/2

exp{Q(eb)},

where eb is the point where the maximum of the function Q is attained. This approximation is

obtained by replacing Q in the integrand by the second order Taylor expansion of Q around
eb and integrating the exponentiated quadratic function as a Gaussian density.

After plugging the Laplace approximation into the log-likelihood, the integral disappears

and the resulting expression can be maximized using a combination of a modified IWLS

algorithm for estimating β , modified Henderson’s equations for estimating bi, and moment

estimation for ψ and ϕ. There are many different approaches to implementing these ideas.

The calculations that need to be performed and the development of formulas and algorithms

are rather tedious.

One of approaches leads to the following estimation procedure. At each iterative step,

using the parameter estimates obtained at the previous step, calculate successively:

1. The IWLS step:
bβ = (XTÒW−1X)−1XTÒW−1 bY ∗,

where

ÒW=




ÒW1 · · · 0

0
. . . 0

0 · · · ÒWK



 , ÒWi = diag { bϕV (bµi j)[g
′(bµi j)]

2}ni

j=1
+Zi
bDZTi

and bY ∗i j = g(bµi j) + (Yi j − bµi j)g
′(bµi j).

2. The Henderson step:
bbi = bDZTi ÒW−1

i (
bY ∗i −Xi
bβ).

3. Moment estimation of an unstructured D:

bD = 1

K

K∑

i=1

bE(bi b
T

i ) =
1

K

K∑

i=1

�bE(bi | Yi)]
⊗2 +

1

K

K∑

i=1

Óvar(bi | Yi) =

=
1

K

K∑

i=1

bb⊗2
i +

1

K

K∑

i=1

Óvar(bi | bbi).

The last term is calculated according to Proposition 6.2.
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7.3. Interpretation

Recall that

E
�
Yi j

��bi

�
= g−1(XT

i jβ + ZT
i j bi) (7.1)

and

EYi j = E g−1(XT
i jβ + ZT

i j bi). (7.2)

Thus, β in (7.1) expresses the effect of Xi j on EYi j conditionally on bi, that is, when

the latent characteristics of the subject do not change. These effects are called the subject-

specific effects. They describe the effects on E
�
Yi j

��bi

�
when the given subject changes the

value of Xi j . In general, the parameters β do not compare two different subjects that differ

in the value of Xi j .

The effect of Xi j on EYi j unconditionally on bi, that is, in the general population, is

called the population-averaged effect. Because EYi j in (7.2) does not necessarily have the

form of a GLM with the link function g, the parameters β from (7.1) in general do not

possess population-averaged interpretation.

There are several special cases when a relationship between the subject-specific and

population-averaged model can be found:

• If the link function g is linear (including identity link as a special case) then the subject-

specific and population-averaged model have the same form and the parameters β are

the same in both. This is the case of the LME model of the previous chapter.

• If the link function g is logarithm and bi are normal then the subject-specific and

population-averaged model have the same loglinear form and the parameters β are the

same in both as long as the covariate does not appear in the random effects structure.

• If the link function g is probit and bi are normal then the subject-specific and population-

averaged model have the same probit form. The parameters β in the subject-specific

and population averaged model differ.

When the parameters in the subject-specific and population averaged model differ, their

value in the population averaged model is always closer to zero than in the subject-specific

model.

As an example, take binary Yi j and logistic regression with a single continuous covariate

X i j and a random intercept. Let π(x i j) be the conditional probability of success given x i j

and bi. The model equation is

log
π(x i j)

1−π(x i j)
= β0 + β1 x i j + bi,

which can be rewritten as

π(x i j) =
exp{β0 + β1 x i j + bi}

1+ exp{β0 + β1 x i j + bi}
.
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The random intercept bi can be interpreted as an innate propensity for success of the i-th

subject that affects the odds of success at all trials performed by this subject. The parameter

β1 is the subject-specific effect of the covariate X i j; it explains what happens to the success

probability of a given subject when the same subject is tested in different conditions.

