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Solution The contour at level c is given by

f(x, y) =
�

x2 + y2 = c.

For c > 0 this is a circle, just as in the previous example, but here the radius is c instead of
√
c.

For c = 0, it is the origin. Thus, if the level c increases by 1, the radius of the contour increases by

1. This means the contours are equally spaced concentric circles (see Figure 12.41) which do not

become more closely packed further from the origin. Thus, the graph of f has the same constant

slope as we move away from the origin (see Figure 12.42), making it a cone rather than a bowl.
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Figure 12.41: A contour diagram for

f(x, y) =
�

x2 + y2
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Figure 12.42: The graph of

f(x, y) =
�

x2 + y2

In both of the previous examples the level curves are concentric circles because the surfaces

have circular symmetry. Any function of two variables which depends only on the quantity (x2+y2)

has such symmetry: for example, G(x, y) = e−(x2+y2) or H(x, y) = sin(
�

x2 + y2).

Example 5 Draw a contour diagram for f(x, y) = 2x+ 3y + 1.

Solution The contour at level c has equation 2x+ 3y + 1 = c. Rewriting this as y = −(2/3)x+ (c − 1)/3,

we see that the contours are parallel lines with slope −2/3. The y-intercept for the contour at level

c is (c − 1)/3; each time c increases by 3, the y-intercept moves up by 1. The contour diagram is

shown in Figure 12.43.
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Figure 12.43: A contour diagram for f(x, y) = 2x+ 3y + 1
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Contour lines, or level curves, are obtained from a surface by slicing it with horizontal planes.

A contour diagram is a collection of level curves labeled with function values.

Finding Contours Algebraically
Algebraic equations for the contours of a function f are easy to find if we have a formula for f(x, y).
Suppose the surface has equation

z = f(x, y).

A contour is obtained by slicing the surface with a horizontal plane with equation z = c. Thus, the

equation for the contour at height c is given by:

f(x, y) = c.

Example 3 Find equations for the contours of f(x, y) = x2 + y2 and draw a contour diagram for f . Relate the

contour diagram to the graph of f .

Solution The contour at height c is given by

f(x, y) = x2
+ y2 = c.

This is a contour only for c ≥ 0, For c > 0 it is a circle of radius
√
c. For c = 0, it is a single point

(the origin). Thus, the contours at an elevation of c = 1, 2, 3, 4, . . . are all circles centered at the

origin of radius 1,
√
2,
√
3, 2, . . .. The contour diagram is shown in Figure 12.39. The bowl–shaped

graph of f is shown in Figure 12.40. Notice that the graph of f gets steeper as we move further

away from the origin. This is reflected in the fact that the contours become more closely packed as

we move further from the origin; for example, the contours for c = 6 and c = 8 are closer together

than the contours for c = 2 and c = 4.
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Figure 12.39: Contour diagram for

f(x, y) = x2 + y2 (even values of c only)
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✛ x2 + y2 = 6
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Figure 12.40: The graph of f(x, y) = x2 + y2

Example 4 Draw a contour diagram for f(x, y) =
�

x2 + y2 and relate it to the graph of f .
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Solution The contour at level c is given by

f(x, y) =
�

x2 + y2 = c.

For c > 0 this is a circle, just as in the previous example, but here the radius is c instead of
√
c.

For c = 0, it is the origin. Thus, if the level c increases by 1, the radius of the contour increases by

1. This means the contours are equally spaced concentric circles (see Figure 12.41) which do not

become more closely packed further from the origin. Thus, the graph of f has the same constant

slope as we move away from the origin (see Figure 12.42), making it a cone rather than a bowl.
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In both of the previous examples the level curves are concentric circles because the surfaces

have circular symmetry. Any function of two variables which depends only on the quantity (x2+y2)

has such symmetry: for example, G(x, y) = e−(x2+y2) or H(x, y) = sin(
�

x2 + y2).

Example 5 Draw a contour diagram for f(x, y) = 2x+ 3y + 1.

Solution The contour at level c has equation 2x+ 3y + 1 = c. Rewriting this as y = −(2/3)x+ (c − 1)/3,

we see that the contours are parallel lines with slope −2/3. The y-intercept for the contour at level

c is (c − 1)/3; each time c increases by 3, the y-intercept moves up by 1. The contour diagram is

shown in Figure 12.43.
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Figure 12.43: A contour diagram for f(x, y) = 2x+ 3y + 1
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EXAMPLE 3 Sketching a Contour Map

The hemisphere given by is shown in Figure 13.9. Sketch
a contour map for this surface using level curves corresponding to 

Solution For each value of the equation given by is a circle (or point)
in the plane. For example, when the level curve is

Circle of radius 8

which is a circle of radius 8. Figure 13.10 shows the nine level curves for the
hemisphere.

