
The proof is simple and left to you as an exercise.

Example 4. The ranks of the following matrices are 2 and 3, respectively.




1 2 3
0 1 3
0 0 0


 , and




1 2 3 4
0 1 3 0
0 0 0 3
0 0 0 0




Lemmas 1 and 3 suggest the following approach to compute the rank of a matrix A. First,
convert A to a matrix A� of row echelon form, and then, count the number of non-zero rows of A�.

Example 5. Next, we use the approach to calculate the rank of the matrix in Example 2 (in the
derivation below, ⇒ indicates applying row elementary operations):




1 2
0 1
3 4


 ⇒




1 2
0 1
0 −2


 ⇒




1 2
0 1
0 0


 .

Example 6. Compute the rank of the following matrix:



1 2 3 4
5 6 7 8
3 2 1 0




Solution.



1 2 3 4
5 6 7 8
3 2 1 0


 ⇒




1 2 3 4
0 −4 −8 −12
0 −4 −8 −12


 ⇒




1 2 3 4
0 −4 −8 −12
0 0 0 0




Hence, the original matrix has rank 2.

Lemma 3. Suppose that r1, r2, ..., rk are linearly independent, but r1, r2, ..., rk+1 are linearly
dependent. Then, rk+1 must be a linear combination of r1, r2, ..., rk.

Proof. Since r1, r2, ..., rk+1 are linearly dependent, there exist c1, ..., ck+1 such that (i) they are
not all zero, and (ii)

c1r1 + c2r2 + ...+ ckrk + ck+1rk+1 = 0.

Note that ck+1 cannot be 0. Otherwise, it will follow that c1r1+c2r2+ ...+ckrk = 0. Since c1, ..., ck
cannot be all zero, this means that r1, ..., rk were linearly dependent, which is a contradiction.

Now that ck+1 �= 0, we have:

rk+1 =
c1

ck+1
r1 +

c2
ck+1

r2 + ...+
ck
ck+1

rk.

Therefore, rk+1 is a linear combination of r1, r2, ..., rk.

3



This implies that, if a matrix has rank k, then there are only k “effective” rows, in the sense
that every other row can be derived as a linear combination of those k rows. For instance, consider
the matrix in Example 6; we know that its rank is 2, and that the first two rows are linearly
independent. Thus, we must be able to represent the 3rd row as a linear combination of the first
two. Indeed, this is true:

[3, 2, 1, 0] = (−2) · [1, 2, 3, 4] + [5, 6, 7, 8].

3 An Important Property of Ranks

In this section, we will prove a non-trivial lemma about ranks.

Lemma 4. The rank of a matrix A is the same as the rank of AT .

Proof. (Sketch) Define the column-rank of A to be the maximum number of independent column
vectors of A. Note that the column-rank of A is exactly the same as the rank of AT . Hence, to
prove the lemma, it suffices to show that the rank of A is the same as the column-rank of A.

We first show:

• Fact 1: If A is in row echelon form, then the rank of A cannot be less than its column-rank.

• Fact 2: Elementary row operations on A do not change its column rank.

The proofs of the above facts are left to you as an exercise. But here are the hints:

• For Fact 1: assume that A has rank k; take k columns appropriately and prove that they
must be linearly independent.

• For Fact 2: it can proved in the same “style” as the proof of Lemma 1.

Since elementary row operations on A do not change its rank, combining both facts shows that the
rank of A is at most its column-rank.

On the other hand, reversing the above argument shows that the column-rank of A is at most
its rank. With this, we complete the lemma.

Example 7. Let

A =




1 2 3 4
5 6 7 8
3 2 1 0




Compute the rank of AT .

Solution. From Example 6, we know that the rank of A is 2. Lemma 4 tells us that the rank of AT

must also be 2.

4
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3. no solution.

Based on the above possibilities, we have the following definition.

Definition 2.5.1 (Consistent, Inconsistent) A linear system is called consistent if it admits a solution

and is called inconsistent if it admits no solution.

The question arises, as to whether there are conditions under which the linear system Ax = b is

consistent. The answer to this question is in the affirmative. To proceed further, we need a few definitions

and remarks.

Recall that the row reduced echelon form of a matrix is unique and therefore, the number of non-zero

rows is a unique number. Also, note that the number of non-zero rows in either the row reduced form

or the row reduced echelon form of a matrix are same.

Definition 2.5.2 (Row rank of a Matrix) The number of non-zero rows in the row reduced form of a

matrix is called the row-rank of the matrix.