The population-averaged model is

π∗(x i j) = E
exp{β0 + β1 x i j + bi}

1+ exp{β0 + β1 x i j + bi}
,

where the expectation is taken over the distribution of bi in the whole population. This is

no longer a logistic regression model. However, if bi is normally distributed with a small

variance, π∗(x i j) can be approximated by

π∗(x i j)≈
exp{β∗0 + β∗1 x i j}

1+ exp{β∗
0
+ β∗

1
x i j}

,

where
��β∗1
�� < |β1|. The parameter β∗1 is the population-averaged effect of the covariate X i j;

it explains what happens to the mean success probability of the whole population when the

conditions change. The population-averaged effects are always weaker than the subject-

specific effects.

7.4. Comparison of GLMM vs. GEE models

GLMM is a subject-specific model, its parameters have subject-specific interpretation. GEE

is a population-averaged model, its parameters have population-averaged interpretation. In

general, GLMM estimates different parameters than GEE. Also, GLMM and GEE models with

the same link function cannot be both correct (except in special cases, some of which were

mentioned in the previous section).

Otherwise, the main points of the discussion in Section 6.6 are still valid.

The choice between the GLMM and the GEE model should be driven mainly by the

desired interpretation of the parameters. The end of

lecture 26

(May 27)
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A. Appendix: Maximum Likelihood Theory

A.1. Definition

Consider a random sample X = (X1, . . . , Xn) of independent identically distributed random

variables (or vectors), each with density f (x |θX ) with respect to a σ-finite measure µ. We

assume that f (x |θX ) ∈ F , where

F = {distributions with density f (x |θ ), θ ∈ Θ ⊆ Rd}

represents a parametric model for the distribution of the data.

The model F must satisfy the model identifiability condition: For any θ1 6= θ2 it holds

f (x |θ1) 6= f (x |θ2). In other words, no distribution can be parametrized by several different

parameter vectors.

Because of independence, the joint denstity of the random sample X1, . . . , Xn is
∏n

i=1
f (x i|θX ).

The maximum likelihood estimator bθ of the parameter θX is the point from Θ that maximizes

the joint density evaluated at the observed values of X1, . . . , Xn.

Definition A.1 (likelihood, log-likelihood).

• The random function

Ln(θ )
df
=

n∏

i=1

f (X i|θ )

is called the likelihood function for the parameter θ in the model F .

• The random function

ℓn(θ )
df
= log Ln(θ ) =

n∑

i=1

log f (X i|θ )

is called the log-likelihood function. ∇

Definition A.2 (maximum likelihood estimator). The maximum likelihood estimator (MLE)

of the parameter θX in the model F is defined as

bθn = arg max
θ∈Θ

Ln(θ ). ∇
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Note. Since the logarithm is strictly increasing, Ln(θ ) and ℓn(θ ) attain the maximum at the

same point.

Definition A.3. Let P and Q be probability measures on the same probability space with

densities p and q with respect to the same σ-finite measure µ (for example, µ = P + Q).

Define

K(P,Q) =

¨
EP log

p(X )
q(X ) =
∫
{x:p(x)>0} log

p(x)
q(x) p(x) dµ(x) if P [q(X ) = 0] = 0

+∞ otherwise.

K(P,Q) is called the Kullback-Leibler distance (divergence). ∇

Note. In fact, K(P,Q) is a pseudo-distance: it holds K(P,Q) ≥ 0, and K(P,Q) = 0 if and only

if P = Q, but it is not symmetric: K(P,Q) 6= K(Q, P).