EXAMPLE 4 Sketching a Contour Map

The hyperbolic paraboloid given by

is shown in Figure 13.11. Sketch a contour map for this surface.

Solution For each value of let and sketch the resulting level curve in
the plane. For this function, each of the level curves is a hyperbola whose
asymptotes are the lines If the transverse axis is horizontal. For
instance, the level curve for is given by

Hyperbola with horizontal transverse axis

If the transverse axis is vertical. For instance, the level curve for is given
by

Hyperbola with vertical transverse axis

If the level curve is the degenerate conic representing the intersecting
asymptotes, as shown in Figure 13.12.

c ! 0,

y2

22 #
x2

22 ! 1.

c ! 4c > 0,

x2

22 #
y2

22 ! 1.

c ! #4
c < 0,y ! ±x.

!c & 0"xy-
f !x, y" ! cc,

z ! y2 # x2

x2 " y2 ! 64

c1 ! 0,xy-
f !x, y" ! cc,

c ! 0, 1, 2, . . . , 8.
f !x, y" ! #64 # x2 # y2
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Try It Exploration A

Try It Open Exploration

Animation



a. f(x, y) = x2 − y, z = −2, −1, 0, 1, 2

The level curves of  arez = f(x, y) = x2 − y

k = x2 − y ⟹ y = x2 − k

for some constant  We sketch below the level curves corresponding tok.
k = −2, −1, 0, 1, 2.
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a. f(x, y) = ey − x2, z = 1, 2, 3, 4

The level curves of  arez = f(x, y) = ey − x2

k = ey − x2 ⟹ y = ln(x2 + k)

for some constant  For  we therefore havek. k = 1, 2, 3, 4,
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In Problems 35–36, give an example of:

35. A table of values, with three rows and three columns, for

a nonlinear function that is linear in each row and in each

column.

36. A linear function whose contours are lines with slope 2.

Are the statements in Problems 37–48 true or false? Give rea-

sons for your answer.

37. The planes z = 3 + 2x + 4y and z = 5 + 2x + 4y
intersect.

38. The function represented in Table 12.12 is linear.

Table 12.12

u\v 1.1 1.2 1.3 1.4

3.2 11.06 12.06 13.06 14.06

3.4 11.75 12.82 13.89 14.96

3.6 12.44 13.58 14.72 15.86

3.8 13.13 14.34 15.55 16.76

4.0 13.82 15.10 16.38 17.66

39. Contours of f(x, y) = 3x+ 2y are lines with slope 3.

40. If f is linear, then the contours of f are parallel lines.

41. If f(0, 0) = 1, f(0, 1) = 4, f(0, 3) = 5, then f cannot

be linear.

42. The graph of a linear function is always a plane.

43. The cross-section x = c of a linear function f(x, y) is

always a line.

44. There is no linear function f(x, y) with a graph parallel

to the xy-plane.

45. There is no linear function f(x, y) with a graph parallel

to the xz-plane.

46. A linear function f(x, y) = 2x+3y−5, has exactly one

point (a, b) satisfying f(a, b) = 0.

47. In a table of values of a linear function, the columns have

the same slope as the rows.

48. There is exactly one linear function f(x, y) whose f = 0
contour is y = 2x+ 1.

12.5 FUNCTIONS OF THREE VARIABLES

In applications of calculus, functions of any number of variables can arise. The density of matter in

the universe is a function of three variables, since it takes three numbers to specify a point in space.

Models of the US economy often use functions of ten or more variables. We need to be able to apply

calculus to functions of arbitrarily many variables.

One difficulty with functions of more than two variables is that it is hard to visualize them. The

graph of a function of one variable is a curve in 2-space, the graph of a function of two variables is

a surface in 3-space, so the graph of a function of three variables would be a solid in 4-space. Since

we can’t easily visualize 4-space, we won’t use the graphs of functions of three variables. On the

other hand, it is possible to draw contour diagrams for functions of three variables, only now the

contours are surfaces in 3-space.

Representing a Function of Three Variables Using a Family of Level Surfaces
A function of two variables, f(x, y), can be represented by a family of level curves of the form

f(x, y) = c for various values of the constant, c.

A level surface, or level set of a function of three variables, f(x, y, z), is a surface of the

form f(x, y, z) = c, where c is a constant. The function f can be represented by the family

of level surfaces obtained by allowing c to vary.

