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The two zeros in the second row imply that the 
inverse does not exist.

 
 

�2R1 � R2 →  �2
0

4
0

�
�

1
�2

0
1�

 �A   �   I� � �2

4

4

8
�
�

1

0

0

1�

19. A � � 2

�3

7

�9

1

2� 20. A � �
�2

6

0

5

�15

1
�

21.

A�1 � �
1

�3

3

1

2

�3

�1

�1

2
�

 
 
 

2R3 →
  �

1
0
0

0
1
0

0
0
1

�
�
�

1
�3

3

1
2

�3

�1
�1

2� � �I � A�1�

�R3 � R1 →
�R3 � R2 →  �

1

0

0

0

1

0

0

0
1
2

�
�
�

1

�3
3
2

1

2

�
3
2

�1

�1

1
�

 

�R2 � R1 →

�3R2 � R3 → 

  �
1

0

0

0

1

0

1
2
1
2
1
2

�

�

�

5
2

�
3
2
3
2

�
1
2
1
2

�
3
2

0

0

1
�

 
 

1
2R2 →  �

1
0
0

1
1
3

1
1
2

2

�
�
�

1
�

3
2

�3

0
1
2

0

0
0
1�

 
 

�3R1 � R2 →
�3R1 � R3 →

  �
1
0
0

1
2
3

1
1
2

�
�
�

1
�3
�3

0
1
0

0
0
1�

 �A   �   I� � �
1

3

3

1

5

6

1

4

5

�
�
�

1

0

0

0

1

0

0

0

1
�

A has no inverse because
it is not square.

A has no inverse because it
is not square.
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Since the first three entries of row 2 are all zeros, the inverse of A does not exist.
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Although there is a general formula for the inverse of a matrix, it is not a simple one. In
fact, using the formula for anything larger than a 3 × 3 matrix is so inefficient that the
row-reduction procedure is the method of choice even for computers. However, the gen-
eral formula is very simple for the special case of 2 × 2 matrices:
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quick Examples

Formula for the Inverse of a 2 × 2 Matrix

The inverse of a 2 × 2 matrix is�
a b
c d

�−1

= 1

ad − bc

�
d −b

−c a

�
, provided ad − bc �= 0

If the quantity ad − bc is zero, then the matrix is singular (noninvertible). The quantity

ad − bc is called the determinant of the matrix 
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a b
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�
.

1.
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3 4

�−1

= 1
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3
2 − 1
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.

2.

�
1 −1
2 −2

�
has determinant ad − bc = (1)(−2) − (−1)(2) = 0 and so is singular.

The formula for the inverse of a 2 × 2 matrix can be obtained using the technique of row
reduction. (See the Communication and Reasoning Exercises at the end of the section.)

As we have mentioned above, not every square matrix has an inverse, as we see in
the next example.

Example 3 Singular 3 × 3 Matrix

Find the inverse of the matrix S =
	 1 1 2

−2 0 4
3 1 −2



, if it exists.

Solution We proceed as before.

S I	 1 1 2
−2 0 4

3 1 −2

�����
1 0 0
0 1 0
0 0 1



R2 + 2R1

R3 − 3R1

→
	 1 1 2 1 0 0

0 2 8 2 1 0
0 −2 −8 −3 0 1


 2R1 − R2

R3 + R2

→
	 2 0 −4 0 −1 0

0 2 8 2 1 0
0 0 0 −1 1 1




We stopped here, even though the reduction is incomplete, because there is no hope of
getting the identity on the left-hand side. Completing the row reduction will not change
the three zeros in the bottom row. So what is wrong? Nothing. As in Example 1, we have
here a singular matrix. Any square matrix that, after row reduction, winds up with a row
of zeros is singular (see Exercise 77).
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Note Although matrix multiplication is not generally commutative, it is possible to
prove that if A has an inverse and AB � I, then BA � I also. Hence, to verify that B is
the inverse of A, it suffices to show that AB � I.

EXAMPLE 1 Find the inverse of the matrix

Solution We form the augmented matrix

and use the Gauss–Jordan elimination method to reduce it to the form [I � B]:

The inverse of A is the matrix

We leave it to you to verify these results.

Example 2 illustrates what happens to the reduction process when a matrix A does not
have an inverse.