Theorem A.1. Suppose the support set S = {x ∈ R : f (x |θ ) > 0} does not depend on the

parameter θ . Denote PX the induced probability measure of the random variable X i and Pθ
the probability measure associated with the density f (x |θ ). Then for any θ 6= θX

1

n
log

Ln(θX )

Ln(θ )
=

1

n

n∑

i=1

log
f (X i|θX )

f (X i|θ )
→ K(PX , Pθ ) PX − almost surely,

and hence
P [ℓn(θX ) > ℓn(θ )]→ 1 as n→∞. ♦

Note. When the number of observations increases to infinity, the (log-)likelihood function

at the true parameter will be with a large probability larger than the (log-)likelihood function

at any other parameter. This observation justifies the idea of estimating the parameters by

maximizing the log-likelihood over all possible parameter vectors.

A.2. The calculation of the maximum likelihood estimator

The maximum likelihood estimator is usually determined by differentiation of the log-likelihood.

The first derivative is set to zero and it is verified that the second derivative is negative def-

inite.

Definition A.4 (score, information).

• The random vector

U(θ |X i)
df
=
∂

∂ θ
log f (X i|θ )

is called the score function for the parameter θ in the model F .
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• The random vector

Un(θ |X)
df
=

n∑

i=1

U(θ |X i) =

n∑

i=1

∂

∂ θ
log f (X i|θ )

is called the score statistic.

• The random matrix

I(θ |X i)
df
= − ∂

∂ θ T
U(θ |X i) = −

∂ 2

∂ θ ∂ θ T
log f (X i|θ )

is called the contribution of the i-th observation to the information matrix.

• The random matrix

In(θ |X)
df
= −1

n

∂

∂ θ T
Un(θ |X) =

1

n

n∑

i=1

I(θ |X i)

is called the observed information matrix.

• The matrix

I(θ )
df
= E I(θ |X i) = −E

∂ 2

∂ θ ∂ θ T
log f (X i|θ )

is called the expected (Fisher) information matrix. ∇

If the set Θ is open, the MLE bθn solves the system of equations Un(
bθn|X) = 0, that is

n∑

i=1

∂

∂ θ
log f (X i|bθn) = 0.

This system is called the likelihood equations.

The solution to the likelihood equations need not exist. Sometimes there may be multi-

ple solutions, at most one of which is the MLE. If In(
bθn|X) > 0 (the observed information is

positive definite at bθn), we know that bθn is at least a local maximum. If In(θ |X) > 0 for every

θ ∈ Θ, the log-likelihood function is concave and the solution to the likelihood equations

must be the global maximum and hence the MLE.

In most cases no explicit solution can be found and the MLE must be calculated by

numerical methods. There are two commonly used numerical methods for solving the like-

lihood equations. Let bθ (r) be the r-th iteration to the solution.

• The Newton-Raphson method: bθ (r+1) = bθ (r) + [nIn(
bθ (r)|X)]−1Un(
bθ (r)|X)

• The Fisher Scoring method: bθ (r+1) = bθ (r) + [nI(bθ (r))]−1Un(bθ (r)|X)
They are iterated until the change in bθ from one iteration to the next is sufficiently small or

until Un(
bθ) is sufficiently close to 0. The only difference between the two methods is in the

information matrix: N-R uses the observed information, FS uses the expected information.

Both require setting bθ (1), the starting value for numerical approximation, and are sen-

sitive to its choice.
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A.3. Properties of the maximum likelihood estimator

Maximum likelihood estimators are consistent and asymptotically normal as long as so called

regularity conditions are satisfied.

Conditions (Regularity conditions for maximum likelihood estimators).

R1. The number of parameters d in the model F is constant.

R2. The support set S = {x ∈ R : f (x |θ )> 0} does not depend on the parameter θ .

R3. The parameter space Θ is an open set.

R4. The density f (x |θ ) is sufficiently smooth function of θ (at least twice continuously

differentiable).

R5. The Fisher information matrix I(θ ) is finite, regular, and positive definite in a neigh-

borhood of θX .