The value of the function, f , is constant on each level surface.

Example 1 The temperature, in ◦C, at a point (x, y, z) is given by T = f(x, y, z) = x2 + y2 + z2. What do the

level surfaces of the function f look like and what do they mean in terms of temperature?

Solution The level surface corresponding to T = 100 is the set of all points where the temperature is 100◦C.

That is, where f(x, y, z) = 100, so

x2
+ y2 + z2 = 100.
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This is the equation of a sphere of radius 10, with center at the origin. Similarly, the level surface

corresponding to T = 200 is the sphere with radius
√
200. The other level surfaces are concentric

spheres. The temperature is constant on each sphere. We may view the temperature distribution

as a set of nested spheres, like concentric layers of an onion, each one labeled with a different

temperature, starting from low temperatures in the middle and getting hotter as we go out from the

center. (See Figure 12.69.) The level surfaces become more closely spaced as we move farther from

the origin because the temperature increases more rapidly the farther we get from the origin.

y

z

x ✒

T = 100◦C

✲T = 200◦C

❘

T = 300◦C

Figure 12.69: Level surfaces of T = f(x, y, z) = x2 + y2 + z2, each one having a constant temperature

Example 2 What do the level surfaces of f(x, y, z) = x2 + y2 and g(x, y, z) = z − y look like?

Solution The level surface of f corresponding to the constant c is the surface consisting of all points satisfying

the equation

x2
+ y2 = c.

Since there is no z-coordinate in the equation, z can take any value. For c > 0, this is a circular

cylinder of radius
√
c around the z-axis. The level surfaces are concentric cylinders; on the narrow

ones near the z-axis, f has small values; on the wider ones, f has larger values. See Figure 12.70.

The level surface of g corresponding to the constant c is the plane

z − y = c.

Since there is no x variable in the equation, these plane are parallel to the x-axis and cut the yz-plane

in the line z − y = c. See Figure 12.71.
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Figure 12.70: Level surfaces of f(x, y, z) = x2 + y2
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Figure 12.71: Level surfaces of g(x, y, z) = z − y

Example 3 What do the level surfaces of f(x, y, z) = x2 + y2 − z2 look like?

Solution In Section 12.3, we saw that the two-variable quadratic function g(x, y) = x2 − y2 has a saddle-

shaped graph and three types of contours. The contour equation x2 − y2 = c gives a hyperbola

opening right-left when c > 0, a hyperbola opening up-down when c < 0, and a pair of intersecting

lines when c = 0. Similarly, the three-variable quadratic function f(x, y, z) = x2 + y2 − z2 has

three types of level surfaces depending on the value of c in the equation x2 + y2 − z2 = c.



.

...

EXAMPLE 6 Level Surfaces

Describe the level surfaces of the function

Solution Each level surface has an equation of the form

Equation of level surface

So, the level surfaces are ellipsoids (whose cross sections parallel to the 
plane are circles). As increases, the radii of the circular cross sections increase

according to the square root of For example, the level surfaces corresponding to the
values and are as follows.

Level surface for (single point)

Level surface for (ellipsoid)

Level surface for (ellipsoid)

These level surfaces are shown in Figure 13.16.

NOTE If the function in Example 6 represented the temperature at the point the level
surfaces shown in Figure 13.16 would be called isothermal surfaces.

Computer Graphics

The problem of sketching the graph of a surface in space can be simplified by using a
computer. Although there are several types of three-dimensional graphing utilities,
most use some form of trace analysis to give the illusion of three dimensions. To use
such a graphing utility, you usually need to enter the equation of the surface, the
region in the plane over which the surface is to be plotted, and the number of traces
to be taken. For instance, to graph the surface given by

you might choose the following bounds for and 

Bounds for 

Bounds for 

Bounds for 

Figure 13.17 shows a computer-generated graph of this surface using 26 traces taken
parallel to the plane. To heighten the three-dimensional effect, the program uses a
“hidden line” routine. That is, it begins by plotting the traces in the foreground (those
corresponding to the largest values), and then, as each new trace is plotted, the
program determines whether all or only part of the next trace should be shown.

