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Solve by using the Gauss-Jordan method.

11.

It is particularly easy to recognize a dependent or inconsistent system of equations
from the reduced row echelon form of an augmented matrix. This is demonstrated
in Examples 6 and 7.

Solving a Dependent System of Equations 
by Using the Gauss-Jordan Method

Solve by using the Gauss-Jordan method.

Solution:

Set up the augmented matrix.

Multiply row 1 by and add the
result to row 2.

The second row of the augmented matrix represents the equation 0 � 0;
hence, the system is dependent. The solution is 

Solve by using the Gauss-Jordan method.

12.

Solving an Inconsistent System of Equations 
by Using the Gauss-Jordan Method

Solve by using the Gauss-Jordan method.

Solution:

Set up the augmented matrix.

Multiply row 1 by 3 and add the result
to row 2.

The second row of the augmented matrix represents the contradiction 
0 � 7; hence, the system is inconsistent. There is no solution.
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�3x � 9y � 1

 x � 3y � 2

Example 7

 6x � 9y � 24

 4x � 6y � 16

Skill Practice
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Example 6

 x � 4y � 2z � 1

x � y � z � 4

x � y � z � 2

Skill Practice

Skill Practice Answers
11. (1,�1, 2)
12. Infinitely many solutions; 

dependent system
5 1x, y2 0  4x � 6y � 166;



8.3 No Solutions

Linear systems sometimes have no solutions at all. For example, the system

2x + 4y � 10
3x + 6y � 17

has no solution, since the corresponding lines are parallel in R2. Algebraically, if
2x + 4y � 10, then 3x + 6y must be 15, not 17.A system of equations with no solutions

is sometimes said to be inconsistent. Here are the first few steps of the row reduction for the above system:� 2 4 10
3 6 17

�
→

� 1 2 5
3 6 17

�
→

� 1 2 5
0 0 2

�

At this point, the equation corresponding to the second row is

0x + 0y � 2

or more succinctly
0 � 2

which is a contradiction.
In general, a row whose coefficients are all zero but whose constant term is

nonzero indicates a contradiction. If such a row arises during a row reduction, it
indicates that the original linear system had no solutions.

3 × 3 Systems with No Solutions
It is easy to see when a 2 × 2 system has no solutions, since the two lines must be

� Figure 1: Three planes that do not
intersect at a common point.

parallel. For 3 × 3 systems, a contradiction can be much less obvious. For example,
Figure 1 shows three planes that have no point in common, even though no two of the
planes are parallel.

An example of this phenomenon is the system

2x + 4y + 4z � 2
3x + 4y + 2z � 5
5x + 8y + 6z � 4

Even though no two of these planes are parallel, this 3× 3 system has no solutions. The
reason is that the sum of the first two equations is

5x + 8y + 6z � 7

which contradicts the third equation.
More generally, a 3×3 system will have no solutions if the third equation contradicts

any equation that can be derived from the first two. For example, the linear system

2x + 6y − 4z � 2
x − 5y + 5z � 5

7x − 3y + 7z � 6

has no solutions, and the reason is that two times the first equation plus three times the
second equation is

7x − 3y + 7z � 19

which contradicts the third equation.
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Solution Using the Gauss–Jordan elimination method, we obtain the following
sequence of equivalent augmented matrices:

The last augmented matrix is in row-reduced form. Interpreting it as a system of 
linear equations gives

a system of two equations in the three variables x, y, and z.
Let’s now single out one variable—say, z—and solve for x and y in terms of it.

We obtain
x � z

y � z � 1

If we assign a particular value to z—say, z � 0—we obtain x � 0 and y � �1, giving
the solution (0, �1, 0) to System (9). By setting z � 1, we obtain the solution (1, 0, 1).
In general, if we set z � t, where t represents some real number (called a parameter),
we obtain a solution given by (t, t � 1, t). Since the parameter t may be any real num-
ber, we see that System (9) has infinitely many solutions. Geometrically, the solutions
of System (9) lie on the straight line in three-dimensional space given by the intersec-
tion of the three planes determined by the three equations in the system.

Note In Example 1 we chose the parameter to be z because it is more convenient to
solve for x and y (both the x- and y-columns are in unit form) in terms of z.

The next example shows what happens in the elimination procedure when the sys-
tem does not have a solution.

