11th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teaching.php, kuncova@karlin.mff.cuni.cz

Theory

Theorem 1. Functions f(x, y) = x, f(x, y) = y are continuous at \mathbb{R}^2 .

Theorem 2. Let f and g be continuous at a point a. Then

- 1. $f \pm q$ is continuous at a
- 2. $f \cdot g$ is continuous at a
- 3. if $g(a) \neq 0$, then f/g is continuous at a.

Let g be continuous at a, f be continuous at b = g(a). Then f(g) is continuous at a.

Definition 3. We say that a function f of n variables has a limit at a point $\vec{a} \in \mathbb{R}^n$ equal to $A \in \mathbb{R}^*$ if

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \; \exists \delta \in \mathbb{R}, \delta > 0 \; \forall \vec{x} \in B(\vec{a}, \delta) \setminus \{\vec{a}\} \colon f(\vec{x}) \in B(A, \varepsilon).$

- Remarks 4. • Each function has at a given point at most one limit. We write $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = A.$
 - The function f is continuous at \vec{a} if and only if $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = f(\vec{a})$.
 - For limits of functions of several variables one can prove similar theorems as for limits of functions of one variable (arithmetics, the sandwich theorem, ...).

Exercises

- 1. Where are continuous the following functions?
 - (c) $f(x,y) = \frac{1}{\ln\sqrt{x^2 + y^2}}$ (a) $f(x, y) = xy + \cos(y + e^x)$ (b) $f(x, y) = \tan(x + y) + \operatorname{sgn}(xy)$
- 2. Where is continuous $f(x, y) = \arctan \frac{y}{x}$?
 - (a) Everywhere except at the origin
 - (b) Everywhere except along the x-axis.
 - (c) Everywhere except along the y-axis.
 - (d) Everywhere except along the line y = x.
- 3. Find the following limits:
 - (a) $\lim_{(x,y)\to(2,-1)} x^2 2xy + 3y^2 4x + 3y 6$ (b) $\lim_{(x,y)\to(2,-1)} \frac{2x+3y}{4x-3y}$

Mathematics 2, 2020/21, Kristýna Kuncová

- (c) $\lim_{(x,y)\to(4,1)} \sqrt{\frac{x^2-3xy}{x+y}}$ (d) $\lim_{(x,y)\to(-1,0)} 4\cos(3y) + \sin(x^2y^3)$
- (e) $\lim_{(x,y)\to(1,4)} e^{\sqrt{x}-\sqrt{y}}$

4. Show that the following limits do not exist:

(a) $\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$ (b) $\lim_{(x,y)\to(0,0)} \left(\frac{x^2 - y^2}{x^2 + y^2}\right)^2$ (c) $\lim_{(x,y)\to(0,0)} -\frac{xy}{x^2+y^2}$ (d) $\lim_{(x,y)\to(0,0)} \frac{1}{x^2+y^2}$

5. In the table there are values of a function f(x, y). Does there exist the limit

$$\lim_{(x,y)\to(0,0)} f(x,y)?$$

$x \setminus y$	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00
-0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
-0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0	-1.00	-1.00	-1.00		-1.00	-1.00	-1.00
0.2	-0.92	-0.72	0.00	1.00	0.00	-0.72	-0.92
0.5	-0.60	0.00	0.72	1.00	0.72	0.00	-0.6
1.0	0.00	0.60	0.92	1.00	0.92	0.60	0.00

 $Source \ 1: \ https://www.cpp.edu/conceptests/question-library/mat 214.shtml$