
is called pivoting the matrix about the element (number) 2. Similarly, we have piv-
oted about the element 2 in the second column of (7d), shown circled,

2

2

3

in order to obtain the augmented matrix (7g). Finally, pivoting about the element 11
in column 3 of (7g)

7

�2

11

leads to the augmented matrix (7h), in which all columns to the left of the vertical line
are in unit form. The element about which a matrix is pivoted is called the pivot 
element.

Before looking at the next example, let’s introduce the following notation for the
three types of row operations.

EXAMPLE 4 Pivot the matrix about the circled element.

Solution Using the notation just introduced, we obtain

The first column, which originally contained the entry 3, is now in unit form, with 
a 1 where the pivot element used to be, and we are done.

Alternate Solution In the first solution, we used operation 2 to obtain a 1 
where the pivot element was originally. Alternatively, we can use operation 3 as 
follows:

Note In Example 4, the two matrices

and c1 2

0 �1
 `  4

�3
dc1 5

3

0 �1
3

 `  3

�1
d

c1 2

0 �1
 `  4

�3
dR2 � 2R1⎯⎯⎯⎯→c1 2

2 3
 `  4

5
dR1 � R2⎯⎯⎯→c3 5

2 3
 `  9

5
d

c1 5
3

0 �1
3

 `  3

�1
dR2 � 2R1⎯⎯⎯⎯→c1 5

3

2 3
 `  3

5
d1

3  R1⎯→c3 5

2 3
 `  9

5
d

c3 5

2 3
 `  9

5
d

Notation for Row Operations
Letting Ri denote the ith row of a matrix, we write:

Operation 1 Ri4 Rj to mean: Interchange row i with row j.

Operation 2 cRi to mean: Replace row i with c times row i.

Operation 3 Ri � aRj to mean: Replace row i with the sum of row i and a times
row j.

2.2 SYSTEMS OF LINEAR EQUATIONS: UNIQUE SOLUTIONS 81
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£1 0 9

0 1 �6

0 2 19

 †  12

�2

27

§1
2  R2⎯→

£1 0 9

0 2 �12

0 2 19

 †  12

�4

27

§R24  R3⎯⎯⎯⎯→

£1 0 9

0 2 19

0 2 �12

 †  12

27

�4

§R2 � 2R1⎯⎯⎯⎯→

£ 1 0 9

�2 2 1

1 2 �3

 †  12

3

8

§R1 � R2⎯⎯⎯→£ 3 �2 8

�2 2 1

1 2 �3

 †  9

3

8

§

look quite different, but they are in fact equivalent. You can verify this by observing
that they represent the systems of equations

respectively, and both have the same solution: x � �2 and y � 3. Example 4 also
shows that we can sometimes avoid working with fractions by using an appropriate
row operation.

A summary of the Gauss–Jordan method follows.

Before writing the augmented matrix, be sure to write all equations with the vari-
ables on the left and constant terms on the right of the equal sign. Also, make sure
that the variables are in the same order in all equations.

EXAMPLE 5 Solve the system of linear equations given by

(8)

Solution Using the Gauss–Jordan elimination method, we obtain the following
sequence of equivalent augmented matrices:

x � 2y � 3z � 8

�2x � 2y � z � 3

3x � 2y � 8z � 9

The Gauss–Jordan Elimination Method
1. Write the augmented matrix corresponding to the linear system.

2. Interchange rows (operation 1), if necessary, to obtain an augmented matrix
in which the first entry in the first row is nonzero. Then pivot the matrix
about this entry.

3. Interchange the second row with any row below it, if necessary, to obtain an
augmented matrix in which the second entry in the second row is nonzero.
Pivot the matrix about this entry.

4. Continue until the final matrix is in row-reduced form.

�y � �3�
1

3
 y � �1

x �
5

3
 y � 3  x � 2y � 4

82 2 SYSTEMS OF LINEAR EQUATIONS AND MATRICES
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To solve a system of equations using matrices, we transform the augmented matrix into a matrix in row-echelon form using
row operations. For a consistent and independent system of equations, its augmented matrix is in row-echelon form when to
the left of the vertical line, each entry on the diagonal is a 1 and all entries below the diagonal are zeros.

For a consistent and independent system of equations, its augmented matrix is in row-echelon form when to the left of
the vertical line, each entry on the diagonal is a 1 and all entries below the diagonal are zeros.

Once we get the augmented matrix into row-echelon form, we can write the equivalent system of equations and read the value
of at least one variable. We then substitute this value in another equation to continue to solve for the other variables. This
process is illustrated in the next example.

Solve the system of equations using a matrix: 

Answer

ROW-ECHELON FORM

How to Solve a System of Equations Using a Matrix

{ 3x+4y = 5

x+2y = 1
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Solve the system of equations using a matrix: 

Answer

The solution is .

Solve the system of equations using a matrix: 

Answer

The solution is .

The steps are summarized here.