EXAMPLE 2 A System of Equations That Has No Solution Solve the system
of linear equations given by

(10)

Solution Using the Gauss–Jordan elimination method, we obtain the following
sequence of equivalent augmented matrices:

Observe that row 3 in the last matrix reads 0x � 0y � 0z � � 1—that is, 0 � �1!
We therefore conclude that System (10) is inconsistent and has no solution. Geo-
metrically, we have a situation in which two of the planes intersect in a straight line
but the third plane is parallel to this line of intersection of the two planes and does
not intersect it. Consequently, there is no point of intersection of the three planes.
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Solve the system of equations using a matrix: 

Answer

Solve the system of equations using a matrix: 

Answer

So far our work with matrices has only been with systems that are consistent and independent, which means they have exactly
one solution. Let’s now look at what happens when we use a matrix for a dependent or inconsistent system.

Solve the system of equations using a matrix: 

Answer

Write the augmented matrix for the equations.

The entry in row 1, column 1 is 1.

Using row operations, get zeros in column 1 below the 1.

Continue the process until the matrix is in row-echelon form.

Multiply row 2 by 2 and add it to row 3.

At this point, we have all zeros on the left of row 3.

Example 21.6.17

⎧
⎩⎨
⎪
⎪

2x−5y+3z= 8

3x−y+4z= 7

x+3y+2z=−3

(6,−1,−3)

Example 21.6.18

⎧
⎩⎨
⎪
⎪

−3x+y+z=−4

−x+2y−2z= 1

2x−y−z=−1

(5, 7, 4)

Example 21.6.19

⎧
⎩⎨
⎪
⎪

x+y+3z= 0

x+3y+5z= 0

2x+4z= 1
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Write the corresponding system of equations.

Since  we have a false statement. Just as when we solved a system using other methods, this tells us we have an inconsistent
system. There is no solution.

Solve the system of equations using a matrix: 

Answer

no solution

Solve the system of equations using a matrix: 

Answer

no solution

The last system was inconsistent and so had no solutions. The next example is dependent and has infinitely many solutions.

Solve the system of equations using a matrix: 

Answer

Write the augmented matrix for the equations.

The entry in row 1, column 1 is 1.

Using row operations, get zeros in column 1 below the 1.

Continue the process until the matrix is in row-echelon form.

0 ≠ 1

Example 21.6.20

⎧
⎩⎨
⎪
⎪

x−2y+2z= 1

−2x+y−z= 2

x−y+z= 5

Example 21.6.21

⎧
⎩⎨
⎪
⎪

3x+4y−3z=−2

−2x+3y−z=−1

2x+y−2z= 6

Example 21.6.22

⎧
⎩⎨
⎪
⎪

x−2y+3z= 1

x+y−3z= 7

3x−4y+5z= 7
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Multiply row 2 by  and add it to row 3.

At this point, we have all zeros in the bottom row.

Write the corresponding system of equations.

Since  we have a true statement. Just as when we solved by substitution, this tells us we have a dependent system. There are
infinitely many solutions.

Solve for y in terms of z in the second equation.

Solve the first equation for x in terms of z.

Substitute .

Simplify.

Simplify.

Simplify.

The system has infinitely many solutions , where  is any real number.

Solve the system of equations using a matrix: 

Answer

infinitely many solutions , where  is any real number.

Solve the system of equations using a matrix: 

Answer

infinitely many solutions , where  is any real number.

Access this online resource for additional instruction and practice with Gaussian Elimination.

Gaussian Elimination

Key Concepts
Matrix: A matrix is a rectangular array of numbers arranged in rows and columns. A matrix with m rows and n columns
has order . The matrix on the left below has 2 rows and 3 columns and so it has order . We say it is a 2 by 3
matrix.

−2

0 = 0

y = 2z+2

(x,y,z) x = z+5; y = 2z+2; z

Example 21.6.23

⎧
⎩⎨
⎪
⎪
x+y−z= 0

2x+4y−2z= 6

3x+6y−3z= 9

(x, y, z) x = z−3;  y = 3;  z

Example 21.6.24

⎧
⎩⎨
⎪
⎪
x−y−z= 1

−x+2y−3z=−4

3x−2y−7z= 0

(x, y, z) x = 5z−2;  y = 4z−3;  z

m×n 2×3



8.3 No Solutions

Linear systems sometimes have no solutions at all. For example, the system

2x + 4y � 10
3x + 6y � 17

has no solution, since the corresponding lines are parallel in R2. Algebraically, if
2x + 4y � 10, then 3x + 6y must be 15, not 17.A system of equations with no solutions

is sometimes said to be inconsistent. Here are the first few steps of the row reduction for the above system:� 2 4 10
3 6 17

�
→

� 1 2 5
3 6 17

�
→

� 1 2 5
0 0 2

�

At this point, the equation corresponding to the second row is

0x + 0y � 2

or more succinctly
0 � 2

which is a contradiction.
In general, a row whose coefficients are all zero but whose constant term is

nonzero indicates a contradiction. If such a row arises during a row reduction, it
indicates that the original linear system had no solutions.