By the very definition, it is clear that row-equivalent matrices have the same row-rank. For a matrix A,

we write ‘row-rank (A)’ to denote the row-rank of A.

Example 2.5.3 1. Determine the row-rank of A =






1 2 1

2 3 1

1 1 2




 .

Solution: To determine the row-rank of A, we proceed as follows.

(a)






1 2 1

2 3 1

1 1 2






−−−−−−−−−−−−−→
R21(−2), R31(−1)






1 2 1

0 −1 −1

0 −1 1




 .

(b)






1 2 1

0 −1 −1

0 −1 1






−−−−−−−−−−−→
R2(−1), R32(1)






1 2 1

0 1 1

0 0 2




 .

(c)






1 2 1

0 1 1

0 0 2






−−−−−−−−−−−−→
R3(1/2), R12(−2)






1 0 −1

0 1 1

0 0 1




 .

(d)






1 0 −1

0 1 1

0 0 1





−−−−−−−−−−−→
R23(−1), R13(1)






1 0 0

0 1 0

0 0 1






The last matrix in Step 1d is the row reduced form ofA which has 3 non-zero rows. Thus, row-rank(A) = 3.

This result can also be easily deduced from the last matrix in Step 1b.

2. Determine the row-rank of A =






1 2 1

2 3 1

1 1 0




 .

Solution: Here we have

(a)






1 2 1

2 3 1

1 1 0





−−−−−−−−−−−−−→
R21(−2), R31(−1)






1 2 1

0 −1 −1

0 −1 −1




 .

(b)






1 2 1

0 −1 −1

0 −1 −1






−−−−−−−−−−−→
R2(−1), R32(1)






1 2 1

0 1 1

0 0 0




 .
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From the last matrix in Step 2b, we deduce row-rank(A) = 2.

Remark 2.5.4 Let Ax = b be a linear system withm equations and n unknowns. Then the row-reduced

echelon form of A agrees with the first n columns of [A b], and hence

row-rank(A) ≤ row-rank([A b]).

The reader is advised to supply a proof.

Remark 2.5.5 Consider a matrix A. After application of a finite number of elementary column oper-

ations (see Definition 2.4.16) to the matrix A, we can have a matrix, say B, which has the following

properties:

1. The first nonzero entry in each column is 1.

2. A column containing only 0’s comes after all columns with at least one non-zero entry.

3. The first non-zero entry (the leading term) in each non-zero column moves down in successive

columns.

Therefore, we can define column-rank of A as the number of non-zero columns in B. It will be

proved later that

row-rank(A) = column-rank(A).

Thus we are led to the following definition.

Definition 2.5.6 The number of non-zero rows in the row reduced form of a matrix A is called the rank of

A, denoted rank (A).

Theorem 2.5.7 Let A be a matrix of rank r. Then there exist elementary matrices E1, E2, . . . , Es and

F1, F2, . . . , Fℓ such that

E1E2 . . . Es A F1F2 . . . Fℓ =

"

Ir 0

0 0

#

.

Proof. Let C be the row reduced echelon matrix obtained by applying elementary row operations to

the given matrix A. As rank(A) = r, the matrix C will have the first r rows as the non-zero rows. So by

Remark 2.4.5, C will have r leading columns, say i1, i2, . . . , ir. Note that, for 1 ≤ s ≤ r, the iths column

will have 1 in the sth row and zero elsewhere.

We now apply column operations to the matrix C. Let D be the matrix obtained from C by succes-

sively interchanging the sth and iths column of C for 1 ≤ s ≤ r. Then the matrix D can be written in the

form

"

Ir B

0 0

#

, where B is a matrix of appropriate size. As the (1, 1) block of D is an identity matrix,

the block (1, 2) can be made the zero matrix by application of column operations to D. This gives the

required result. �

Exercise 2.5.8 1. Determine the ranks of the coefficient and the augmented matrices that appear in Part

1 and Part 2 of Exercise 2.4.12.

2. For any matrix A, prove that rank(A) = rank(At).

3. Let A be an n× n matrix with rank(A) = n. Then prove that A is row-equivalent to In.



5 LINEAR INDEPENDENCE 2

5.2.1 Example Determine whether the following vectors in R2 are linearly
dependent or linearly independent:

x1 =

�

−1
3

�

, x2 =

�

5
6

�

, x3 =

�

1
4

�

.