R6. The order of differentiation and integration can be interchanged in expressions such as

∂

∂ θ

∫
h(x ,θ ) dµ(x) =

∫
∂

∂ θ
h(x ,θ ) dµ(x),

where h(x ,θ ) is either f (x |θ ) or ∂ f (x |θ )/∂ θ .

Note. Take the identity ∫ ∞

−∞
f (x |θ ) dµ(x) = 1

and differentiate both sides of the equation twice with respect to θ . Regularity condition R6

implies ∫ ∞

−∞

∂

∂ θ
f (x |θ ) dµ(x) =

∫ ∞

−∞

∂ 2

∂ θ∂ θ T
f (x |θ ) dµ(x) = 0. (A.1)

Theorem A.2 (consistency of the MLE). Let conditions R1–R6 hold. Then there exists

n0 and a sequence bθn (n ≥ n0) of solutions to the likelihood equations Un(
bθn|X) = 0 such

that bθn

P−→ θX . ♦

Note. If the log-likelihood is strictly concave, the likelihood equations have a unique solu-

tion, which is the MLE. It converges in probability to the true parameter. If the log-likelihood

is not strictly concave, the likelihood equations may have multiple solutions representing lo-

cal maxima and minima of the log-likelihood. There is one solution among them (the closest

to θX ), which provides a consistence sequence of estimators. Other solutions may not be

close to θX and may not converge to it.

Note. If there exists a sequence eθn of other estimators that are guaranteed to be consistent

(for example, moment estimators of θX ), a consistent MLE can be obtained by taking the

root of the likelihood equations, which is closest to eθn. Alternatively, one can perform one

step of the Newton-Raphson algorithm with eθn as the starting value.
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Theorem A.3 (Score function properties). Let conditions R1–R6 hold. Then

(i) EU(θX |X i) = 0, varU(θX |X i) = I(θX ).

(ii) 1p
n
Un(θX |X)

D−→ Nd(0, I(θX )). ♦

Note. The Fisher information matrix at θX can be calculated in two different ways: from

Definition A.4 (the expectation of minus the second derivative of the log density) or from

Theorem A.3 (the score function variance).

Theorem A.4 (asymptotic normality of the MLE). Suppose conditions R1–R6 hold. Let
bθn be a consistent sequence of solutions to the likelihood equations. Then

p
n(bθn − θX )

D−→ Nd(0, I−1(θX )). ♦

Note.

• The asymptotic variance of the MLE is equal to the inverse of the Fisher information.

More information means better precision for estimation.

• The asymptotic variance of the MLE is in a certain sense optimal. Other estimators

(e.g., moment estimators) cannot have a smaller asymptotic variance.

Theorem A.5 (asymptotic distribution of the likelihood ratio). Suppose conditions R1–

R6 hold. Let bθn be a consistent sequence of solutions to the likelihood equations. Then

2 log
Ln(
bθn)

Ln(θX )
= 2(ℓn(
bθn)− ℓn(θX ))

D−→ χ2
d . ♦

Theorem A.6 (the ∆ method for the MLE). Suppose conditions R1–R6 hold. Let bθn be

a consistent sequence of solutions to the likelihood equations. Take q : Θ → Rk a continu-

ously differentiable function. Denote νX = q(θX ) a D(θ ) = ∂ q(θ )/∂ θ . Then bνn = q(bθn) is

the MLE of the parameter νX and

p
n(bνn − νX )

D−→ Nk(0, D(θX )I
−1(θX )D(θX )

T). ♦

A.4. Tests based on maximum likelihood theory

The theory of the MLE can be used to derive tests of simple and composite hypotheses about

the parameter θX .
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A.4.1. Testing of simple hypotheses

We want to test the null hypothesis H0 : θX = θ0 against the alternative H1 : θX 6= θ0, where

θ0 ∈ Θ. It is a simple hypothesis because there is just a single distribution in the model F
with the density f (x |θ0).

We will introduce three different test statistics for testing H0.

Definition A.5.

