\qquad
Distance Between Two Points (Pythagorean Theorem) Date \qquad Period \qquad
© 2014 Kuta Software LLC. All rights reserved.
Using the Pythagorean Theorem, find the distance between each pair of points.

1)
10.1
3)

$6.1 \sqrt{1+36}=\sqrt{3}$
5)

7)

2.2
2)

8.6
4)

4
6)

6
8)

$$
1.4 \stackrel{\circ}{=} 2
$$

Example $7 \quad$ Which of the points $A=(1,-1,0), B=(0,3,4), C=(2,2,1)$, and $D=(0,-4,0)$ lies closest to the $x z$-plane? Which point lies on the y-axis?
Solution The magnitude of the y-coordinate gives the distance to the $x z$-plane. The point A lies closest to that plane, because it has the smallest y-coordinate in magnitude. To get to a point on the y-axis, we move along the y-axis, but we don't move at all in the x - or the z-direction. Thus, a point on the y-axis has both its x - and z-coordinate equal to zero. The only point of the four that satisfies this is D. (See Figure 12.8.)

In general, if a point has one of its coordinates equal to zero, it lies in one of the coordinate planes. If a point has two of its coordinates equal to zero, it lies on one of the coordinate axes.

Figure 12.8: Which point lies closest to the $x z$-plane? Which point lies on the y-axis?

Figure 12.9: The line $x=0, z=-2$

Example $8 \quad$ You are 2 units below the $x y$-plane and in the $y z$-plane. What are your coordinates?
Solution Since you are 2 units below the $x y$-plane, your z-coordinate is -2 . Since you are in the $y z$-plane, your x-coordinate is 0 ; your y-coordinate can be anything. Thus, you are at the point $(0, y,-2)$. The set of all such points forms a line parallel to the y-axis, 2 units below the $x y$-plane, and in the $y z$-plane. (See Figure 12.9.)

You are standing at the point $(4,5,2)$, looking at the point $(0.5,0,3)$. Are you looking up or down?
Solution The point you are standing at has z-coordinate 2 , whereas the point you are looking at has z coordinate 3 ; hence you are looking up.

Example 10 Imagine that the $y z$-plane in Figure 12.7 is a page of this book. Describe the region behind the page algebraically.
Solution The positive part of the x-axis pokes out of the page; moving in the positive x-direction brings you out in front of the page. The region behind the page corresponds to negative values of x, so it is the set of all points in 3-space satisfying the inequality $x<0$.

Distance Between Two Points

In 2-space, the formula for the distance between two points (x, y) and (a, b) is given by

$$
\text { Distance }=\sqrt{(x-a)^{2}+(y-b)^{2}}
$$

The distance between two points (x, y, z) and (a, b, c) in 3 -space is represented by $P G$ in Figure 12.10. The side $P E$ is parallel to the x-axis, $E F$ is parallel to the y-axis, and $F G$ is parallel to the z-axis.

Distance and Midpoint with Three Dimensions (continued)

PRACTICE

For each pair of points, find the distance and the midpoint between the two given points.
tee

1. $(0,0,0)$ and $(3,4,12)$
$d=13 ;$
midpoint $=(1.5,2,6)$
2. $(4,-3,6)$ and $(1,0,17)$
$d=\sqrt{139} \approx 11.79 ;$
midpoint $=(2.5,-1.5,11.5)$
3. $(6,5,4)$ and $(10,9,8)$
$d=\sqrt{48} \approx 6.93 ;$
midpoint $=(8,7,6)$
4. $(1,1,1)$ and $(10,10,10)$
$d=\sqrt{243} \approx 15.59 ;$
midpoint $=(5.5,5.5,5.5)$
5. $(-4,-5,-19)$ and $(8,3,12)$
$d=\sqrt{1169} \approx 34.19$;
midpoint $=(2,-1,-3.5)$
6. $(5,5,18)$ and $(5,5,-8)$
$d=\sqrt{676}=26$;
midpoint $=(5,5,5)$
7. $(3,6,1)$ and $(1,6,3)$
$d=\sqrt{8} \approx 2.83 ;$
midpoint $=(2,6,2)$
8. $(9,6,3)$ and $(-9,-6,-3)$
$d=\sqrt{504} \approx 22.45 ;$
midpoint $=(0,0,0)$

10th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teaching.php, kuncova@karlin.mff.cuni.cz
7. Find the distance of the points $A=[-2,3]$ and $B=[1,7]$ in different metrics:
(a) $\rho_{2}(x, y)=\sqrt{\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}}$