A�1 � £ 3 �1 �1

�4 2 1

�1 0 1

§
£1 0 0

0 1 0

0 0 1

 †  3 �1 �1

�4 2 1

�1 0 1

§R1 � R3⎯⎯→
R2 � R3

£1 0 1

0 1 �1

0 0 1

 †  2 �1 0

�3 2 0

�1 0 1

§R1 � R2⎯⎯→
�R2

R3 � R2

£1 1 0

0 �1 1

0 �1 2

 †  �1 1 0

3 �2 0

2 �2 1

§�R1⎯⎯⎯→
R2 � 3R1

R3 � 2R1

£�1 �1 0

3 2 1

2 1 2

 †  1 �1 0

0 1 0

0 0 1

§R1 � R2⎯⎯→£2 1 1

3 2 1

2 1 2

 †  1 0 0

0 1 0

0 0 1

§
£2 1 1

3 2 1

2 1 2

 †  1 0 0

0 1 0

0 0 1

§
A � £2 1 1

3 2 1

2 1 2

§

Finding the Inverse of a Matrix
Given the n � n matrix A:

1. Adjoin the n � n identity matrix I to obtain the augmented matrix

[A � I ’
2. Use a sequence of row operations to reduce [A � I ’ to the form

[I � B’
if possible.

Then the matrix B is the inverse of A.
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AMethod for Inverting Matrices
As a first application of Theorem1.5.3, wewill develop a procedure (or algorithm) that can
be used to tell whether a givenmatrix is invertible, and if so, produce its inverse. To derive
this algorithm, assume for the moment, that 𝐴 is an invertible n × nmatrix. In Equation
(3), the elementary matrices execute a sequence of row operations that reduce 𝐴 to 𝐼n. If
we multiply both sides of this equation on the right by 𝐴−1 and simplify, we obtain𝐴−1 = 𝐸k ⋅ ⋅ ⋅ 𝐸2𝐸1𝐼n
But this equation tells us that the same sequence of row operations that reduces𝐴 to 𝐼n will
transform 𝐼n to 𝐴−1. Thus, we have established the following result.

Inversion Algorithm To find the inverse of an invertible matrix 𝐴, find a sequence of
elementary row operations that reduces𝐴 to the identity and then perform that same
sequence of operations on 𝐼n to obtain 𝐴−1.

A simple method for carrying out this procedure is given in the following example.

EXAMPLE 4 | Using Row Operations to Find A−1

Find the inverse of

𝐴 = [1 2 3
2 5 3
1 0 8

]
Solution Wewant to reduce𝐴 to the identitymatrix by rowoperations and simultaneously
apply these operations to 𝐼 to produce 𝐴−1. To accomplish this we will adjoin the identity
matrix to the right side of𝐴, thereby producing a partitioned matrix of the form[𝐴 ∣ 𝐼]
Then we will apply row operations to this matrix until the left side is reduced to 𝐼; these
operations will convert the right side to𝐴−1, so the final matrix will have the form[𝐼 ∣ 𝐴−1]
The computations are as follows:⎡⎢⎢⎣

1 2 3 1 0 0
2 5 3 0 1 0
1 0 8 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 2 3 1 0 0
0 1 −3 −2 1 0
0 −2 5 −1 0 1

⎤⎥⎥⎦ We added−2 times the first
row to the second and−1 times
the first row to the third.

⎡⎢⎢⎣
1 2 3 1 0 0
0 1 −3 −2 1 0
0 0 −1 −5 2 1

⎤⎥⎥⎦ We added 2 times the
second row to the third.

⎡⎢⎢⎣
1 2 3 1 0 0
0 1 −3 −2 1 0
0 0 1 5 −2 −1

⎤⎥⎥⎦ We multiplied the
third row by−1.
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⎡⎢⎢⎣
1 2 0 −14 6 3
0 1 0 13 −5 −3
0 0 1 5 −2 −1

⎤⎥⎥⎦ We added 3 times the third
row to the second and−3 times
the third row to the first.

⎡⎢⎢⎣
1 0 0 −40 16 9
0 1 0 13 −5 −3
0 0 1 5 −2 −1

⎤⎥⎥⎦ We added−2 times the
second row to the first.

Thus, 𝐴−1 = [−40 16 9
13 −5 −3
5 −2 −1

]
Often it will not be known in advance if a given n × nmatrix𝐴 is invertible. However,

if it is not, then by parts (a) and (c) of Theorem 1.5.3 it will be impossible to reduce 𝐴 to𝐼n by elementary row operations. This will be signaled by a row of zeros appearing on the
left side of the partition at some stage of the inversion algorithm. If this occurs, then you
can stop the computations and conclude that 𝐴 is not invertible.