1. Write the augmented matrix for the system of equations.
2. Using row operations get the entry in row 1, column 1 to be 1.
3. Using row operations, get zeros in column 1 below the 1.
4. Using row operations, get the entry in row 2, column 2 to be 1.
5. Continue the process until the matrix is in row-echelon form.
6. Write the corresponding system of equations.
7. Use substitution to find the remaining variables.
8. Write the solution as an ordered pair or triple.
9. Check that the solution makes the original equations true.

Here is a visual to show the order for getting the 1’s and 0’s in the proper position for row-echelon form.

Example 21.6.14

{ 2x+y = 7

x−2y = 6

(4,−1)

Example 21.6.15

{ 2x+y =−4

x−y =−2

(−2, 0)

SOLVE A SYSTEM OF EQUATIONS USING MATRICES.
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Solution We start by writing the augmented matrix corresponding to system (4):

 c3 4

1 -2
    

1

7
d  (5)

Our objective is to use row operations from Theorem 1 to try to transform matrix (5) 
into the form

 c1 0

0 1
    

m

n
d  (6)

where m and n are real numbers. Then the solution to system (4) will be obvious, 
since matrix (6) will be the augmented matrix of the following system (a row in an 
augmented matrix always corresponds to an equation in a linear system):

x1 = m  x1 + 0x2 = m

x2 = n  0x1 + x2 = n

Now we use row operations to transform matrix (5) into form (6).

Step 1 To get a 1 in the upper left corner, we interchange R1 and R2 (Theorem 1A):c 3 4

 1 -2
    

1

7
d  R1 4 R2

∼  c 1 -2

 3 4
    

7

1
d

Step 2 To get a 0 in the lower left corner, we multiply R1 by 1-32 and add to R2 
(Theorem 1C)—this changes R2 but not R1. Some people find it useful to 
write 1-3R12 outside the matrix to help reduce errors in arithmetic, as 
shown: c 1 -2

3 4
   

7

1
d  1-32R1 +∼ R2 S R2 c 1 -2

0 10
    

7

-20
d

-3    6 -21

Step 3 To get a 1 in the second row, second column, we multiply R2 by 1
10 

(Theorem 1B):c 1 -2

0 10
    

7

-20
d  1

10 R2 S∼ R2 c 1 -2

0 1
 `  7

-2
d

Step 4 To get a 0 in the first row, second column, we multiply R2 by 2 and add the 
result to R1 (Theorem 1C)—this changes R1 but not R2: 

 0 2 -4c 1 -2

0 1
 `  7

-2
d 2R2 + R1∼

S R1 c 1 0

0 1
 `  3

-2
d

We have accomplished our objective! The last matrix is the augmented matrix 
for the system

 x1 = 3  x1 + 0x2 = 3

  x2 = -2    0x1 + x2 = -2 (7)

Since system (7) is equivalent to system (4), our starting system, we have solved 
system (4); that is, x1 = 3 and x2 = -2.

CheCk  3x1 + 4x2         = 1  x1 - 2x2    = 7

  3132 + 41-22 ≟ 1     3 - 21-22 ≟ 7

  1 =
✓

1  7 =
✓

7

n

f
n 6
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 SECTION 4.2   Systems of Linear Equations and Augmented Matrices 191

ExamplE 2 Solving a System Using Augmented Matrix Methods Solve using 
augmented matrix methods:

 2x1 - 3x2 = 6

 3x1 + 4x2 =
1

2

The preceding process may be written more compactly as follows:

Step 1:  
Need a 1 here.

 R1 4 R2

∼ c 1 -2

3 4
  `   7

1
d  1-32R1 + R3 S R2

-3   6     -21

∼ c1 -2

0 10
  `  

7

-20
dStep 3:  

Need 1 here.

∼ c1 -2

0 1
  `   7

-2
d

1
10R2 S R2

Step 4:  
Need a 0 here.

Step 2:  
Need a 0 here.

 0    2     -4

2R2 + R1 S R1

∼ c 1 0

0 1
  `   3

-2
d

6n

e
n

n

n

n

n

c 3 4

1 -2
  `   1

7
d

Therefore, x1 = 3 and x2 = -2.

Matched Problem 1 Solve using augmented matrix methods:

 2x1 - x2 = -7

 x1 + 2x2 = 4

Many graphing calculators can perform row operations. Figure 3 shows the 
 results of performing the row operations used in the solution of Example 1. Consult 
your manual for the details of performing row operations on your graphing calculator.

(A)  R1 �� R2

Figure 3 row operations on a graphing calculator

(B)  (�3)R1 � R2 � R2 (C)  ÅR2 � R2 (D)  2R2 � R1 � R1

The summary following the solution of Example 1 shows five augmented matrices. 
Write the linear system that each matrix represents, solve each system graphically, 
and discuss the relationships among these solutions.