The graphs on page 891 show a variety of surfaces that were plotted by computer.
If you have access to a computer drawing program, use it to reproduce these surfaces.
Remember also that the three-dimensional graphics in this text can be viewed and
rotated. 

x-

yz-

z 0 ≤ z ≤ 3

y #3 ≤ y ≤ 3

x #3 ≤ x ≤ 3

z.x, y,

f !x, y" ! !x2 " y2"e1#x2#y2

xy-

!x, y, z",

c ! 16 
x2

4
"

y2

16
"

z2

16
! 1

c ! 4 
x2

1
"

y2

4
"
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This is the equation of a sphere of radius 10, with center at the origin. Similarly, the level surface

corresponding to T = 200 is the sphere with radius
√
200. The other level surfaces are concentric

spheres. The temperature is constant on each sphere. We may view the temperature distribution

as a set of nested spheres, like concentric layers of an onion, each one labeled with a different

temperature, starting from low temperatures in the middle and getting hotter as we go out from the

center. (See Figure 12.69.) The level surfaces become more closely spaced as we move farther from

the origin because the temperature increases more rapidly the farther we get from the origin.
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Example 2 What do the level surfaces of f(x, y, z) = x2 + y2 and g(x, y, z) = z − y look like?

Solution The level surface of f corresponding to the constant c is the surface consisting of all points satisfying

the equation

x2
+ y2 = c.

Since there is no z-coordinate in the equation, z can take any value. For c > 0, this is a circular

cylinder of radius
√
c around the z-axis. The level surfaces are concentric cylinders; on the narrow

ones near the z-axis, f has small values; on the wider ones, f has larger values. See Figure 12.70.

The level surface of g corresponding to the constant c is the plane

z − y = c.

Since there is no x variable in the equation, these plane are parallel to the x-axis and cut the yz-plane

in the line z − y = c. See Figure 12.71.
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Figure 12.71: Level surfaces of g(x, y, z) = z − y

Example 3 What do the level surfaces of f(x, y, z) = x2 + y2 − z2 look like?

Solution In Section 12.3, we saw that the two-variable quadratic function g(x, y) = x2 − y2 has a saddle-

shaped graph and three types of contours. The contour equation x2 − y2 = c gives a hyperbola

opening right-left when c > 0, a hyperbola opening up-down when c < 0, and a pair of intersecting

lines when c = 0. Similarly, the three-variable quadratic function f(x, y, z) = x2 + y2 − z2 has

three types of level surfaces depending on the value of c in the equation x2 + y2 − z2 = c.
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x
y

z

✛ (0, 0, 1)

Figure 12.17: Graph of G(x, y) = e−(x2+y2)

Now consider a point (x, y) on the circle x2 + y2 = r2. Since

G(x, y) = e−(x2+y2)
= e−r2 ,

the value of the function G is the same at all points on this circle. Thus, we say the graph of G has

circular symmetry.

Cross-Sections and the Graph of a Function
We have seen that a good way to analyze a function of two variables is to let one variable vary while

the other is kept fixed.

For a function f(x, y), the function we get by holding x fixed and letting y vary is called a

cross-section of f with x fixed. The graph of the cross-section of f(x, y) with x = c is the

curve, or cross-section, we get by intersecting the graph of f with the plane x = c. We define

a cross-section of f with y fixed similarly.

For example, the cross-section of f(x, y) = x2+ y2 with x = 2 is f(2, y) = 4+ y2. The graph

of this cross-section is the curve we get by intersecting the graph of f with the plane perpendicular

to the x-axis at x = 2. (See Figure 12.18.)

x
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z

Figure 12.18: Cross-section of

the surface z = f(x, y) by

the plane x = 2

x

y

z

✙
Curve
f(a, y)

Surface
f(x, y)

Figure 12.19: The curves

z = f(a, y) with a constant:

cross-sections with x fixed

x

y

z

✙
Curve
f(x, b)

Surface
f(x, y)

Figure 12.20: The curves

z = f(x, b) with b constant:

cross-sections with y fixed

Figure 12.19 shows graphs of other cross-sections of f with x fixed; Figure 12.20 shows graphs

of cross-sections with y fixed.

Example 3 Describe the cross-sections of the function g(x, y) = x2 − y2 with y fixed and then with x fixed.

Use these cross-sections to describe the shape of the graph of g.

Solution The cross-sections with y fixed at y = b are given by

z = g(x, b) = x2 − b2.
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Thus, each cross-section with y fixed gives a parabola opening upward, with minimum z = −b2.

The cross-sections with x fixed are of the form

z = g(a, y) = a2 − y2,

which are parabolas opening downward with a maximum of z = a2. (See Figures 12.21 and 12.22.)