(i) The statistic

λn =
Ln(
bθn)

Ln(θ0)

is called the likelihood ratio.

(ii) The statistic

Wn = n(bθn − θ0)
TbIn(bθn)(bθn − θ0)

is called the Wald statistic.

(iii) The statistic

Rn =
1

n
Un(θ0|X)TbI−1

n (θ0)Un(θ0|X)

is called the Rao (score) statistic. ∇

Note. The symbol bIn denotes any consistent estimator of the Fisher information matrix.

Three different estimators can be used in Wald and Rao statistics:

1. bIn(θ ) = In(θ |X) = − 1
n

∑n
i=1

∂ 2

∂ θ ∂ θ T log f (θ |X i) (the observed information matrix)

2. bIn(θ ) =
1
n

∑n
i=1 U(θ |X i)

⊗2 (the empirical variance of the score function)

3. bIn(θ ) = I(θ ) (the Fisher information matrix)

The most common choice for the Wald statistic is bIn(bθn) = In(bθn|X). The most common

choice for the Rao statistic is bIn(θ0) =
1
n

∑n
i=1 U(θ0|X i)

⊗2.

Note.

• The likelihood ratio requires the calculation of bθn and Ln or ℓn. It does not require the

calculation of Un and bIn.

• The Wald statistic requires the calculation of bθn and bIn. It does not require the calcu-

lation of Ln and Un.

• Rao statistic requires the calculation of Un a bIn. It does not require the calculation of
bθn and Ln.

Note. If d = 1 (one parameter) and θ0 = 0, then the Wald statistic can be written as

Wn =

� bθnq
n−1bI−1

n (
bθn)

�2
,
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where n−1bI−1
n (
bθn) is the estimator of the asymptotic variance of bθn.

Theorem A.7. Suppose conditions R1–R6 are satisfied. Let the hypothesis H0 : θX = θ0

hold. Then:

(i)

2 logλn = 2(ℓn(
bθn)− ℓn(θ0))

D−→ χ2
d

(ii)

Wn

D−→ χ2
d

(iii)

Rn

D−→ χ2
d ♦

Note. If H0 holds, bθn should be close to θ0, Ln(
bθn) should be close to Ln(θ0), and Un(θ0|X)

should be close to 0. Under H0, all three test statistics have values close to 0. Their large

values testify against H0.

Corollary. Denote by χ2
d
(1 − α) the (1 − α)-quantile of χ2

d
distribution. Consider tests of

H0 : θX = θ0 against H1 : θX 6= θ0 defined by the rule: reject H0 in favor of H1, if

(i) 2 logλn ≥ χ2
d
(1−α) (likelihood ratio test)

(ii) Wn ≥ χ2
d
(1−α) (Wald test)

(iii) Rn ≥ χ2
d
(1−α) (score test)

Each of these tests has asymptotically (for n→∞) the level α.

Note. It can be shown that these three tests are asymptotically equivalent. For large sample

sizes, their results are almost identical. With smaller sample sizes, their results can differ.

Investigations of small sample behavior of these test statistics revealed that the likelihood

ratio test has the best properties, the Wald test is the worst of the three.

Thus, in practical applications, the likelihood ratio test should be preferred.

Note. Under normality, the three test statistics are identical.

A.4.2. Estimation in the presence of nuisance parameters and testing of

composite hypotheses

It is frequently desirable to estimate and test just a small number of parameters in a model

that contains a much larger number of parameters. We divide the parameter vector into two

subsets: the parameters of interest and the other paramaters – nuisance parameters.
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Let θ be divided into θA containing the first m components of θ , and θB containing the

remaining d −m components of θ . We have

θ = (θA,θB)
T = (θ1, . . . ,θm,θm+1, . . . ,θd)

T

We want to test the hypothesis H∗
0

: θX ∈ Θ0 against H∗
1

: θX 6∈ Θ0, where Θ0 = {θ : θA =

θA0} ⊂ Θ. We want to know whether the first m components of θX are equal to the vector of

constants θA0 regardless of the other d −m components of θX .