Solution Suppose we have a linear combination of the vectors equal to 0:

α1x1 + α2x2 + α3x3 = 0

α1

�

−1
3

�

+ α2

�

5
6

�

+ α3

�

1
4

�

=

�

0
0

�

�

−α1 + 5α2 + α3

3α1 + 6α2 + 4α3

�

=

�

0
0

�

.

Equating components we get a system with augmented matrix
�

−1 5 1 0
3 6 4 0

�

3
∼

�

−1 5 1 0
0 21 7 0

�

.

Since α3 is free, we can choose it to be anything. In particular, we can choose
it to be nonzero. Therefore, the vectors are linearly dependent.

5.2.2 Example Determine whether the following vectors in R3 are linearly
dependent or linearly independent:

x1 =





1
2
3



 , x2 =





−2
1
0



 , x3 =





1
0
1



 .

Solution Suppose we have a linear combination of the vectors equal to 0:

α1x1 + α2x2 + α3x3 = 0

α1





1
2
3



+ α2





−2
1
0



+ α3





1
0
1



 =





0
0
0









α1 − 2α2 + α3

2α1 + α2

3α1 + α3



 =





0
0
0



 .

Equating components we get a system with augmented matrix





1 −2 1 0
2 1 0 0
3 0 1 0





−2 −3
∼





1 −2 1 0
0 5 −2 0
0 6 −2 0



−6
5

∼





1 −2 1 0
0 5 −2 0
0 0 2 0



 .
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Since there is a pivot in every column except for the augmented column, there
is a unique solution, namely, α1 = 0, α2 = 0, and α3 = 0.

The computation shows that the only way to get a linear combination of the
vectors to equal 0 is by making all of the scalar factors 0. Therefore, the vectors
are linearly independent.

The solutions to these last two examples show that the question of whether
some given vectors are linearly independent can be answered just by looking
at a row-reduced form of the matrix obtained by writing the vectors side by
side. The following theorem uses a new term: A matrix has full rank if a
row-reduced form of the matrix has a pivot in every column.

Theorem. Let x1,x2, . . . ,xs be vectors in Rn and let A be the
matrix formed by writing these vectors side by side:

A =
�

x1 x2 · · · xs

�

.

The vectors x1,x2, . . . ,xs are linearly independent if and only
if A has full rank.

5.2.3 Example Use the last theorem to determine whether the vectors
[1, 3,−1, 0]T , [4, 9,−2, 1]T , and [2, 3, 0, 1]T are linearly independent.

Solution We have








1 4 2
3 9 3
−1 −2 0
0 1 1









−3 1

∼









1 4 2
0 −3 −3
0 2 2
0 1 1









2
3

1

3

∼









1 4 2
0 −3 −3
0 0 0
0 0 0









.

Since the matrix does not have full rank, the vectors are not linearly indepen-
dent.

5.3 Facts about linear dependence/independence

The next theorem says that if a vector is written as a linear combination of
linearly independent vectors, then the scaling factors are uniquely determined.
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EXAMPLE 1 Determine whether the three vectors u = (1, 2, 3, 2), v = (2, 5, 5, 5),
and w = (2, 6, 4, 6) are linearly dependent.

SOLUTION We begin by constructing a matrix whose rows are uT , vT , and wT :

A =




1 2 3 2
2 5 5 5
2 6 4 6


.

Reducing to echelon form gives

E =




1 2 3 2
0 1 −1 1
0 0 0 0


.

Since E has a row of zeroes, the vectors u,v,w are linearly dependent. �

The next theorem discusses how the columns of a matrix are affected by elementary
row operations. For the following theorem, we will use the notation

A =
�
a1 a2 · · · ak

�

to mean that A is a matrix whose columns are the vectors a1, a2, . . . , ak.

Theorem 2 Row Operations and Dependence of Columns

Consider two n× k matrices

A =
�
a1 a2 · · · ak

�
and B =

�
b1 b2 · · · bk

�
,

where B is obtained from A using one or more elementary row operations. If
the columns of A satisfy an equation of the form

c1a1 + c2a2 + · · · + ckak = 0,

where c1, c2, . . . , ck are scalars, then the columns of B satisfy the same equation:

c1b1 + c2b2 + · · · + ckbk = 0.

This theorem says that the relationship between the columns of a matrix does
not change when we perform elementary row operations. The following example
illustrates this phenomenon.
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Since there is a pivot in every column except for the augmented column, there
is a unique solution, namely, α1 = 0, α2 = 0, and α3 = 0.