Explore and Discuss 1
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ExamplE 3 Solving a System Using Augmented Matrix Methods Solve using 
augmented matrix methods:

  2x1 - x2 = 4 (8)

 -6x1 + 3x2 = -12

Solution  

Solution  

Step 1:  
Need a 1 here.

c2 -3

3 4
  `  

6
1
2
d 1

2R1 S R1

Step 2:  
Need a 0 here.

∼ c 1 -3
2

3 4
  `  

3
1
2
d

-3    92    -9

1-32R1 + R2 S R2

Step 3:  
Need a 1 here.

∼ c 1 -3
2

0 17
2
  ` 3

-17
2
d

 2
17R2 S R2

∼ c 1 -3
2

0 1
  ` 3

-1
d  0   3

2   -3
2

3
2R2 + R1 S R1n

n

n

∼ c 1 0

0 1
  `  

3
2

-1
d

n

f

n

6n

So, x1 = 3
2 and x2 = -1. The check is left for you.

Matched Problem 2 Solve using augmented matrix methods:

 5x1 - 2x2 = 11

 2x1 + 3x2 =
5

2

c 2 -1

-6 3
  `  

4

-12
d 1

2R1 S R1 (to get a 1 in the upper left corner)
1
3R2 S R2 (this simplifies R2)

∼ c 1 -1
2

-2 1
  `  

2

-4
d

2  -1        4
2R1 + R2 S R2 (to get a 0 in the lower left corner)

∼ c 1 -1
2

0 0
    ̀   

2

0
d

6
n

The last matrix corresponds to the system

  x1 -
1

2
 x2 = 2 x1 -

1
2

 x2 = 2 (9)

 0 = 0  0x1 + 0x2 = 0

This system is equivalent to the original system. Geometrically, the graphs of the two 
original equations coincide, and there are infinitely many solutions. In general, if we 
end up with a row of zeros in an augmented matrix for a two-equation, two-variable 
system, the system is dependent, and there are infinitely many solutions.

We represent the infinitely many solutions using the same method that was 
used in Section 4.1; that is, by introducing a parameter. We start by solving 

Step 4:  
Need a 0 here.
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Exercises

1. https://solveme.edc.org/mobiles/

2. Solve the following systems of equations:

(a)
3x+ 5y = 9

2x+ 3y = 5

(b)
3x+ 4y = 5

x+ 2y = 1

(c)
3x+ 4y = 1

x− 2y = 7

(d)
2x− 3y = 6

3x+ 4y = 1
2

3. Find matrix for this system:
x+ 2y = 3

4y + 5x = 6

(a)

�
0 2 | 3
4 5 | 6

�

(b)

�
1 2 | 3
4 5 | 6

�

(c)

�
1 2 | 3
5 4 | 6

�

(d)

�
0 2 | 3
5 4 | 6

�

4. Find matrix for this system:
x = 6

y = 3

(a)

�
1 | 6
1 | 3

�

(b)
�
1 1 | 9

�

(c)

�
1 0 | 6
0 1 | 3

�

5. Solve the following systems of equations:

(a)

3x− 2y + 8z = 9

−2x+ 2y + z = 3

x+ 2y − 3z = 8

(b)

2y + 3z = 7

3x+ 6y − 12z = −3

5x− 2y + 2z = −7

(c)

6x+ 4y + 3z = −6

x+ 2y + z = 1
3

−12x− 10y − 7z = 11

(d)

3x+ 8y + 2z = −5

2x+ 5y − 3z = 0

x+ 2y − 2z = −1

Mathematics 2, 2020/21, Kristýna Kuncová 2



£1 0 9

0 1 �6

0 2 19

 †  12

�2

27

§1
2  R2⎯→

£1 0 9

0 2 �12

0 2 19

 †  12

�4

27

§R24  R3⎯⎯⎯⎯→

£1 0 9

0 2 19

0 2 �12

 †  12

27

�4

§R2 � 2R1⎯⎯⎯⎯→

£ 1 0 9

�2 2 1

1 2 �3

 †  12

3

8

§R1 � R2⎯⎯⎯→£ 3 �2 8

�2 2 1

1 2 �3

 †  9

3

8

§

look quite different, but they are in fact equivalent. You can verify this by observing
that they represent the systems of equations

respectively, and both have the same solution: x � �2 and y � 3. Example 4 also
shows that we can sometimes avoid working with fractions by using an appropriate
row operation.

A summary of the Gauss–Jordan method follows.

Before writing the augmented matrix, be sure to write all equations with the vari-
ables on the left and constant terms on the right of the equal sign. Also, make sure
that the variables are in the same order in all equations.

EXAMPLE 5 Solve the system of linear equations given by

(8)

Solution Using the Gauss–Jordan elimination method, we obtain the following
sequence of equivalent augmented matrices:

x � 2y � 3z � 8

�2x � 2y � z � 3

3x � 2y � 8z � 9

The Gauss–Jordan Elimination Method
1. Write the augmented matrix corresponding to the linear system.

2. Interchange rows (operation 1), if necessary, to obtain an augmented matrix
in which the first entry in the first row is nonzero. Then pivot the matrix
about this entry.