This is not a simple null hypothesis because there are many distributions in the model

F that satisfy H∗0.

All the vectors and matrices appearing in the notation of maximum likelihood estima-

tion theory are decomposed into the first m components (part A) and the remaining d −m

components (part B). For example,

bθn =

� bθAn

bθBn

�
, Un(θ ) =

�
UAn(θ )

UBn(θ )

�
, I(θ ) =

�
IAA(θ ) IAB(θ )

IBA(θ ) IBB(θ )

�
, etc.

The following lemma is useful for inverting the decomposed information matrix.

Lemma A.8 (Block matrix inversion). Let the matrix

I =

�
IAA IAB

IBA IBB

�

be of full rank. Then there exists an inverse matrix to I and it can be expressed as

I−1 =

�
IAA IAB

IBA IBB

�
,

where

IAA = I−1
AA.B,

IAB = −I−1
AA.B IAB I−1

BB ,

IBA = −I−1
BB.AIBAI−1

AA ,

IBB = I−1
BB.A,

IAA.B = IAA− IAB I−1
BB IBA

IBB.A = IBB − IBAI−1
AA IAB. ♦

If the null hypothesis H∗0 : θX ∈ Θ0 holds we know that θAX = θA0, but we do not know

the value of θBX . We can estimate θBX by the maximum likelihood method applied to the

nested submodel

F0 = {distributions with density f (x |(θA,θB)), θA= θA0, θB ∈ ΘB ⊆ Rd−m},
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with d −m unknown parameters.

Denote the maximum likelihood estimator of θX in the submodel F0 by eθn =
� eθAn

eθBn

�
,

where eθAn = θA0 and eθBn solves the system of likelihood equations

UBn(θA0, eθBn) = 0.

The Fisher information matrix for θB in this model is IBB(θX ).

By Theorems A.3 and A.4 applied to the submodel F0, we get

1p
n

UBn(θX )
D−→ Nd−m(0, IBB(θX ))

and p
n(eθBn − θBX )

D−→ Nd−m(0, I−1
BB (θX )).

On the other hand, Theorems A.3 and A.4 and Lemma A.8 applied to the larger model imply

1p
n

UBn(θX )
D−→ Nd−m(0, IBB(θX ))

and p
n(bθBn − θBX )

D−→ Nd−m(0, I−1
BB.A(θX )),

where (dropping the arguments θX )

I−1
BB.A = (IBB − IBAI−1

AA IAB)
−1 ≥ I−1

BB .

Thus, the asymptotic variance of the MLE of the parameter θBX depends on whether or not

θAX is known. If θAX is known (which is true if H∗0 holds), the asymptotic variance of the MLE

eθBn is generally larger than the asymptotic variance of the MLE bθBn that does not assume a

known θAX .

However, when IBA = 0 (the estimators of θAX and θBX are asymptotically independent),

then the asymptotic variances of eθBn and bθBn are the same. Then it does not matter whether

or not θAX is known.

Let us generalize the three test statistics introduced in Definition A.5 of the previous

section to testing the composite hypothesis H∗0 : θX ∈ Θ0 against H∗1 : θX 6∈ Θ0, where

Θ0 = {θ : θA = θA0} ⊂ Θ.

Definition A.6.

(i) The statistic

λ∗n =
Ln(
bθn)

Ln(eθn)

is called the likelihood ratio.
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(ii) The statistic

W ∗n = n(bθAn − θA0)
TbIAA.B(
bθn)(
bθAn − θA0)

is called the Wald statistic.

(iii) The statistic

R∗n =
1

n
Un(eθn)

TbI−1
n (
eθn)Un(eθn)

is called the Rao (score) statistic. ∇

Note.

• Obviously, λ∗n ≥ 1.