3 × 3 Systems with No Solutions
It is easy to see when a 2 × 2 system has no solutions, since the two lines must be

� Figure 1: Three planes that do not
intersect at a common point.

parallel. For 3 × 3 systems, a contradiction can be much less obvious. For example,
Figure 1 shows three planes that have no point in common, even though no two of the
planes are parallel.

An example of this phenomenon is the system

2x + 4y + 4z � 2
3x + 4y + 2z � 5
5x + 8y + 6z � 4

Even though no two of these planes are parallel, this 3× 3 system has no solutions. The
reason is that the sum of the first two equations is

5x + 8y + 6z � 7

which contradicts the third equation.
More generally, a 3×3 system will have no solutions if the third equation contradicts

any equation that can be derived from the first two. For example, the linear system

2x + 6y − 4z � 2
x − 5y + 5z � 5

7x − 3y + 7z � 6

has no solutions, and the reason is that two times the first equation plus three times the
second equation is

7x − 3y + 7z � 19

which contradicts the third equation.
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The following example illustrates how to use row reduction to detect a contradiction
in a 3 × 3 system.

EXAMPLE 1

Solve the following linear system.

2x + 4y + 4z � 2
3x + 4y + 2z � 5
5x + 8y + 6z � 4

SOLUTION We row reduce the matrix in the usual way:


2 4 4 2

3 4 2 5

5 8 6 4


→


1 2 2 1

3 4 2 5

5 8 6 4


→


1 2 2 1

0 −2 −4 2

5 8 6 4



→


1 2 2 1

0 −2 −4 2

0 −2 −4 −1


→


1 2 2 1

0 1 2 −1

0 −2 −4 −1


→


1 2 2 1

0 1 2 −1

0 0 0 −3


We can stop the row reduction at this point, since the last row is a contradiction (0 � −3). This

Arguably the contradiction was clear
after the third row operation, since we
had obtained the equations −2y − 4z � 2
and −2y − 4z � −1. means that the original linear system had no solutions.

Overdetermined Systems
As we have seen, a linear system with more equations than unknowns usually has no
solutions. Again, the reason is always a contradiction in the original equations. For
example, the system

x + 3y � 2
2x + 3y � 1
5x + 9y � 3

has no solution, and the reason is that the first equation plus twice the second equation is

5x + 9y � 4

which contradicts the third equation. This contradiction can easily be detected using
row reduction:

The first step of this row reduction is
actually two row operations. Specifically,
we add −2 times the first row to the
second row, and we add −5 times the first
row to the third row.


1 3 2
2 3 1
5 9 3


→


1 3 2
0 −3 −3
0 −6 −7


→


1 3 2
0 1 1
0 −6 −7


→


1 3 2
0 1 1
0 0 −1


The third row is now the equation 0 � −1, which is a contradiction.

Of course, it’s possible for an overdetermined system to have a solution. For
example, the linear system

x + 3y � 2
2x + 3y � 1
5x + 9y � 4
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Redundant Equations
A linear system can have more free variables than expected if one of the equations is a
consequence of the others. For example, consider the 3 × 3 system

x + 9y − z � 27
x − 8y + 16z � 10
2x + y + 15z � 37

Though a 3 × 3 system usually has a unique solution, in this system the third equation

� Figure 2: It is possible for three planes
to intersect along a line.

is a consequence of the first two. Specifically, the third equation here is simply the
sum of the first two equations. As a result, any solution to the first two equations is
also a solution to the third equation, so there is a whole line of solutions, as shown in
Figure 2.

Redundant equations lead to rows of zeroes during row reduction. For example,
here is what happens if we row reduce the matrix for the 3 × 3 system above:

The first and third steps here each consist
of two row operations.


1 9 −1 27
1 −8 16 10
2 1 15 37


→


1 9 −1 27
0 −17 17 −17
0 −17 17 −17



→


1 9 −1 27
0 1 −1 1
0 −17 17 −17


→


1 0 8 18
0 1 −1 1
0 0 0 0


Because of the row of zeroes, only the first two columns have pivots, and therefore z is
a free variable. In fact, we have the equations

x + 8z � 18, y − z � 1

and thus
x � 18 − 8t , y � 1 + t , z � t .