3. Interchange the second row with any row below it, if necessary, to obtain an
augmented matrix in which the second entry in the second row is nonzero.
Pivot the matrix about this entry.

4. Continue until the final matrix is in row-reduced form.

�y � �3�
1

3
 y � �1

x �
5

3
 y � 3  x � 2y � 4

82 2 SYSTEMS OF LINEAR EQUATIONS AND MATRICES
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£1 0 0

0 1 0

0 0 1

 †  3

4

1

§R1 � 9R3⎯⎯⎯⎯→

£1 0 9

0 1 �6

0 0 1

 †  12

�2

1

§1
31  R3 ⎯→

£1 0 9

0 1 �6

0 0 31

 †  12

�2

31

§R3 � 2R2⎯⎯⎯⎯→

The solution to System (8) is given by x � 3, y � 4, and z � 1. This may be veri-
fied by substitution into System (8) as follows:

✓

✓

✓

When searching for an element to serve as a pivot, it is important to keep in mind
that you may work only with the row containing the potential pivot or any row
below it. To see what can go wrong if this caution is not heeded, consider the fol-
lowing augmented matrix for some linear system:

Observe that column 1 is in unit form. The next step in the Gauss–Jordan elimi-
nation procedure calls for obtaining a nonzero element in the second position of
row 2. If you use row 1 (which is above the row under consideration) to help you
obtain the pivot, you might proceed as follows:

As you can see, not only have we obtained a nonzero element to serve as the next
pivot, but it is already a 1, thus obviating the next step. This seems like a good
move. But beware, we have undone some of our earlier work: Column 1 is no
longer a unit column where a 1 appears first. The correct move in this case is to
interchange row 2 with row 3 in the first augmented matrix.

The next example illustrates how to handle a situation in which the first entry in 
row 1 of the augmented matrix is zero.

£0 0 3

1 1 2

0 2 1

 †  1

3

�2

§R24  R1⎯⎯⎯⎯→£1 1 2

0 0 3

0 2 1

 †  3

1

�2

§

£1 1 2

0 0 3

0 2 1

 †  3

1

�2

§

3 � 214 2 � 311 2 � 8

�213 2 � 214 2 � 1 � 3

313 2 � 214 2 � 811 2 � 9

2.2 SYSTEMS OF LINEAR EQUATIONS: UNIQUE SOLUTIONS 83

Explore & Discuss
1. Can the phrase “a nonzero constant multiple of itself” in a type-2 row operation be

replaced by “a constant multiple of itself”? Explain.

2. Can a row of an augmented matrix be replaced by a row obtained by adding a constant
to every element in that row without changing the solution of the system of linear equa-
tions? Explain.

R2 � 6R3
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£1 0 0

0 1 0

0 0 1

 †  �1

2

1

§R1 � 7R3⎯⎯⎯⎯→

£1 0 �7

0 1 3
2

0 0 1

 †  �8
7
2

1

§1
40  R3⎯→

£1 0 �7

0 1 3
2

0 0 40

 †  �8
7
2

40

§R1 � 2R2⎯⎯⎯⎯→

£1 2 �4

0 1 3
2

0 �12 22

 †  �1
7
2

�2

§1
2  R2⎯→

£1 2 �4

0 2 3

0 �12 22

 †  �1

7

�2

§R3 � 5R1⎯⎯⎯⎯→

£1 2 �4

0 2 3

5 �2 2

 †  �1

7

�7

§1
3  R1⎯→

£3 6 �12

0 2 3

5 �2 2

 †  �3

7

�7

§R14  R2⎯⎯⎯⎯→£ 0 2 3

3 6 �12

5 �2 2

 †  7

�3

�7

§

EXAMPLE 6 Solve the system of linear equations given by

Solution Using the Gauss–Jordan elimination method, we obtain the following
sequence of equivalent augmented matrices:

The solution to the system is given by x � �1, y � 2, and z � 1; this may be verified
by substitution into the system.

APPLIED EXAMPLE 7 Manufacturing: Production Scheduling
Complete the solution to Example 1 in Section 2.1, page 70.

Solution To complete the solution of the problem posed in Example 1, recall
that the mathematical formulation of the problem led to the following system of
linear equations:

where x, y, and z denote the respective numbers of type-A, type-B, and type-C
souvenirs to be made.

2 x � y � 2z � 240

x � 3y � 2z � 300

2 x � y � z � 180

5x � 2y � 2z � �7

3x � 6y � 12z � �3

2y � 3z � 7

84 2 SYSTEMS OF LINEAR EQUATIONS AND MATRICES

R2 � 3
2  R3

R3 � 12R2
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Solution

Write the augmented matrix for the system of equations.

On the matrix page of the calculator, enter the augmented matrix above as the matrix variable .

Use the rref( function in the calculator, calling up the matrix variable .

rref([A])

Use the MATH --> FRAC option in the calculator to express the matrix elements as fractions.