The computation shows that the only way to get a linear combination of the
vectors to equal 0 is by making all of the scalar factors 0. Therefore, the vectors
are linearly independent.

The solutions to these last two examples show that the question of whether
some given vectors are linearly independent can be answered just by looking
at a row-reduced form of the matrix obtained by writing the vectors side by
side. The following theorem uses a new term: A matrix has full rank if a
row-reduced form of the matrix has a pivot in every column.

Theorem. Let x1,x2, . . . ,xs be vectors in Rn and let A be the
matrix formed by writing these vectors side by side:

A =
�

x1 x2 · · · xs

�

.

The vectors x1,x2, . . . ,xs are linearly independent if and only
if A has full rank.

5.2.3 Example Use the last theorem to determine whether the vectors
[1, 3,−1, 0]T , [4, 9,−2, 1]T , and [2, 3, 0, 1]T are linearly independent.

Solution We have








1 4 2
3 9 3
−1 −2 0
0 1 1









−3 1

∼









1 4 2
0 −3 −3
0 2 2
0 1 1









2
3

1

3

∼









1 4 2
0 −3 −3
0 0 0
0 0 0









.

Since the matrix does not have full rank, the vectors are not linearly indepen-
dent.

5.3 Facts about linear dependence/independence

The next theorem says that if a vector is written as a linear combination of
linearly independent vectors, then the scaling factors are uniquely determined.
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EXAMPLE 5 Determine whether the vectors (3, 1, 6), (2, 0, 4), and (2, 1, 4) are
linearly dependent.

SOLUTION We compute the determinant of the matrix whose rows are the given
vectors: ������

3 1 6
2 0 4
2 1 4

������
= 3(−4) − 1(0) + 6(2) = 0.

Since the determinant is zero, the given vectors are linearly dependent. �

In the last example, it would work just as well to make the given vectors the
columns of a matrix. Also, note that this method only works if the matrix that you
get is square, since you can’t take the determinant of a non-square matrix.

Theorem 4 can also be useful for recognizing when a determinant is zero:

EXAMPLE 6 Evaluate the following determinant:

�����������

1 1 1 1 1

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

�����������

.

SOLUTION Observe that the third row of this matrix is equal to the sum of the first
two rows. Since the rows of this matrix are linearly dependent, the determinant must
be zero. �



CS131 Part II, Linear Algebra and Matrices

CS131 Mathematics for Computer Scientists II Note 5

LINEAR COMBINATIONS AND SUBSPACES

Linear combinations. In R2 the vector (5, 3) can be written in the form
(5, 3) = 5(1, 0) + 3(0, 1) and also in the form (5, 3) = 1(2, 0) + 3(1, 1). In
each case we say that (5, 3) is a linear combination of the two vectors on
the right hand side.

If u, v ∈ R2 and α,β ∈ R, then a vector of the form αu + βv is a linear
combination of u and v .

Problem. Express the vector (6, 6) as a linear combination of (0, 3) and
(2, 1).

Solution. We want to find numbers α and β with

(6, 6) = α(0, 3) + β(2, 1).

Now from the properties of vectors:

(6, 6) = α(0, 3) + β(2, 1) ⇔ (6, 6) = (2β, 3α + β)
⇔ 2β = 6 and 3α + β = 6
⇔ β = 3 and α = 1

so we have (6, 6) = 1(0, 3) + 3(2, 1).

We can similarly define linear combinations of more than two vectors and
of vectors in Rn .

If u1, u2, . . . , um are vectors in Rn and α1,α2, . . . ,αm are real numbers, then
any vector of the form

α1u1 + α2u2 + · · · + αmum

is called a linear combination of u1, u2, . . . , um .

Problem. Express the vector (3, 0) as a linear combination of the vectors
(1, 1), (1, 0) and (1,−1) in two different ways.

5–1



Linear Combinations and Span

Given two vectors v and w, a linear combination of v and w is any vector of the
form

av + bw

where a and b are scalars. For example, the vector (6, 8, 10) is a linear combination of
the vectors (1, 1, 1) and (1, 2, 3), since



6
8
10


 = 4



1
1
1


 + 2



1
2
3




More generally, a linear combination of n vectors v1,v2, . . . ,vn is any vector of
the formFor example, a linear combination of

three vectors u, v, and w would have
the form au+ bv+ cw, where a, b,
and c are scalars.

a1v1 + a2v2 + · · · + anvn

where a1, a2, . . . , an are scalars. For n = 2, this reduces to the definition for two vectors
given above.