EXAMPLE 5 | Showing That a Matrix Is Not Invertible

Consider the matrix𝐴 = [ 1 6 4
2 4 −1−1 2 5

]
Applying the procedure of Example 4 yields

[ 1 6 4 1 0 0
2 4 −1 0 1 0−1 2 5 0 0 1

]
[ 1 6 4 1 0 0

0 −8 −9 −2 1 0
0 8 9 1 0 1

] We added−2 times the first
row to the second and added
the first row to the third.

[ 1 6 4 1 0 0
0 −8 −9 −2 1 0
0 0 0 −1 1 1

] We added the second
row to the third.

Since we have obtained a row of zeros on the left side,𝐴 is not invertible.

EXAMPLE 6 | Analyzing Homogeneous Systems

Use Theorem 1.5.3 to determine whether the given homogeneous system has nontrivial
solutions.(a) x1 + 2x2 + 3x3 = 0

2x1 + 5x2 + 3x3 = 0
x1 + 8x3 = 0

(b) x1 + 6x2 + 4x3 = 0
2x1 + 4x2 − x3 = 0−x1 + 2x2 + 5x3 = 0

Solution From parts (a) and (b) of Theorem 1.5.3 a homogeneous linear system has only
the trivial solution if and only if its coefficient matrix is invertible. From Examples 4 and 5
the coefficient matrix of system (a) is invertible and that of system (b) is not. Thus, system
(a) has only the trivial solution while system (b) has nontrivial solutions.
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We leave it for you to show that

𝐴𝐵 = [7 6
9 8], (𝐴𝐵)−1 = [ 4 −3− 9

2
7
2
]

and also that𝐴−1 = [ 3 −2−1 1], 𝐵−1 = [ 1 −1−1 3
2
], 𝐵−1𝐴−1 = [ 1 −1−1 3

2
] [ 3 −2−1 1] = [ 4 −3− 9

2
7
2
]

Thus, (𝐴𝐵)−1 = 𝐵−1𝐴−1 as guaranteed by Theorem 1.4.6.

If a product of matrices is
singular, then at least one of
the factors must be singular.
Why?

Powers of a Matrix
If 𝐴 is a squarematrix, then we define the nonnegative integer powers of 𝐴 to be𝐴0 = 𝐼 and 𝐴n = 𝐴𝐴 ⋅ ⋅ ⋅ 𝐴 [n factors]

and if 𝐴 is invertible, then we define the negative integer powers of 𝐴 to be𝐴−n = (𝐴−1)n = 𝐴−1𝐴−1 ⋅ ⋅ ⋅ 𝐴−1 [n factors]

Because these definitions parallel those for real numbers, the usual laws of nonnegative
exponents hold; for example,𝐴r𝐴s = 𝐴r+s and (𝐴r)s = 𝐴rs

In addition, we have the following properties of negative exponents.

Theorem 1.4.7

If 𝐴 is invertible and n is a nonnegative integer, then:
(a) 𝐴−1 is invertible and (𝐴−1)−1 = 𝐴.
(b) 𝐴n is invertible and (𝐴n)−1 = 𝐴−n = (𝐴−1)n.
(c) k𝐴 is invertible for any nonzero scalar k, and (k𝐴)−1 = k−1𝐴−1.

We will prove part (c) and leave the proofs of parts (a) and (b) as exercises.

Proof (c) Properties (m) and (l) of Theorem 1.4.1 imply that(k𝐴)(k−1𝐴−1) = k−1(k𝐴)𝐴−1 = (k−1k)𝐴𝐴−1 = (1)𝐼 = 𝐼
and similarly, (k−1𝐴−1)(k𝐴) = 𝐼. Thus, k𝐴 is invertible and (k𝐴)−1 = k−1𝐴−1.
EXAMPLE 10 | Properties of Exponents

Let𝐴 and𝐴−1 be the matrices in Example 9; that is,𝐴 = [1 2
1 3] and 𝐴−1 = [ 3 −2−1 1]

Then 𝐴−3 = (𝐴−1)3 = [ 3 −2−1 1] [ 3 −2−1 1] [ 3 −2−1 1] = [ 41 −30−15 11]





5. True or false? (Assume that all operations are defined.)

(TRUE – FALSE) A+B = B +A

(TRUE – FALSE) AB = BA

(TRUE – FALSE) (AB)T = ATBT

(TRUE – FALSE) (AB)T = BTAT

(TRUE – FALSE) IA = AI = A

Source 1: http://mathfail.com/movabletype/mt/mt-search.cgi?blog id=4&tag=matrices&limit=20
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