Evaluate

Thus the solution, which can easily be read from the right column of the reduced row-echelon form of the matrix, is 

.

Solve the system of equations.

Answer

Write the augmented matrix for the system of equations.

On the matrix page of the calculator, enter the augmented matrix above as the matrix variable .

6x+4y+3z

x+2y+z

−12x−10y−7z

=−6

=
1

3
= 11

⎡

⎣

⎢⎢⎢⎢

6

1

−12

4

2

−10

3

1

−7

−6

1

3

11

⎤

⎦

⎥⎥⎥⎥

[A]

[A] =

⎡

⎣

⎢⎢⎢⎢

6

1

−12

4

2

−10

3

1

−7

−6

1

3
11

⎤

⎦

⎥⎥⎥⎥

[A]

→

⎡

⎣

⎢⎢⎢⎢⎢

1

0

0

0

1

0

0

0

1

−
2

3
5

2
−4

⎤

⎦

⎥⎥⎥⎥⎥

x+0y+0z

y+0z

z

=−
2

3

=
5

2
=−4

(− , ,−4)2

3

5

2

Exercise 3.3.3

4x−7y+2z

−x+3y−8z

−5x−4y+6z

=−5

=−10

= 19

⎡

⎣
⎢⎢

4

−1

−5

−7

3

−4

2

−8

6

−5

−10

19

⎤

⎦
⎥⎥

[A]

[A] =
⎡

⎣
⎢⎢

4

−1

−5

−7

3

−4

2

−8

6

−5

−10

19

⎤

⎦
⎥⎥
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We use the same procedure when the system of equations has three equations.

Solve the system of equations using a matrix: 

Answer

Write the augmented matrix for the equations.

Interchange row 1 and 3 to get the entry in
row 1, column 1 to be 1.

Using row operations, get zeros in column 1 below the 1.

The entry in row 2, column 2 is now 1.

Continue the process until the matrix
is in row-echelon form.

The matrix is now in row-echelon form.

Write the corresponding system of equations.

Use substitution to find the remaining variables.

Write the solution as an ordered pair or triple.

Check that the solution makes the original equations true. We leave the check for you.

Example 21.6.16

⎧
⎩⎨
⎪
⎪
3x+8y+2z=−5

2x+5y−3z= 0

x+2y−2z=−1
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1.1 Introduction to Systems of Linear Equations 7

Historical Note

Maxime Bôcher
(1867–1918)

The first known use of augmented matrices appeared between
200 B.C. and 100 B.C. in a Chinesemanuscript entitledNineChapters
of Mathematical Art. The coefficients were arranged in columns
rather than in rows, as today, but remarkably the system was
solved by performing a succession of operations on the columns.
The actual use of the term augmentedmatrix appears to have been
introduced by the American mathematician Maxime Bôcher
in his book Introduction to Higher Algebra, published in 1907.
In addition to being an outstanding research mathematician and
an expert in Latin, chemistry, philosophy, zoology, geography,
meteorology, art, andmusic, Bôcherwas an outstanding expositor
of mathematics whose elementary textbooks were greatly appre-
ciated by students and are still in demand today.

[Image: HUP Bocher, Maxime (1), olvwork650836]

The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in
the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a constant times one row to another.

These are called elementary row operations on a matrix.
In the following example we will illustrate how to use elementary row operations

and an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply to
understand the computations.

EXAMPLE 6 | Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in the
system, and in the right column we solve the same system by operating on the rows of the
augmented matrix.

x + y + 2z = 9
2x + 4y − 3z = 1
3x + 6y − 5z = 0

⎡⎢⎢⎣
1 1 2 9
2 4 −3 1
3 6 −5 0

⎤⎥⎥⎦
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Add−2 times the first equation to the second
to obtain

x + y + 2z = 9
2y − 7z = −17

3x + 6y − 5z = 0

Add−2 times the first row to the second to
obtain ⎡⎢⎢⎣

1 1 2 9
0 2 −7 −17
3 6 −5 0

⎤⎥⎥⎦
Add −3 times the first equation to the third
to obtain

x + y + 2z = 9
2y − 7z = −17
3y − 11z = −27

Add −3 times the first row to the third to
obtain ⎡⎢⎢⎣

1 1 2 9
0 2 −7 −17
0 3 −11 −27⎤⎥⎥⎦

Multiply the second equation by 12 to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

3y − 11z = −27
Multiply the second row by 12 to obtain⎡⎢⎢⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 3 −11 −27⎤⎥⎥⎦
Add −3 times the second equation to the
third to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2− 1

2 z = − 3
2

Add−3 times the second row to the third to
obtain ⎡⎢⎢⎢⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 − 1
2 − 3

2

⎤⎥⎥⎥⎦
Multiply the third equation by−2 to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

z = 3

Multiply the third row by−2 to obtain⎡⎢⎢⎣
1 1 2 9
0 1 − 7

2 − 17
2

0 0 1 3

⎤⎥⎥⎦
Add−1 times the second equation to the first
to obtain

x + 11
2 z = 35

2

y − 7
2 z = − 17

2
z = 3

Add−1 times the second row to the first to
obtain ⎡⎢⎢⎢⎣

1 0 11
2

35
2

0 1 − 7
2 − 17

2
0 0 1 3

⎤⎥⎥⎥⎦
Add−112 times the third equation to the first
and 7

2 times the third equation to the second
to obtain x = 1

y = 2
z = 3

Add− 11
2 times the third row to the first and

7
2 times the third row to the second to obtain⎡⎢⎢⎣

1 0 0 1
0 1 0 2
0 0 1 3

⎤⎥⎥⎦
The solution x = 1, y = 2, z = 3 is now evident.