In general, a redundant equation in a linear system is an equation that is a
consequence of the previous equations. A linear system with redundant equations
behaves as though the extra equations weren’t there. For example, the 3 × 3 system
above has one redundant equation, so it behaves more like a 2 × 3 system, with one
free variable and a line of solutions.

EXERCISES

1–8 Use row reduction to find a parametric description for the solutions to the given
linear system.

1. 2x + 6y − 2z � 6
−2x − 3y + 8z � −15

2. x + 3y − 5z � 2
−3x − 7y + 8z � −5

3. x + 3y + 6z � 5
3x + 2y + 4z � 8

4. −3x + 3y − 6z � −6
−x + 3y + 2z � 4
−3x + 7y + 2z � 6

5. 3x1 − 9x2 + 12x3 − 6x4 � 9
−2x1 + 5x2 − 5x3 + 4x4 � −8

6. x1 + 2x2 + 5x3 + 3x4 + 6x5 � 3
2x1 + 3x2 + 7x3 + 4x4 + 8x5 � 5
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Remarks

 1. Even though each matrix has a unique reduced form, the sequence of steps presented 
here for transforming a matrix into a reduced form is not unique. For example, it is 
possible to use row operations in such a way that computations involving fractions are 
minimized. But we emphasize again that we are not interested in the most efficient hand 
methods for transforming small matrices into reduced forms. Our main interest is in giving 
you a little experience with a method that is suitable for solving large-scale systems on a 
graphing calculator or computer.

 2.  Most graphing calculators have the ability to find reduced forms. Figure 1 illustrates the 
solution of Example 2 on a TI-86 graphing calculator using the rref command (rref is an 
 acronym for reduced row echelon form). Notice that in row 2 and column 4 of the reduced 
form the graphing calculator has displayed the very small number –3.5E – 13, instead of 
the exact value 0. This is a common occurrence on a graphing calculator and causes no 
problems. Just replace any very small numbers displayed in scientific notation with 0.

Step 3 Repeat step 1 with the submatrix formed by (mentally) deleting the row 
used in step 2 and all rows above this row.

Step 4 Repeat step 2 with the entire matrix, including the rows deleted mentally. 
Continue this process until the entire matrix is in reduced form.

Note: If at any point in this process we obtain a row with all zeros to the left of the 
vertical line and a nonzero number to the right, we can stop before we find the reduced 
form since we will have a contradiction: 0 = n, n ≠ 0. We can then conclude that 
the system has no solution.

Figure 1 Gauss–Jordan elimination 
on a graphing calculator

ExamplE 3 Solving a System Using Gauss–Jordan Elimination Solve by Gauss– 
Jordan elimination:

2x1 - 4x2 + x3 = -4

4x1 - 8x2 + 7x3 = 2

 -2x1 + 4x2 - 3x3 = 5

Solution

   C 2 -4 1

 4 -8 7

 -2 4 -3

   3  -4

 2

 5

 S  0.5R1 S R1

 ∼C 1 -2 0.5

 4 -8 7

 -2 4 -3

   3  -2

 2

 5

 S   1-42R1 + R2 S R2 
2R1 + R3 S R3

 ∼C 1 -2 0.5

 0 0 5

0 0 -2

    3  

-2

 10

 1

S    

0.2R2 S R2   Note that column 3 is the 
leftmost nonzero column 
in this submatrix.

∼C 1 -2 0.5

 0 0 1

 0 0 -2

    3   -2

2

1

 S  
 1-0.52R2 + R1 S R1

 
2R2 + R3 S R3

∼C 1 -2 0

 0 0 1

 0 0 0

    3   -3

 2

 5

 S We stop the Gauss–Jordan elimination, 
even though the matrix is not in reduced 
form, since the last row produces a 
contradiction.