It is all right if some of the scalars in a linear combination are either zero or negative.
For example, if u, v, and w are vectors, then

2u− 3v+ 4w, 3u+ 5w, v+w, w− u, and 5v

are some possible linear combinations of u, v, and w.
We will sometimes want to discuss linear combinations of a single vector. If v is a

vector, a linear combination of just v is the same thing as a scalar multiple of v:

av.

Thus (3, 12, 6) is a linear combination of (1, 4, 2), since (3, 12, 6) = 3(1, 4, 2).

Expressing a Vector as a Linear Combination
Sometimes you want to express one vector as a linear combination of others. For
example, can we express the vector (8, 3, 3) as a linear combination of (1, 1, 1) and
(1, 0, 0)? A moment’s thought reveals the answer:



8
3
3


 = 3



1
1
1


+ 5



1
0
0




For more complicated examples, you can express one vector as a linear combination of
others by solving a system of linear equations.

EXAMPLE 1 Express the vector (9, 6) as a linear combination of the vectors (1, 2)
and (1,−4).

SOLUTION We are looking for scalars x1 and x2 so that

x1

�
1
2

�
+ x2

�
1

−4

�
=

�
9
6

�
.

We can write this equation as a system of linear equations:

x1 + x2 = 9
2x1 − 4x2 = 6

Solving gives x1 = 7 and x2 = 2. Thus
�
9
6

�
= 7

�
1
2

�
+ 2

�
1

−4

�
. �



Solution. (i) 2u + 3v + 4w = (2, 0, 6) + (0, 6, 0) + (0, 12, 4) = (2, 18, 10).
(ii) We have

(1, 5, 4) = αu + βv + γw ⇔ (1, 5, 4) = α(1, 0, 3) + β(0, 2, 0) + γ(0, 3, 1)
⇔ (1, 5, 4) = (α, 2β + 3γ, 3α + γ)
⇔ α = 1, 2β + 3γ = 5, 3α + γ = 4
⇔ α = 1, γ = 1, β = 1

so (1, 5, 4) = (1, 0, 3) + (0, 2, 0) + (0, 3, 1).
(iii) We have

(1, 5, 4) = αu + βv ⇔ (1, 5, 4) = α(1, 0, 3) + β(0, 2, 0) = (α, 2β, 3α)
⇔ α = 1, 2β = 5, 3α = 4

But we cannot have both α = 1 and 3α = 4 so these equations cannot be
solved for α and β. Hence (1, 5, 4) cannot be written as a linear combination
of u and v .

Span. If U = {u1, u2, . . . , um} is a finite set of vectors in Rn , then the span
of U is the set of all linear combinations of u 1, u2, . . . , um and is denoted
by span U . Hence

span U = {α1u1 + α2u2 + · · · + αmum | α1,α2, . . . ,αm ∈ R}

Examples.

(1) If U = {u} contains just a single vector, then
span {u} = {αu | α ∈ R} is the set of all multiples of u .

(2) In R2 if U = {(1, 0), (0, 1)} then the span of U is R2. To see this
note that we can write an arbitrary vector (x , y) in R2 as a linear
combination of (1, 0) and (0, 1) as follows: (x , y) = x (1, 0) + y(0, 1).

(3) In R3 the span of the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is R3.
(4) In R3 let u = (1, 0, 1) and v = (2, 0, 3). Then

αu + βv = α(1, 0, 1) + β(2, 0, 3) = (α + 2β, 0,α + 3β)

so any linear combination of u and v has 0 for its middle component.
In fact any vector with middle component 0 is a linear combination
of u and v . To see this note that for any x , z ∈ R

(x , 0, z ) = αu + βv ⇔ (x , 0, z ) = α(1, 0, 1) + β(2, 0, 3)
⇔ (x , 0, z )) = (α + 2β, 0,α + 3β)
⇔ α + 2β = x , α + 3β = z
⇔ β = z − x , α = 3x − 2z

5–3



LINEAR ALGEBRA

HOMEWORK 2

(1) Write the polynomial x + 1 as a linear combination of the polynomials
2x2 − x + 1 and −x2 + x.

Comparing coefficients in the equation

x + 1 = a(2x2 − x + 1) + b(−x2 + x)

gives 2a− b = 0, −a + b = 1, and a = 1. The only solution is a = 1, b = 2,
hence

x + 1 = 1(2x2 − x + 1) + 2(−x2 + x).