The solution in this example
can also be expressed as
the ordered triple (1, 2, 3)
with the understanding that
the numbers in the triple
are in the same order as
the variables in the system,
namely, x, y, z.

Exercise Set 1.1

1. In each part, determine whether the equation is linear in x1,
x2, and x3.

a. x1 + 5x2 −√2 x3 = 1 b. x1 + 3x2 + x1x3 = 2

c. x1 = −7x2 + 3x3 d. x−21 + x2 + 8x3 = 5

e. x3/51 − 2x2 + x3 = 4 f. 𝜋x1 −√2 x2 = 71/3

2. In each part, determine whether the equation is linear in x
and y.

a. 21/3x+√3y = 1 b. 2x1/3 + 3√y = 1

c. cos (𝜋7 )x− 4y = log 3 d. 𝜋
7 cos x− 4y = 0

e. xy = 1 f. y+ 7 = x



Systems of linear equations can be represented by matrices. Operations on equations (for eliminating
variables) can be represented by appropriate row operations on the corresponding matrices. For example,





x1 +x2 −2x3 = 1
2x1 −3x2 +x3 = −8
3x1 +x2 +4x3 = 7




1 1 −2 1
2 −3 1 −8
3 1 4 7




[Eq 2]− 2[Eq 1]
[Eq 3]− 3[Eq 1]

R2 − 2R1

R3 − 3R1





x1 +x2 −2x3 = 1
−5x2 +5x3 = −10
−2x2 +10x3 = 4




1 1 −2 1
0 −5 5 −10
0 −2 10 4




(−1/5)[Eq 2]
(−1/2)[Eq 3]

(−1/5)R2

(−1/2)R3





x1 +x2 −2x3 = 1
x2 −x3 = 2
x2 −5x3 = −2




1 1 −2 1
0 1 −1 2
0 1 −5 −2




[Eq 3]− [Eq 2] R3 −R2





x1 +x2 −2x3 = 1
x2 −x3 = 2

−4x3 = −4




1 1 −2 1
0 1 −1 2
0 0 −4 −4




(−1/4)[Eq 3] (−1/4)R3





x1 +x2 −2x3 = 1
x2 −x3 = 2

x3 = 1




1 1 −2 1
0 1 −1 2
0 0 1 1




[Eq 1] + 2[Eq 3]
[Eq 2] + [Eq 3]

R1 + 2R3

R2 + R3





x1 +x2 = 3
x2 = 3

x3 = 1




1 1 0 3
0 1 0 3
0 0 1 1




[Eq 1]− [Eq 2] R1 −R2





x1 = 0
x2 = 3

x3 = 1




1 0 0 0
0 1 0 3
0 0 1 1




Elementary row operations
Definition 1.3. There are three kinds of elementary row operations on matrices:

(a) Adding a multiple of one row to another row;

(b) Multiplying all entries of one row by a nonzero constant;

(c) Interchanging two rows.

Definition 1.4. Two linear systems in same variables are said to be equivalent if their solution sets are
the same. A matrix A is said to be row equivalent to a matrix B , written

A ∼ B,

if there is a sequence of elementary row operations that changes A to B.
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Theorem 2.4. Every matrix is row equivalent to one and only one reduced row echelon matrix. In other
words, every matrix has a unique reduced row echelon form.

Proof. The Row Reduction Algorithm show the existence of reduced row echelon matrix for any matrix M .
We only need to show the uniqueness. Suppose A and B are two reduced row echelon forms for a matrix
M . Then the systems Ax = 0 and Bx = 0 have the same solution set. Write A = [aij ] and B = [bij ].

We first show that A and B have the same pivot columns. Let i1, . . . , ik be the pivot columns of A, and
let j1, . . . , jl be the pivot columns of B. Suppose i1 = j1, . . . , ir−1 = jr−1, but ir �= jr. Assume ir < jr.
Then the irth row of A is

�
0, . . . , 0, 1, ar,ir+1, . . . , ar,jr , ar,jr+1, . . . , ar,n

�
.

While the jrth row of B is �
0, . . . , 0, 1, br,jr+1, . . . , br,n

�
.

Since ir−1 = jr−1 and ir < jr, we have jr−1 < ir < jr. So xir
is a free variable for Bx = 0. Let

ui1 = −b1,ir
, . . . , uir−1 = −br−1,ir

, uir
= 1, and ui = 0 for i > ir.