The system has no solution.
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Matched Problem 3 Solve by Gauss–Jordan elimination:

 2x1 - 4x2 - x3 = -8

 4x1 - 8x2 + 3x3 = 4

 -2x1 + 4x2 + x3 =  11

ExamplE 4 Solving a System Using Gauss–Jordan Elimination Solve by Gauss– 
Jordan elimination:

 3x1 + 6x2 - 9x3 = 15

 2x1 + 4x2 - 6x3 = 10

 -2x1 - 3x2 + 4x3 = -6

Solution    

 C 3 6 -9

 2 4 -6

 -2 -3 4

   3   15

 10

 -6

 S   
1
3

 R1 S R1

 ∼C 1 2 -3

 2 4 -6

 -2 -3 4

   3   5

 10

 -6

 S    1-22R1 + R2 S R2 
2R1 + R3 S R3

 ∼C 1 2 -3

 0 0 0

 0 1 -2

   3   5

 0

 4

 S    R2 4 R3

!  Caution Figure 2 shows the solution to Example 3 on a graphing calculator 
with a built-in reduced-form routine. Notice that the graphing calculator does not stop 
when a contradiction first occurs, but continues on to find the reduced form. Neverthe-
less, the last row in the reduced form still produces a contradiction. Do not confuse this 
type of reduced form with one that represents a consistent system (see Fig. 1). ▲

Figure 2 recognizing contradictions on a graphing calculator

Note that we must interchange 
rows 2 and 3 to obtain a 
nonzero entry at the top of 
the second column of this 
submatrix.

 ∼C 1 2 -3

 0 1 -2

 0 0 0

   3    5

 4

 0

 S   
1-22R2 + R1 S R1

 ∼C 1 0 1

 0 1 -2

 0 0 0

   3    -3

 4

 0

 S     

The matrix is now in reduced form. 
Write the corresponding reduced  
system and solve.

 x1 + x3 = -3

 x2 - 2x3 = 4

We discard the equation corresponding 
to the third (all zero) row in the reduced 
form, since it is satisfied by all values of 
x1, x2, and x3.
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Note that the leftmost variable in each equation appears in one and only one 
equation. We solve for the leftmost variables x1 and x2 in terms of the remaining 
variable, x3 :

 x1 = -x3 - 3

 x2 =  2x3 + 4

If we let x3 = t, then for any real number t,

 x1 = - t - 3

 x2 = 2t + 4

 x3 = t

You should check that 1- t - 3, 2t + 4, t2 is a solution of the original system for 
any real number t. Some particular solutions are

t = 0       t = -2      t = 3.51-3, 4, 02  1-1, 0, -22  1-6.5, 11, 3.52
In general,

If the number of leftmost 1’s in a reduced augmented coefficient 
 matrix is less than the number of variables in the system and there 
are no contradictions, then the system is dependent and has infinitely 
many solutions.

Describing the solution set to this type of system is not difficult. In a 
 reduced system, the leftmost variables correspond to the leftmost 1’s in the 
corresponding reduced augmented matrix. The definition of reduced form for 
an augmented matrix ensures that each leftmost variable in the corresponding 
reduced system appears in one and only one equation of the system. Solving for 
each leftmost variable in terms of the remaining variables and writing a general 
solution to the system is usually easy. Example 5 illustrates a slightly more 
 involved case.

Matched Problem 4 Solve by Gauss–Jordan elimination:

 2x1 -  2x2 -  4x3 = -2

 3x1 -  3x2 -  6x3 = -3

 -2x1 + 3x2 + x3 = 7

Explain why the definition of reduced form ensures that each leftmost variable in a 
reduced system appears in one and only one equation and no equation contains more 
than one leftmost variable. Discuss methods for determining whether a consistent 
system is independent or dependent by examining the reduced form.

Explore and Discuss 1

ExamplE 5 Solving a System Using Gauss–Jordan Elimination Solve by 
Gauss–Jordan elimination:

 x1 + 2x2 + 4x3 + x4 - x5 = 1

 2x1 + 4x2 + 8x3 + 3x4 - 4x5 = 2

 x1 + 3x2 + 7x3 + 3x5 = -2

Copyright Pearson. All rights reserved.
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Thus, either there is no solution or there are infinitely many solutions corresponding
to the points lying on a line of intersection of the two planes or on a single plane deter-
mined by the two equations. In the case where two planes intersect in a straight line,
the solutions will involve one parameter, and in the case where the two planes are
coincident, the solutions will involve two parameters.

EXAMPLE 3 A System with More Equations Than Variables Solve the fol-
lowing system of linear equations:

Solution We obtain the following sequence of equivalent augmented matrices:

The last row of the row-reduced augmented matrix implies that 0 � 1, which is
impossible, so we conclude that the given system has no solution. Geometrically, the
three lines defined by the three equations in the system do not intersect at a point.
(To see this for yourself, draw the graphs of these equations.)

