Theory

Definition 1. The Euclidean metric (distance) on \mathbb{R}^{n} is the function $\rho: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow$ $[0,+\infty)$ defined by

$$
\rho(\vec{x}, \vec{y})=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} .
$$

The number $\rho(\vec{x}, \vec{y})$ is called the distance of the point \vec{x} from the point \vec{y}.
Definition 2. Let $\vec{x} \in \mathbb{R}^{n}, r \in \mathbb{R}, r>0$. The set $B(\vec{x}, r)$ defined by

$$
B(\vec{x}, r)=\left\{\vec{y} \in \mathbb{R}^{n} ; \rho(\vec{x}, \vec{y})<r\right\}
$$

is called an open ball with radius r centred at \vec{x} or the neighbourhood of \vec{x}.
Definition 3. Let $M \subset \mathbb{R}^{n}$. We say that $\vec{x} \in \mathbb{R}^{n}$ is an interior point of M, if there exists $r>0$ such that $B(\vec{x}, r) \subset M$.

The set of all interior points of M is called the interior of M, is denoted by $\operatorname{Int} M$.
The set $M \subset \mathbb{R}^{n}$ is open in \mathbb{R}^{n}, if each point of M is an interior point of M, i.e. if $M=\operatorname{Int} M$.

Remarks 4. A union of an arbitrary system of open sets is an open set.
An intersection of a finitely many open sets is an open set.
Definition 5. Let $M \subset \mathbb{R}^{n}$ and $\vec{x} \in \mathbb{R}^{n}$. We say that \vec{x} is a boundary point of M if for each $r>0$

$$
B(\vec{x}, r) \cap M \neq \emptyset \quad \text { and } \quad B(\vec{x}, r) \cap\left(\mathbb{R}^{n} \backslash M\right) \neq \emptyset
$$

The boundary of M is the set of all boundary points of $M($ notation bd $M)$.
The closure of M is the set $M \cup \mathrm{bd} M$ (notation $\bar{M})$.
A set $M \subset \mathbb{R}^{n}$ is said to be closed in \mathbb{R}^{n} if it contains all its boundary points, i.e. if bd $M \subset M$, or in other words if $\bar{M}=M$.

Theorem 6 (convergence is coordinatewise). Let $\vec{x}^{j} \in \mathbb{R}^{n}$ for each $j \in \mathbb{N}$ and let $\vec{x} \in \mathbb{R}^{n}$. The sequence $\left\{\vec{x}^{j}\right\}_{j=1}^{\infty}$ converges to \vec{x} if and only if for each $i \in\{1, \ldots, n\}$ the sequence of real numbers $\left\{x_{i}^{j}\right\}_{j=1}^{\infty}$ converges to the real number x_{i}.

Theorem 7 (characterisation of closed sets). Let $M \subset \mathbb{R}^{n}$. Then the following statements are equivalent:

1. M is closed in \mathbb{R}^{n}.
2. $\mathbb{R}^{n} \backslash M$ is open in \mathbb{R}^{n}.
3. Any $\vec{x} \in \mathbb{R}^{n}$ which is a limit of a sequence from M belongs to M.

Remarks 8. An intersection of an arbitrary system of closed sets is closed.
A union of finitely many closed sets is closed.
Definition 9. We say that the set $M \subset \mathbb{R}^{n}$ is bounded if there exists $r>0$ such that $M \subset B(\vec{o}, r)$.
Definition 10. We say that a set $M \subset \mathbb{R}^{n}$ is compact if for each sequence of elements of M there exists a convergent subsequence with a limit in M.

Theorem 11 (characterisation of compact subsets of \mathbb{R}^{n}). The set $M \subset \mathbb{R}^{n}$ is compact if and only if M is bounded and closed.

Exercises

1. Sketch the points into the coordinate system and find its distance
(a) $A=(-1,2), B=(0,-4)$
(d) $A=(-2,1), B=(0,0)$
(b) $A=(-4,-1), B=(0,4)$
(e) $A=(2,3), B=(2,-3)$
(c) $A=(-2,-2), B=(5,3)$
2. Which of the points $A=(1,-1,0), B=(0,3,4), C=(2,2,1) D=(0,-4,0)$ lies closest to the $x z$-plane? Which points lies on the y-axis? Sketch them into the coordinate system.
3. You uare 2 units below the $x y$-plane and in the $y z$-plane. What are your coordinates?
4. You are standing at the point $(4,5,2)$, looking at the point $(0.5,0,3)$. Are you looking up or down?
5. Find the distance of the following points
(a) $A=(0,0,0), B=(3,4,12)$
(c) $A=(3,6,1), B=(1,6,3)$
(b) $A=(6,5,4), B=(10,9,8)$
6. Find the distance between Sokolovská 83 and V Holešovičkách 747 by
(a) Euclidean distance
(c) public transport
(e) bike
(b) car
(d) foot
(f) boat

https://en.mapy.cz/s/damedadeka

7. Find the distance of the points $A=[-2,3]$ and $B=[1,7]$ in different metrics:
(a) $\rho_{2}(x, y)=\sqrt{\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}}$
(b) $\rho_{1}(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$
(c) $\rho_{\infty}(x, y)=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|$
8. Decide about the boundedness of the sets:
(a) $M=\left\{[x, y] \in \mathbb{R}^{2} ; \frac{x^{2}}{2}+y^{2} \leq 2\right\}$
(d) $M=\left\{[x, y] \in \mathbb{R}^{2} ;|x-y|<2\right\}$
(b) $M=\left\{[x, y] \in \mathbb{R}^{2} ;|x| \leq|y|\right\}$
(e) $M=\left\{(x, y, z) \in \mathbb{R}^{3} ; 2<x y z<4\right\}$
(c) $M=\left\{[x, y] \in \mathbb{R}^{2} ;|x|+|y| \leq 3\right\}$
9. Is the set M open or closed (or both or nothing)? Find its interior, closure, boundary:
(a) $M=(0,1)$
(c) $M=(0,1]$
(e) $M=[0, \infty)$
(b) $M=[0,1]$
(d) $M=(0, \infty)$
(f) $M=(-\infty, \infty)$
(g) \mathbb{N}
(h) \mathbb{Q}
(i) \mathbb{R}
10. Decide whether the set is open or closed (or both, or neither). Find the boundary.

a)

b)

c)

d)

e)
11. True or false? $\overline{A \cap B}=\bar{A} \cap \bar{B}$
12. Find the limit $\lim _{n \rightarrow \infty} x_{n}$ of the following sequences:
(a) $x_{n}=\left(1+\frac{1}{n}, 2-\frac{1}{n}\right)$
(b) $x_{n}=\left(\frac{3 n}{2 n-1}, \pi, \cos (\operatorname{arccot} n)\right)$
(c) $x_{n}=\left(\frac{(-1)^{n}}{\ln n}, \sin \left(\pi-e^{-n}\right), \frac{1}{\sqrt{n}}, \arcsin \left(\ln \left(\frac{n}{n+3}\right)\right)\right)$
(d) $x_{n}=\left((-1)^{n}, \arctan \left(n^{2}\right)\right)$
