13th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teaching.php, kuncova@karlin.mff.cuni.cz

Theory

Set
$$\vec{e}^j = [0, \dots, 0, \underbrace{1}_{j \text{th coordinate}}, 0, \dots, 0].$$

Definition 1. Let f be a function of n variables, $j \in \{1, ..., n\}$, $\vec{a} \in \mathbb{R}^n$. Then the number

$$\frac{\partial f}{\partial x_j}(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{e}^j) - f(\vec{a})}{t}$$

$$= \lim_{t \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + t, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{t}$$

is called the partial derivative (of first order) of function f according to jth variable at the point \vec{a} (if the limit exists).

Definition 2. Let $G \subset \mathbb{R}^n$ be an open set, $f: G \to \mathbb{R}$, $i, j \in \{1, ..., n\}$, and suppose that $\frac{\partial f}{\partial x_i}(\vec{x})$ exists finite for each $\vec{x} \in G$. Then the partial derivative of the second order of the function f according to ith and jth variable at a point $\vec{a} \in G$ is defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{a}) = \frac{\partial \left(\frac{\partial f}{\partial x_i}\right)}{\partial x_j}(\vec{a})$$

If i = j then we use the notation $\frac{\partial^2 f}{\partial x_i^2}(\vec{a})$.

Similarly we define higher order partial derivatives.

Remarks 3. In general it is not true that $\frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\vec{a})$.

Theorem 4 (interchanging of partial derivatives). Let $i, j \in \{1, ..., n\}$ and suppose that a function f has both partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial x_j \partial x_i}$ on a neighbourhood of a point $\vec{a} \in \mathbb{R}^n$ and that these functions are continuous at \vec{a} . Then

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\vec{a}).$$

Definition 5. Let $G \subset \mathbb{R}^n$ be an open set, $\vec{a} \in G$, and $f \in C^1(G)$. Then the graph of the function

$$T \colon \vec{x} \mapsto f(\vec{a}) + \frac{\partial f}{\partial x_1}(\vec{a})(x_1 - a_1) + \frac{\partial f}{\partial x_2}(\vec{a})(x_2 - a_2) + \dots + \frac{\partial f}{\partial x_n}(\vec{a})(x_n - a_n), \quad \vec{x} \in \mathbb{R}^n,$$

is called the tangent hyperplane to the graph of the function f at the point $[\vec{a}, f(\vec{a})]$.

Exercises

1. Find the partial derivatives:

(a)
$$f(x,y) = x^2y^2 + y^2 + 2x^3y$$

(b)
$$f(x,y) = e^{x^2y}$$

(c)
$$f(x,y) = xe^{x^2y}$$

(d)
$$f(x, y, z) = \frac{yze^x}{x^2 \sin y}$$

(e)
$$f(x, y, z) = 2x^2y + e^yz + \sqrt{z} \ln x$$

(f)
$$f(x, y, z) = ze^{x^2 + xy}$$

(a)
$$f(x,y) = 4x^2 - 8xy^4 + 7y^5 - 3$$

(a)
$$f(x,y) = 4x - 8xy + ty^{2} - 6xy^{2} + ty^{3} - 5xy^{2} + ty^{3} - 5xy^{2} + ty^{3} - 5xy^{2} + ty^{3} - 5xy^{2} + ty^{3} - ty^{3$$

(b)
$$f(x,y) = \sin(xy)$$

(c)
$$f(x,y) = \arctan \frac{y}{x}$$

(a)
$$f(x,y) = 2x^2 - 3xy + 8y^2 + 2x - 4y + 4$$
 at $(2,-1)$

(g) $f(x, y, z) = \frac{x}{(xy-z)^2}$

(i) $f(x,y) = \frac{x}{x+y^2}$

(h) $f(x,y) = e^{2x^2+y^2+2xy+2y}$

(k) $f(x, y, z) = \frac{x^2 e^{5y+3z}}{\sin z} + x^y$

(d) $f(x, y, z) = \sin(x^2 + xy)$

(e) $f(x, y, z) = x\sqrt{y + 2z}$

(j) $f(x, y, z) = \sin(x^3 + z) \ln(z) + x^2 y^2 z$

(b)
$$f(x, y) = \sin(2x)\cos(3y)$$
 at $(\pi/3, \pi/4)$

(c)
$$f(x,y) = \frac{2x+y}{3y^2}$$
 at $(-2,3)$

(d)
$$f(x, y, z) = x^2 y^3 z^4$$
 at $(2, 1, -2)$