(2) Show that the vectors
�

1
0
0

�
,
�

0
1
1

�
and

�
1
2
−1

�
are linearly independent. From

a
�

1
0
0

�
+ b

�
0
1
1

�
+ c

�
1
2
−1

�
= 0 we get the system of equations

a + c = 0
b + 2c = 0
b− c = 0

and this gives c = 0, b = 0, a = 0 as the only solution. Thus there is
no nontrivial relation between the given vectors, and therefore they are
linearly independent.

(3) For which values of c ∈ R are the vectors x + 3 and 2x + c + 2 in the vector
space of polynomials of degree ≤ 2 linearly dependent?

Note: of course the given polynomials are also contained in the vector
space o polynomials of degree ≤ 1 (or in those of degree ≤ 7). For solving
the problem, however, this is irrelevant. If they are linearly dependent in
P2, then they are also linearly dependent in P1 or P7, because the relation
is valid in any of these spaces.

Checking for linear independence means solving the equation a(x+ 3) +
b(2x+c+2) = 0. This gives a+2b = 0 and 3a+b(c+2) = 0. Eliminating a
shows that b(c+2)−6b = 0, i.e., b(c−4) = 0. We need a nontrivial relation,
hence we must have b �= 0. But then we must have c−4 = 0, that is, c = 4,
and in this case we actually have the nontrivial relation 2(x + 3) = 2x + 6.

Answer: The polynomials x + 3 and 2x + c + 2 are linearly dependent if
and only if c = 4.

(4) Find a basis for all vectors of the form (a + c, a − b, b + c,−a + b) for
a, b, c ∈ R. What is the dimension of this vector space V ? Does the vector
(3, 1, 2,−1) lie in this vector space? If yes, write it as a linear combination
of your basis.

1



Exercises

1. Find the rank of the matrices

(a)



1 2
0 1
3 4




(b)



1 2 3 4
5 6 7 8
3 2 1 0




(c)




1 5 3
2 6 2
3 7 1
4 8 0




(d)



1 2 1
2 3 1
1 1 2




(e)



1 2 1
2 3 1
1 1 0




2. Decide whether the vectors are linearly dependent or independent.

(a) (1, 2, 3, 2), (2, 5, 5, 5), (2, 6, 4, 6).

(b) (−1, 3), (5, 6), (1, 4).

(c) (1, 2, 3), (−2, 1, 0), (1, 0, 1).

(d) (1, 3,−1, 0), (4, 9,−2, 1), (2, 3, 0, 1).

(e) (3, 1, 6), (2, 0, 4), (2, 1, 4) (with determinant).

3. Express the vector

(a) (6, 6) as the linear combination of (0, 3) and (2, 1).

(b) (9, 6) as the linear combination of (1, 2) and (1,−4).

(c) (1, 5, 4) as the linear combination of (1, 0, 3) and (0, 2, 0).

4. Write the polynomial x+ 1 as a linear combination of 2x2 − x+ 1 and −x2 + x.

5. What can you say about solutions of this systems? About rank of matrix and
augmented matrix?

(a)



1 0 0 | 2
0 1 0 | 3
0 0 1 | 4


 (b)



1 0 0 | 2
0 1 0 | 3
0 0 0 | 4


 (c)



1 0 0 | 2
0 1 0 | 3
0 0 1 | 0



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8.1. LINEAR DEPENDENCE AND INDEPENDENCE 161

Suppose that W = {v1, v2, · · · , vn} is a subset of a vector space (V,+, ·).
If vk ∈ span {v1, v2, · · · , vk−1, vk+1, · · · , vn} for some k, thenW is linearly de-
pendent. We can see this in a more concrete way by considering the set when
n = 5 for example. If W = {v1, v2, v3, v4, v5} and v2 ∈ span {v1, v3, v4, v5}
then we know that W is linearly dependent.

Example 8.1.1. Consider the 4 × 4 image example from the beginning of
the chapter. We can say that the set of seven images is linearly dependent
because, for example,

Image 2

∈ span





Image A

,

Image B

,

Image C

,

Image 1

,

Image 3

,

Image 4



 .

We know this is true because Image 1 can be written as a linear combination
of the other images:

Image 2

=

�
1

2

�
·

Image A

+ (1) ·
Image C

.

Example 8.1.2. Consider the vector space D(Z2). We can say that the set
of ten LCD character images is linearly dependent because, for example,

∈ span

�
, , , , , , , ,

�
.

We know that this is true because image d9 can be written as a linear combi-
nation of d5, d6 and d8:

= + +