The graph of g is shown in Figure 12.23. Notice the upward-opening parabolas in the x-direction

and the downward-opening parabolas in the y-direction. We say that the surface is saddle-shaped.
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z = x2 − 4

✛
�
y = ±1

z = x2 − 1

✛
�
y = 0

z = x2

Figure 12.21: Cross-sections of

g(x, y) = x2 − y2 with y fixed

✛
�
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z = 4− y2

✛
�
x = ±1

z = 1− y2

✛
�
x = 0

z = −y2

y
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1

4

Figure 12.22: Cross-sections of

g(x, y) = x2 − y2 with x fixed

x

y

z

Figure 12.23: Graph of

g(x, y) = x2 − y2

showing cross sections

Linear Functions
Linear functions are central to single-variable calculus; they are equally important in multivariable

calculus. You may be able to guess the shape of the graph of a linear function of two variables. (It’s

a plane.) Let’s look at an example.

Example 4 Describe the graph of f(x, y) = 1 + x− y.

Solution The plane x = a is vertical and parallel to the yz-plane. Thus, the cross-section with x = a is

the line z = 1 + a − y which slopes downward in the y-direction. Similarly, the plane y = b is

parallel to the xz-plane. Thus, the cross-section with y = b is the line z = 1 + x− b which slopes

upward in the x-direction. Since all the cross-sections are lines, you might expect the graph to be a

flat plane, sloping down in the y-direction and up in the x-direction. This is indeed the case. (See

Figure 12.24.)

x

y

z

❘

Plane x = a

✲Line
z = 1 + a− y

✛ Plane
z = 1 + x− y

Figure 12.24: Graph of the plane z = 1 + x− y showing

cross-section with x = a

When One Variable is Missing: Cylinders
Suppose we graph an equation like z = x2 which has one variable missing. What does the surface

look like? Since y is missing from the equation, the cross-sections with y fixed are all the same

parabola, z = x2. Letting y vary up and down the y-axis, this parabola sweeps out the trough-



a. 

Taking a slice along the -axis, we have

Finally, along the line 

f(x, y) = (x − y)2

Let  and consider the following cross-sections.
Taking a slice along the -axis, we have

z = f(x, y) = (x − y)2,
y

z = f(0, y) = (0 − y)2 = (−y)2 = y2.

This cross-section will then look like:

x

z = f(x, 0) = x2,

and graphically,

x = y,

z = f(x, y) = (0)2 = 0,

and so  is constant (and zero) along this cross-section. The surfacef
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 , 

b. 

Taking a slice along the -axis, we have

 is plotted below for z = f(x, y) (x, y) ∈ [−5, 5] × [−5, 5].

z = y2 z = x2, z = 0.

f(x, y) = |x| + |y|

Let  and consider the following cross-sections.
Taking a slice along the -axis, we have

z = f(x, y) = |x| + |y|,
y

z = f(0, y) = |y|.

This cross-section will then look like:

x

z = f(x, 0) = |x|,

and graphically,
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Finally, along the line 

The surface  is plotted below for 

x = y,

z = f(x, y) = |y| + |y| = 2|y|,

and graphically,

z = f(x, y) (x, y) ∈ [−5, 5] × [−5, 5].

z = |y|, z = |x|, z = 2|y|.
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c. 

Taking a slice along the -axis, we have

Finally, along the line 

f(x, y) = e−(x2+y2) sin(x2 + y2)

Let  and consider the following
cross-sections. Taking a slice along the -axis, we have

z = f(x, y) = e−(x2+y2) sin(x2 + y2),
y

z = f(0, y) = e−(y2) sin(y2).

This cross-section will then look like:

x

z = f(x, 0) = e−(x2) sin(x2),

and graphically,

x = y,

z = f(x, y) = e−(y2+y2) sin(y2 + y2) = e−(2y2) sin(2y2),

and graphically,
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The surface  is plotted below for 

d. 

z = f(x, y) (x, y) ∈ [−5, 5] × [−5, 5].

f(x, y) = sin(x − y)

Let  and consider the following cross-sections.
Taking a slice along the -axis, we have

z = f(x, y) = sin(x − y),
y

z = f(0, y) = sin(−y) = − sin(y),

where we used the fact that sine is an even function. This cross-section
will then look like:

Firefox https://www.sfu.ca/math-coursenotes/Math 158 Course...

5 z 7 15. 03. 21 14:15



Taking a slice along the -axis, we have

Finally, along the line 

x

z = f(x, 0) = sin(x),

and graphically,

x = y,

z = f(x, y) = sin(0) = 0,

and so  is constant (and zero) along this cross-section. The surface
 is plotted below for 

f

z = f(x, y) (x, y) ∈ [−2π, 2π] × [−2π, 2π].
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