EXAMPLE 4 A System with More Variables Than Equations Solve the fol-
lowing system of linear equations:

Solution First, observe that the given system consists of three equations in four
variables and so, by Theorem 1b, either the system has no solution or it has infi-
nitely many solutions. To solve it we use the Gauss–Jordan method and obtain the
following sequence of equivalent augmented matrices:

£1 0 �1 �1

0 1 �1 1

0 0 0 0

 †  0

�1

0

§R1 � 2R2⎯⎯⎯→
R3 � R2

£1 2 �3 1

0 1 �1 1

0 �1 1 �1

 †  �2

�1

1

§
�1

7  R2 ⎯⎯→£1 2 �3 1

0 �7 7 �7

0 �1 1 �1

 †  �2

7

1

§R2 � 3R1⎯⎯⎯→
R3 � 2R1

£1 2 �3 1

3 �1 �2 �4

2 3 �5 1

 †  �2

1

�3

§

2x � 3y � 5z � w � �3

3x � y � 2z � 4w � 1

x � 2y � 3z � w � �2

£1 0

0 1

0 0

 †  2

1

1

§R1 � 2R2⎯⎯⎯→
R3 � 5R2

£1 2

0 1

0 �5

 †  4

1

�4

§
�1

4  R2 ⎯⎯→£1 2

0 �4

0 �5

 †  4

�4

�4

§R2 � R1⎯⎯⎯→
R3 � 4R1

£1 2

1 �2

4 3

 †  4

0

12

§
4x � 3y � 12

x � 2y � 0

x � 2y � 4

Explore & Discuss
Give a geometric interpretation of Theorem 1 for a linear system composed of equations
involving two variables. Specifically, illustrate what can happen if there are three linear
equations in the system (the case involving two linear equations has already been discussed
in Section 2.1). What if there are four linear equations? What if there is only one linear
equation in the system?
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The last augmented matrix is in row-reduced form. Observe that the given system is
equivalent to the system

x � z � w � 0

y � z � w � �1

of two equations in four variables. Thus, we may solve for two of the variables in
terms of the other two. Letting z � s and w � t (where s and t are any real num-
bers), we find that

x � s � t

y � s � t � 1

z � s

w � t

The solutions may be written in the form (s � t, s � t � 1, s, t). Geometrically, the
three equations in the system represent three hyperplanes in four-dimensional space
(since there are four variables) and their “points” of intersection lie in a two-dimen-
sional subspace of four-space (since there are two parameters).

Note In Example 4, we assigned parameters to z and w rather than to x and y because
x and y are readily solved in terms of z and w.

The following example illustrates a situation in which a system of linear equations has
infinitely many solutions.

APPLIED EXAMPLE 5 Traffic Control Figure 7 shows the flow of
downtown traffic in a certain city during the rush hours on a typical week-

day. The arrows indicate the direction of traffic flow on each one-way road, and
the average number of vehicles per hour entering and leaving each intersection
appears beside each road. 5th Avenue and 6th Avenue can each handle up to
2000 vehicles per hour without causing congestion, whereas the maximum capac-
ity of both 4th Street and 5th Street is 1000 vehicles per hour. The flow of traffic
is controlled by traffic lights installed at each of the four intersections.

a. Write a general expression involving the rates of flow—x1, x2, x3, x4—and
suggest two possible flow patterns that will ensure no traffic congestion.

b. Suppose the part of 4th Street between 5th Avenue and 6th Avenue is to be
resurfaced and that traffic flow between the two junctions must therefore be
reduced to at most 300 vehicles per hour. Find two possible flow patterns that
will result in a smooth flow of traffic.

Solution

a. To avoid congestion, all traffic entering an intersection must also leave that
intersection. Applying this condition to each of the four intersections in a

300 500

700 400

1200

1300

800

1400

5th St.4th St.

x2x4

x3

x1
5th Ave.

6th Ave.
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£1 �2 3

0 7 �7

0 0 0

 †  9

�14

7

§R3 � R2⎯⎯→£1 �2 3

0 7 �7

0 7 �7

 †  9

�14

�7

§
R2 � 2R1⎯⎯⎯→
R3 � R1

£1 �2 3

2 3 �1

1 5 �4

 †  9

4

2

§

100 2 SYSTEMS OF LINEAR EQUATIONS AND MATRICES

3. We obtain the following sequence of equivalent aug-
mented matrices:

Since the last row of the final augmented matrix is equiva-
lent to the equation 0 � 7, a contradiction, we conclude
that the given system has no solution.