Then u is a solution of Bx = 0, but is not a solution of Ax = 0. This is a contradiction. Of course, k = l.
Next we show that for 1 ≤ r ≤ k = l, we have

arj = brj , jr + 1 ≤ j ≤ jr+1 − 1.

Otherwise, we have ar0j0 �= br0j0 such that r0 is smallest and then j0 is smallest. Set

uj0 = 1, ui1 = −a1,j0 , . . . , ur0 = −ar0j0 , and uj = 0 otherwise.

Then u is a solution of Ax = 0, but is not a solution of Bx = 0. This is a contradiction.

Solving linear system

Example 2.1. Find all solutions for the linear system




x1 +2x2 −x3 = 1
2x1 +x2 +4x3 = 2
3x1 +3x2 +4x3 = 1

Solution. Perform the row operations:



1 2 −1 1
2 1 4 2
3 3 4 1




R2 − 2R1

∼

R3 − 3R1




1 2 −1 1
0 −3 6 0
0 −3 7 −2




(−1/3)R2

∼

R3 −R2




1 2 −1 1
0 1 −2 0
0 0 1 −2




R1 + R3

∼

R2 + 2R3




1 2 0 −1
0 1 0 −4
0 0 1 −2


 R1 − 2R2

∼




1 0 0 7
0 1 0 −4
0 0 1 −2




The system is equivalent to 



x1 = 7
x2 = −4
x3 = −2

which means the system has a unique solution.
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(e)

x+ y + 2z = 9

2x+ 4y − 3z = 1

3x+ 6y − 5z = 0

(f)

x+ y − 2z = 1

2x− 3y + z = −8

3x+ y + 4z = 7

(g)

x+ 2y − z = 1

2x+ y + 4z = 2

3x+ 3y + 4z = 1

6. Fill the blank space according to the hints:

Source 1: http://www.bumatematikozelders.com/altsayfa/matrix theory/system of linear equations and m

atrices.pdf

7. Solve graphically, then compare with the matrix solution:

(a)
y = −3

2x+ 1
2

2x+ 3y = −6

(b)
4x = 8

6y = −3x+ 6

(c)
4 = −4y

−3x− y = −4

(d)
−x+ 3y = −6

6y = 2x+ 6

(e)
2(y − x) = 0

−x+ y = −3

(f)
x+ 4y = 8

y = −1
4x+ 2
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3. Solving Systems of Linear Equations by Graphing

Solving a System of Linear Equations 
by Graphing

Solve the system by graphing both linear equations and finding the point(s)
of intersection.

Solution:

To graph each equation, write the equation in slope-intercept form 

First equation: Second equation:

Slope:

Slope:

From their slope-intercept forms, we see that the lines have different slopes,
indicating that the lines must intersect at exactly one point. Using the slope
and y-intercept we can graph the lines to find the point of intersection 
(Figure 3-2).

�2
3 y � �

2
3

x � 2

 
3y

3
�

�2x
3

�
6
3

 3y � �2x � 6

 2x � 3y � �6�3
2y � �

3
2

x �
1
2

y � mx � b.

2x � 3y � �6

y � �
3
2

x �
1
2

Example 2

Figure 3-2
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(3, �4)
Point of intersection2x � 3y � �6

y � � x �3
2

1
2

Skill Practice Answers
2.

4 5�4�5 �3 1 2 3
�1

�3

�4
�5

4

5

1

�1�2

y

x

3

2

�2

(�2, 1)

The point appears to be the point of intersection. This can be
confirmed by substituting and into both equations.

✔ True

✔ True

The solution is 

2. Solve by using the graphing method.

x � 2y � �4

3x � y � �5

Skill Practice

13, �42. 2x � 3y � �6     2132 � 31�42 � �6   6 � 12 � �6

y � �
3
2

x �
1
2
    �4 � �

3
2
132 �

1
2
    �4 � �

9
2

�
1
2

y � �4x � 3
13, �42
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TIP: In Example 2, the lines could also have been graphed by using the x- and 
y-intercepts or by using a table of points. However, the advantage of writing the
equations in slope-intercept form is that we can compare the slopes and 
y-intercepts of each line.

1. If the slopes differ, the lines are different and nonparallel and must cross
in exactly one point.

2. If the slopes are the same and the y-intercepts are different, the lines are
parallel and do not intersect.

3. If the slopes are the same and the y-intercepts are the same, the two
equations represent the same line.

4 5�4�5 �3 1 2 3

�2

�1

�3

�4
�5

4

5

1

�1�2

y

x

3

2

(2, 0)

4x � 8

6y � �3x � 6

Figure 3-3

Solving a System of Linear Equations 
by Graphing

Solve the system by graphing.

Solution:

The first equation can be written as This is an equation of a
vertical line. To graph the second equation, write the equation in slope-
intercept form.

