Theory

Theorem 1. Functions $f(x, y)=x, f(x, y)=y$ are continuous at \mathbb{R}^{2}.
Theorem 2. Let f and g be continuous at a point a. Then

1. $f \pm g$ is continuous at a
2. $f \cdot g$ is continuous at a
3. if $g(a) \neq 0$, then f / g is continuous at a.

Let g be continuous at a, f be continuous at $b=g(a)$. Then $f(g)$ is continuous at a.
Definition 3. We say that a function f of n variables has a limit at a point $\vec{a} \in \mathbb{R}^{n}$ equal to $A \in \mathbb{R}^{*}$ if

$$
\forall \varepsilon \in \mathbb{R}, \varepsilon>0 \exists \delta \in \mathbb{R}, \delta>0 \forall \vec{x} \in B(\vec{a}, \delta) \backslash\{\vec{a}\}: f(\vec{x}) \in B(A, \varepsilon) .
$$

Remarks 4. - Each function has at a given point at most one limit. We write $\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=A$.

- The function f is continuous at \vec{a} if and only if $\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=f(\vec{a})$.
- For limits of functions of several variables one can prove similar theorems as for limits of functions of one variable (arithmetics, the sandwich theorem, ...).

Exercises

1. Where are continuous the following functions?
(a) $f(x, y)=x y+\cos \left(y+e^{x}\right)$
(c) $f(x, y)=\frac{1}{\ln \sqrt{x^{2}+y^{2}}}$
(b) $f(x, y)=\tan (x+y)+\operatorname{sgn}(x y)$
2. Where is continuous $f(x, y)=\arctan \frac{y}{x}$?
(a) Everywhere except at the origin
(b) Everywhere except along the x-axis.
(c) Everywhere except along the y-axis.
(d) Everywhere except along the line $y=x$.
3. Find the following limits:
(a) $\lim _{(x, y) \rightarrow(2,-1)} x^{2}-2 x y+3 y^{2}-4 x+3 y-6$
(b) $\lim _{(x, y) \rightarrow(2,-1)} \frac{2 x+3 y}{4 x-3 y}$
(c) $\lim _{(x, y) \rightarrow(4,1)} \sqrt{\frac{x^{2}-3 x y}{x+y}}$
(d) $\lim _{(x, y) \rightarrow(-1,0)} 4 \cos (3 y)+\sin \left(x^{2} y^{3}\right)$
(e) $\lim _{(x, y) \rightarrow(1,4)} e^{\sqrt{x}-\sqrt{y}}$
4. Show that the following limits do not exist:
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
(c) $\lim _{(x, y) \rightarrow(0,0)}-\frac{x y}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2}$
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{1}{x^{2}+y^{2}}$
5. In the table there are values of a function $f(x, y)$. Does there exist the limit

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y) ?
$$

$x \backslash y$	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00
-0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
-0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0	-1.00	-1.00	-1.00		-1.00	-1.00	-1.00
0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00

Source 1: https://www.cpp.edu/conceptests/question-library/mat214.shtml