USING
TECHNOLOGY

Systems of Linear Equations: Underdetermined 
and Overdetermined Systems
We can use the row operations of a graphing utility to solve a system of m linear equa-
tions in n unknowns by the Gauss–Jordan method, as we did in the previous technol-
ogy section. We can also use the rref or equivalent operation to obtain the row-
reduced form without going through all the steps of the Gauss–Jordan method. The
SIMULT function, however, cannot be used to solve a system where the number of
equations and the number of variables are not the same.

EXAMPLE 1 Solve the system

Solution First, we enter the augmented matrix A into the calculator as

Then using the rref or equivalent operation, we obtain the equivalent matrix

in reduced form. Thus, the given system is equivalent to

If we let x3 � t, where t is a parameter, then we find that the solutions are 
(0, 2t � 1, t).

x2 � 2x3 � �1

x1 � 0

≥ 1 0 0

0 1 �2

0 0 0

0 0 0

 ∞  0

�1

0

0

¥

A � ≥ 1 �2 4

2 1 �2

3 �1 2

2 6 �12

 ∞  2

�1

1

�6

¥
2x1 � 6x2 � 12x3 � �6

3x1 � x2 � 2x3 � 1

2x1 � x2 � 2x3 � �1

x1 � 2x2 � 4x3 � 2
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Example 2.2. Solve the linear system




x1 −x2 +x3 −x4 = 2
x1 −x2 +x3 +x4 = 0

4x1 −4x2 +4x3 = 4
−2x1 +2x2 −2x3 +x4 = −3

Solution. Do the row operations:



1 −1 1 −1 2
1 −1 1 1 0
4 −4 4 0 4

−2 2 −2 1 −3




R2 −R1

R3 − 4R1

∼

R4 + 2R1




1 −1 1 −1 2
0 0 0 2 −2
0 0 0 4 −4
0 0 0 −1 1




(1/2)R2

R3 − 2R2

∼

R4 + (1/2)R2




1 −1 1 −1 2
0 0 0 1 −1
0 0 0 0 0
0 0 0 0 0




R1 + R2

∼




(1) [−1] [1] 0 1
0 0 0 (1) −1
0 0 0 0 0
0 0 0 0 0




The linear system is equivalent to �
x1 = 1 + x2 − x3

x4 = −1

We see that the variables x2, x3 can take arbitrary numbers; they are called free variables. Let x2 = c1,
x3 = c2, where c1, c2 ∈ R. Then x1 = 1 + c1 − c2, x4 = −1. All solutions of the system are given by





x1 = 1 + c1 − c2

x2 = c1

x3 = c2

x4 = −1

The general solutions may be written as

x =




x1

x2

x3

x4


 =




1
0
0

−1


 + c1




1
1
0
0


 + c2




−1
0
1
0


 , where c1, c2 ∈ R.

Set c1 = c2 = 0, i.e., set x2 = x3 = 0, we have a particular solution

x =




1
0
0

−1


 .

For the corresponding homogeneous linear system Ax = 0, i.e.,




x1 −x2 +x3 −x4 = 0
x1 −x2 +x3 +x4 = 0

4x1 −4x2 +4x3 = 0
−2x1 +2x2 −2x3 +x4 = 0

we have 


1 −1 1 −1 0
1 −1 1 1 0
4 −4 4 0 0

−2 2 −2 1 0


 ∼




(1) [−1] [1] −1 0
0 0 0 (1) 0
0 0 0 0 0
0 0 0 0 0




7



3. Solve the following systems of equations:

(a)

x+ 2y = 4

x− 2y = 0

4x+ 3y = 12

(b)

w + x+ 2y − 3z = −2

−4w + 3x− y − 2z = 1

w + 2x+ 3y − 5z = −3

(c)

x− 2y + 4z = 2

2x+ y − 2z = −1

3x− y + 2z = 1

2x+ 6y − 12z = −6

(d)

−w + x− y + z = 2

w + x− y + z = 0

4x− 4y + 4z = 4

w − 2x+ 2y − 2z = −3

4. Choose an image and find a system of 3 equations, which can be represented by
your image. Repeat twice more.

Source 1: https://www.chegg.com/homework-help/questions-and-answers/graph-graph-system-three-linear-
equations-three-unknowns-form-ax-b-ax-b–determine-whether-q34440776

5. The network shows a plan for the traffic flow around a new park. The plan calls for
a computerized traffic light at the north exit. The diagram indicates the average
number of vehicles per hour that are expected to flow in and out of the streets
around the park. All streets are one-way.

(a) How many vehicles per hour should the traffic light let trough? The average
number of vehicles flowing into is the same as the average number of vehicles
flowing out.