Solution:

$$
\sqrt{(-2-1)^{2}+(3-7)^{2}}=\sqrt{25}=5
$$

(b) $\rho_{1}(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$

Solution:

$$
|-2-1|+|3-7|=3+4=7
$$

(c) $\rho_{\infty}(x, y)=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|$

Solution:

$$
\max \{|-2-1|,|3-7|\}=\max \{3,4\}=4
$$

https://www.geogebra.org/calculator/zbcpdav3
8. Decide about the boundedness of the sets:
(a) $M=\left\{[x, y] \in \mathbb{R}^{2} ; \frac{x^{2}}{2}+y^{2} \leq 2\right\}$

Solution: Yes, bounded. It is ellipse.
(b) $M=\left\{[x, y] \in \mathbb{R}^{2} ;|x| \leq|y|\right\}$

Solution: No, unbounded. For example line $x=0$ is in the set (and it is unbounded).
(c) $M=\left\{[x, y] \in \mathbb{R}^{2} ;|x|+|y| \leq 3\right\}$

Solution: Yes, bounded. It is a rhombus.
(d) $M=\left\{[x, y] \in \mathbb{R}^{2} ;|x-y|<2\right\}$

Solution: No, unbounded. For example line $y=x$ is in the set (and it is unbounded).
(e) $M=\left\{(x, y, z) \in \mathbb{R}^{3} ; 2<x y z<4\right\}$

Solution: No, unbounded. For example the curve $(x, 3 / x, 1)$ is in the set (and it is unbounded).
9. Is the set M open or closed (or both or nothing)? Find its interior, closure, boundary:
(a) $M=(0,1)$

Solution: Open. Int $M=(0,1) \bar{M}=[0,1] . \partial M=\{0,1\}$.
(b) $M=[0,1]$

Solution: Closed. Int $M=(0,1) \bar{M}=[0,1] . \partial M=\{0,1\}$.
(c) $M=(0,1]$

Solution: Neither open, nor closed. Int $M=(0,1) \bar{M}=[0,1] . \partial M=\{0,1\}$.
(d) $M=(0, \infty)$

Solution: Open. Int $M=(0, \infty) \bar{M}=[0, \infty) . \partial M=\{0\}$.
(e) $M=[0, \infty)$

Solution: Closed. $\operatorname{Int} M=(0, \infty) \bar{M}=[0, \infty) . \partial M=\{0\}$.
(f) $M=(-\infty, \infty)$

Solution: Both open and closed. $\operatorname{Int} M=(-\infty, \infty) \bar{M}=(-\infty, \infty) . \partial M=$ \emptyset.
(g) \mathbb{N}

Solution: Closed. Int $M=\emptyset \cdot \bar{M}=\mathbb{N} . \partial M=\mathbb{N}$.
(h) \mathbb{Q}

Solution: Neither open nor closed. $\operatorname{Int} M=\emptyset \cdot \bar{M}=\mathbb{R} . \partial M=\mathbb{R}$.
(i) \mathbb{R}

Solution: Both open and closed. Int $M=\mathbb{R} . \bar{M}=\mathbb{R} . \partial M=\emptyset$.
10. Decide whether the set is open or closed (or both, or neither). Find the boundary.

a)

b)

c)

d)

e)

c ~osmiug

$\Delta M=$

11. True or false? $\overline{A \cap B}=\bar{A} \cap \bar{B}$

Solution: False For example the intervals $A=(0,1), B=(1,2)$. Then $\overline{A \cap B}=$ $\bar{\emptyset}=\emptyset$, but $\bar{A} \cap \bar{B}=\overline{[0,1] \cap[1,2]}=\overline{\{1\}}=\{1\}$.
12. Find the limit of the following sequences:
(a) $x_{n}=\left(1+\frac{1}{n}, 2-\frac{1}{n}\right)$

Solution: Let us take the components separately.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} 1+\frac{1}{n}=1 \\
& \lim _{n \rightarrow \infty} 2-\frac{1}{n}=2
\end{aligned}
$$

Together

$$
\lim _{n \rightarrow \infty} x_{n}=(1,2)
$$

(b) $x_{n}=\left(\frac{3 n}{2 n-1}, \pi, \cos (\operatorname{arccot} n)\right)$

Solution:

$$
\lim _{n \rightarrow \infty} x_{n}=(3 / 2, \pi, 1)
$$

(c) $x_{n}=\left(\frac{(-1)^{n}}{\ln n}, \sin \left(\pi-e^{-n}\right), \frac{1}{\sqrt{n}}, \arcsin \left(\ln \left(\frac{n}{n+3}\right)\right)\right)$

Solution:

$$
\lim _{n \rightarrow \infty} x_{n}=(0,0,0,0)
$$

(d) $x_{n}=\left((-1)^{n}, \arctan \left(n^{2}\right)\right)$

Solution: $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist. Thus the whole limit does not exist.