• The expression bIAA.B in the Wald statistic means the inverse of the upper left block of

the the matrix bI−1
n .

• Since UBn(
eθn) = 0, the Rao statistic can be written as

R∗n =
1

n
UAn(
eθn)

TbI−1
AA.B(
eθn)UAn(
eθn).

• The Rao statistic does not require the calculation of the MLE bθn in the larger model, it

only needs the MLE eθn in the submodel. This is often much easier to get.

Theorem A.9. Let the null hypothesis H∗0 : θX ∈ Θ0, where Θ0 = {θ : θA = θA0}, hold.

Then
(i)

2 logλ∗n = 2(ℓn(
bθn)− ℓn(
eθn))

D−→ χ2
m;

(ii)

W ∗n
D−→ χ2

m;

(iii)

R∗n
D−→ χ2

m. ♦

Note. Under H∗0, we expect bθn to be close to eθn, Ln(
bθn) to be close to Ln(

eθn), and Un(
eθn) to

be close to 0. The large values of the three test statistics testify against the null hypothesis.

Corollary. Let χ2
m(1− α) be (1−α)-quantile of the χ2

m distribution. Consider tests of H∗
0

:

θX ∈ Θ0, where Θ0 = {θ : θA = θA0}, against H∗1 : θX 6∈ Θ0 given by the rule: reject H∗0 in

favor of H∗1 if

(i) 2 logλ∗n ≥ χ2
m(1−α) (the likelihood ratio test)

(ii) W ∗n ≥ χ2
m(1−α) (the Wald test)
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(iii) R∗n ≥ χ2
m(1−α) (the score test)

Then each of these three tests has asymptotically (for n→∞) the level α.

Note. The number of degrees of freedom in the reference χ2
m distribution is equal to the

number of tested parameters.

Note. These three tests are asymptotically equivalent under the null hypothesis as well as

under local alternatives. With small or moderate sample sizes, the likelihood ratio test has

the best properties and the Wald test is the worst of the three. In practical applications, the

likelihood ratio test should be preferred.

Note. Let m = 1, θAX = θX j, and θA0 = 0. Consider the test of the hypothesis H∗0 : θX j = 0

against H∗1 : θX j 6= 0 (zero value of the j-th parameter in the presence of other parameters

that are unspecified by the hypothesis). Then the Wald statistic can be written as

Wn =

� bθ jnÇ
n−1bI−1

j j

�2
,

where n−1bI−1
j j

is the estimator of the asymptotic variance of bθ jn. This is the square of the

test statistic that statistical software typicaly evaluates to test zero value of a single model

parameter.
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probit, 43, 45

saturated, 22, 31

null model, 23

odds, 46

odds ratio, 46

conditional, 70

marginal, 69

overdispersion, 88, 90

parameter

canonical, 12, 19, 22, 139

estimation, 16

dispersion, 12, 19, 88, 90, 91

estimation, 18, 29, 99, 103

Pearson chi-square statistic, 30, 36, 49, 50,

53, 66, 99, 103

Pearson residuals, 36, 49, 50, 104

standardized, 37

population-averaged effect, 142

probit link, 43, 45

probit regression model, 43, 45

pseudo-score, 98, 102

quasi-likelihood, 92

quasi-score, 92

random effects, 110, 113, 117, 139

relative precision factor, 118, 124

REML, 126–131, 133, 136

residual maximum likelihood, see REML

residuals

deviance, 37

standardized, 37

Pearson, 36, 104

standardized, 37

restricted maximum likelihood, see REML

sandwich variance estimator, 9, 98, 98, 99,

103

Satterthwaite’s approximation, 115, 133,

134

saturated model, 22, 31

subject-specific effect, 142

t test, 8, 133

variance components, 111, 114

variance function, 15, 91, 140

working, 98, 99, 102

White estimator, see sandwich variance es-

timator

working correlation matrix, 102, 103–106

working variance function, 98, 99, 102
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