Mathematics 2, 2020/21, Kristýna Kuncová 2
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Acommonproblem innetwork analysis is to use knownflow rates in certain branches
to find the flow rates in all of the branches. Here is an example.

EXAMPLE 1 | Network Analysis Using Linear Systems

Figure 1.10.1 shows a network with four nodes in which the flow rate and direction of flow
in certain branches are known. Find the flow rates and directions of flow in the remaining
branches.

Solution As illustrated in Figure 1.10.2, we have assigned arbitrary directions to the
unknown flow rates x1, x2, and x3. We need not be concerned if some of the directions are
incorrect, since an incorrect direction will be signaled by a negative value for the flow rate
when we solve for the unknowns.

It follows from the conservation of flow at node𝐴 that

x1 + x2 = 30

Similarly, at the other nodes we have

x2 + x3 = 35 (node 𝐵)
x3 + 15 = 60 (node 𝐶)
x1 + 15 = 55 (node𝐷)

These four conditions produce the linear system

x1 + x2 = 30
x2 + x3 = 35

x3 = 45
x1 = 40

which we can now try to solve for the unknown flow rates. In this particular case the system
is sufficiently simple that it can be solved by inspection (work from the bottom up). We leave
it for you to confirm that the solution is

x1 = 40, x2 = −10, x3 = 45

The fact that x2 is negative tells us that the direction assigned to that flow in Figure 1.10.2 is
incorrect; that is, the flow in that branch is into node𝐴.

35

30

55

60

15

FIGURE 1.10.1

35
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55

60

15

x1x2

x3

B

A

D

C

FIGURE 1.10.2

EXAMPLE 2 | Design of Traffic Patterns

The network in Figure 1.10.3a shows a proposed plan for the traffic flow around a new park
that will house the Liberty Bell in Philadelphia, Pennsylvania. The plan calls for a comput-
erized traffic light at the north exit on Fifth Street, and the diagram indicates the average
number of vehicles per hour that are expected to flow in and out of the streets that border
the complex. All streets are one-way.
(a) Howmany vehicles per hour should the traffic light let through to ensure that the aver-

age number of vehicles per hour flowing into the complex is the same as the average
number of vehicles flowing out?

(b) Assuming that the traffic light has been set to balance the total flow in and out of the
complex, what can you say about the average number of vehicles per hour that will flow
along the streets that border the complex?
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Solution (a) If, as indicated in Figure 1.10.3b, we let x denote the number of vehicles per
hour that the traffic light must let through, then the total number of vehicles per hour that
flow in and out of the complex will be

Flowing in: 500+ 400+ 600+ 200 = 1700
Flowing out: x+ 700+ 400

Equating the flows in and out shows that the traffic light should let x = 600 vehicles per hour
pass through.

Solution (b) To avoid traffic congestion, the flow in must equal the flow out at each inter-
section. For this to happen, the following conditions must be satisfied:

Intersection Flow In Flow Out𝐴 400+ 600 = x1 + x2𝐵 x2 + x3 = 400+ x𝐶 500+ 200 = x3 + x4𝐷 x1 + x4 = 700
Thus, with x = 600, as computed in part (a), we obtain the following linear system:

x1 + x2 = 1000
x2 + x3 = 1000

x3 + x4 = 700
x1 + x4 = 700

We leave it for you to show that the system has infinitely many solutions and that these are
given by the parametric equations

x1 = 700− t, x2 = 300+ t, x3 = 700− t, x4 = t (1)

However, the parameter t is not completely arbitrary here, since there are physical constraints
to be considered. For example, the average flow rates must be nonnegative since we have
assumed the streets to be one-way, and a negative flow rate would indicate a flow in the
wrong direction. This being the case, we see from (1) that t can be any real number that
satisfies 0 ≤ t ≤ 700, which implies that the average flow rates along the streets will fall in
the ranges

0 ≤ x1 ≤ 700, 300 ≤ x2 ≤ 1000, 0 ≤ x3 ≤ 700, 0 ≤ x4 ≤ 700
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Electrical Circuits
Next we will show how network analysis can be used to analyze electrical circuits con-
sisting of batteries and resistors. A battery is a source of electric energy, and a resistor,
such as a lightbulb, is an element that dissipates electric energy. Figure 1.10.4 shows a

+ –

Switch

FIGURE 1.10.4

schematic diagram of a circuit with one battery (represented by the symbol ), one resis-
tor (represented by the symbol ), and a switch. The battery has a positive pole (+)
and a negative pole (−). When the switch is closed, electrical current is considered to


