b

$$
\begin{aligned}
\left|\begin{array}{cc}
4-\lambda & -3 \\
-3 & 12-\lambda
\end{array}\right|=(4-\lambda)(12-\lambda)-9 & =\lambda^{2}-16 \lambda+39 \\
& =(\lambda-3)(\lambda-13) \\
\lambda_{1}=3 \quad \lambda_{2}=13 \quad \rightarrow & \text { Pos. def. }
\end{aligned}
$$

$1 b$

$$
\begin{aligned}
&\left|\begin{array}{cc}
1-\lambda & 4 \\
4 & 7-\lambda
\end{array}\right|=(1-\lambda)(7->)-16=\nu^{2}-8>-9 \\
&=(\nu+1)(\lambda-a) \\
& \lambda_{1}=-1 \cdot \lambda_{2}=9 \quad \rightarrow \quad \text { Indef }
\end{aligned}
$$

${ }^{1} \mathrm{C}$

$$
\left|\begin{array}{cc}
1-\lambda & 3 \\
3 & a-\lambda
\end{array}\right|=(1-\lambda)(a-\lambda)-a=\lambda^{2}-10 \lambda=\lambda(\lambda-10)
$$

$1 d$ $\lambda_{1}=0 \quad \lambda_{2}=10 \quad \rightarrow \quad$ pos. semi-def

$$
\begin{gathered}
\left|\begin{array}{cc}
-3-> & 2 \\
2 & -6-\lambda
\end{array}\right|=(-3->)(-6->)-4=\lambda^{2}+9 \lambda+14 \\
=(1+2)(\lambda+7)
\end{gathered}
$$

$\lambda_{1}=-2 \quad J_{2}=-7 \quad$ Negative def.
A^{2} and A^{-1} and $A+4 I$ keep the same eigenvectors as A. Their eigenvalues are λ^{2} and λ^{-1} and $\lambda+4$:

$$
A^{2} \text { has eigenvalues } 1^{2}=1 \text { and } 3^{2}=9 \quad A^{-1} \text { has } \frac{1}{1} \text { and } \frac{1}{3} \quad A+4 I \text { has } \begin{aligned}
& 1+4=5 \\
& 3+4=7
\end{aligned}
$$

The trace of A^{2} is $5+5$ which agrees with $1+9$. The determinant is $25-16=9$.
Notes for later sections: A has orthogonal eigenvectors (Section 6.4 on symmetric matrices). A can be diagonalized since $\lambda_{1} \neq \lambda_{2}$ (Section 6.2). A is similar to any 2 by 2 matrix with eigenvalues 1 and 3 (Section 6.6). A is a positive definite matrix (Section 6.5) since $A=A^{\mathrm{T}}$ and the λ 's are positive.
6.1 B Find the eigenvalues and eigenvectors of this 3 by 3 matrix A :

> Symmetric matrix
> Singular matrix
> Trace $1+2+1=4$

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Solution Since all rows of A add to zero, the vector $\boldsymbol{x}=(1,1,1)$ gives $A \boldsymbol{x}=\mathbf{0}$. This is an eigenvector for the eigenvalue $\lambda=0$. To find λ_{2} and λ_{3} I will compute the 3 by 3 determinant:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & 2-\lambda & -1 \\
0 & -1 & 1-\lambda
\end{array}\right|=\begin{aligned}
& =(1-\lambda)(2-\lambda)(1-\lambda)-2(1-\lambda) \\
& =(1-\lambda)[(2-\lambda)(1-\lambda)-2] \\
& \\
& (1-\lambda)(3-\lambda) .
\end{aligned}
$$

That factor $-\lambda$ confirms that $\lambda=0$ is a root, and an eigenvalue of A. The other factors $(1-\lambda)$ and $(3-\lambda)$ give the other eigenvalues 1 and 3 , adding to 4 (the trace). Each eigenvalue $0,1,3$ corresponds to an eigenvector:
$\boldsymbol{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \quad A \boldsymbol{x}_{1}=\mathbf{0} \boldsymbol{x}_{1} \quad \boldsymbol{x}_{2}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right] \quad A \boldsymbol{x}_{2}=\mathbf{1} \boldsymbol{x}_{2} \quad \boldsymbol{x}_{3}=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right] \quad A \boldsymbol{x}_{3}=\mathbf{3} \boldsymbol{x}_{3}$.
I notice again that eigenvectors are perpendicular when A is symmetric.
The 3 by 3 matrix produced a third-degree (cubic) polynomial for $\operatorname{det}(A-\lambda I)=$ $-\lambda^{3}+4 \lambda^{2}-3 \lambda$. We were lucky to find simple roots $\lambda=0,1,3$. Normally we would use a command like $\operatorname{eig}(A)$, and the computation will never even use determinants (Section 9.3 shows a better way for large matrices).

The full command $[S, D]=\boldsymbol{\operatorname { e i g }}(A)$ will produce unit eigenvectors in the columns of the eigenvector matrix S. The first one happens to have three minus signs, reversed from $(1,1,1)$ and divided by $\sqrt{3}$. The eigenvalues of A will be on the diagonal of the eigenvalue matrix (typed as D but soon called Λ).
$2 a$

$$
\left(\begin{array}{cc}
5 & -2 \\
-2 & 5
\end{array}\right)
$$

$$
\begin{aligned}
& D_{1}=5>0 \\
& D_{2}=25-4=20>0
\end{aligned}
$$

25

$$
\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right)
$$

$$
D_{1}=-2<0
$$

$$
\left.D_{2}=4-1 t_{3}>0 \quad\right\} \text { Neg. definite }
$$

$2 c$

$$
\left(\begin{array}{cc}
1 & -4 \\
-4 & 5
\end{array}\right)
$$

$$
\left.\begin{array}{l}
b_{1}=1 \\
b_{2}=-5-16=-21<0
\end{array}\right\} \text { Indef }
$$

$2 d$

$$
\left(\begin{array}{ccc}
3 & 0 & 3 \\
0 & 1 & -2 \\
3 & -2 & 8
\end{array}\right)
$$

$$
\left.\begin{array}{l}
b_{1}=3>0 \\
b_{2}=3-0=3>0 \\
b_{3}=24-9-12=3>0
\end{array}\right\}
$$

$$
D_{2}=3-0=3>0 .\{\text { Pos. def }
$$

20

$$
\begin{align*}
& \left(\begin{array}{ccc}
-4 & -2 & 1 \\
-1 & 1 & -1
\end{array}\right) \quad b_{1}=-4<0 \tag{GIles}\\
& b_{2}=-8-4=-12<0 \\
& b_{3}=-16+2+2-2+4-8=-1840 \\
& 2 l \\
& \left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -1 & 1 \\
2 g & 1 & -2
\end{array}\right) \\
& b_{1}=-2<0 \\
& b_{2}=1>0 \\
& D_{3}=-4+2+2=0 \text { know. } \\
& \left(\begin{array}{ccc}
-3 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & -2
\end{array}\right) \\
& b_{1}=-3<0 \\
& D_{2}=2>0 \\
& \text { Neg. } \\
& \left.B_{3}=-6+3+2=-1<0\right\} \text { def } \\
& \text { We to not } \\
& \text { know. } \\
& \text { def }
\end{align*}
$$