First equation: Second equation:

The graphs of the lines are shown in Figure 3-3. The point of intersection is
(2, 0). This can be confirmed by substituting (2, 0) into both equations.

✓ True

✓ True

The solution is (2, 0).

3. Solve the system by graphing.

�3x � y � �4

�4 � �4y

Skill Practice

6102 � �3122 � 66y � �3x � 6

4122 � 84x � 8

 y � �
1
2

x � 1

 
6y

6
�

�3x
6

�
6
6

 x � 2

 6y � �3x � 64x � 8

x � 2.4x � 8

 6y � �3x � 6

 4x � 8

Example 3

Skill Practice Answers
3.

4 5�4�5 �3 1 2 3
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�2

(1, 1)
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Solving a System of Equations by Graphing

Solve the system by graphing.

Solution:

To graph the line, write each equation in slope-intercept form.

First equation: Second equation:

  y �
1
3

x � 1 y �
1
3

x � 2

 
6y

6
�

2x
6

�
6
6

 
3y

3
�

x
3

�
6
3

 3y � x � 6

 6y � 2x � 6 �x � 3y � �6

 6y � 2x � 6

 �x � 3y � �6

Example 4

Skill Practice Answers
4. No solution; inconsistent system 

4 5�4�5 �3 1 2 3
�1

�3

�4
�5

4

5

1

�1�2

y

x

3

2

�2

Because the lines have the same slope but different y-intercepts, they are
parallel (Figure 3-4). Two parallel lines do not intersect, which implies that the
system has no solution. The system is inconsistent.

4. Solve the system by graphing.

Solving a System of Linear Equations 
by Graphing

Solve the system by graphing.

Solution:

Write the first equation in slope-intercept form. The second equation is already
in slope-intercept form.

First equation: Second equation:

 y � �
1
4

x � 2

  
4y

4
�

�x
4

�
8
4

 4y � �x � 8

y � �
1
4

x � 2 x � 4y � 8

 y � �
1
4

x � 2

 x � 4y � 8

Example 5

 �x � y � �3

 21y � x2 � 0

Skill Practice
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Figure 3-4

4 5�4�5 �3 1 2 3
�1

�3

�4
�5

4

5

1

�1�2

y

x

3

2

�2

 y �   x � 11
3

 y �   x � 21
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Notice that the slope-intercept forms of the
two lines are identical. Therefore, the equa-
tions represent the same line (Figure 3-5).
The system is dependent, and the solution to
the system of equations is the set of all points
on the line.

Because not all the ordered pairs in the
solution set can be listed, we can write the
solution in set-builder notation. Furthermore,
the equations and 
represent the same line. Therefore, the solution
set may be written as or 

5. Solve the system by graphing.

 x � 2y � �2

 y �
1
2

x � 1

Skill Practice

5 1x, y2  0   x � 4y � 86.5 1x, y2  0   y � �1
4x � 26y � �1

4x � 2x � 4y � 8

Skill Practice Answers

5. { }; infinitely many 

solutions; dependent system

y �
1
2

x � 11x, y2 0

4 5�4�5 �3 1 2 3
�1

�3

�4
�5

4

5

1

�1�2

y

x

3

2

�2

The solution to a system of equations can be found by using either a Trace
feature or an Intersect feature on a graphing calculator to find the point
of intersection between two curves.

For example, consider the system

First graph the equations together on the same viewing window. Recall that
to enter the equations into the calculator, the equations must be written
with the y-variable isolated. That is, be sure to solve for y first.

Isolate y.

By inspection of the graph, it appears that the solution is The
Trace option on the calculator may come close to but may not show
the exact solution (Figure 3-6). However, an Intersect feature on a graphing
calculator may provide the exact solution (Figure 3-7). See your user’s man-
ual for further details.

1�1, 42 1�1, 42.

 5x � y � �1       y � �5x � 1

 �2x � y � 6       y � 2x � 6

 5x � y � �1

 �2x � y � 6

Calculator Connections

Figure 3-5
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 y � �  x � 21
4
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8. Find solution of this system:

Source 2: http://mathquest.carroll.edu/libraries/ALG.student.edition.pdf

9. Find system for this image:

Source 3: http://mathquest.carroll.edu/libraries/ALG.student.edition.pdf

(a) 3x+ 3y = −6, 4x+ 2y = 3

(b) x− y = −5, 2x+ 4y = 4

(c) −8x+ 4y = 12, 2x+ 4y = −8

(d) −x+ 3y = 9, 2x− y = 4

10. Find system for this image:

Source 4: http://mathquest.carroll.edu/libraries/ALG.student.edition.pdf

(a) −x+ 3y = 6, 2x+ 6y = −6

(b) −x+ 3y = 6, 2x+ 6y = 12

(c) x+ 3y = 6, 2x+ 6y = 12

(d) x+ 3y = 6, x+ 3y = −3
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Source 5: https://www.mashupmath.com/blog/2017/12/12/can-your-students-solve-these-star-wars-math-
problems-l92be
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