
Limit Definition

As with derivatives in calculus I, there is a limit definition for partial derivatives:

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y

h
∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y

h

We won’t be using the limit definition to find partial derivatives in this class, but we would need it if we wanted to
go through a later example.

Example 1. Find all first partial derivatives of the following functions:

1. f(x, y) = x2y2 + y2 + 2x3y
∂f

∂x
= 2xy2 + 6x2y,

∂f

∂y
= 2x2y + 2y + 2x3,

∂2f

∂x2
= 12xy + 2y2,

∂2f

∂y ∂x
= 6x2 + 4xy,

∂2f

∂y2
= 2 + 2x2,

∂2f

∂x ∂y
= 6x2 + 4xy,

∂3f

∂x3
= 12y,

∂3f

∂y ∂x2
= 12x+ 4y =

∂3f

∂x2 ∂y
=

∂3f

∂x ∂y ∂x
,
∂3f

∂y3
= 0,

∂3f

∂x ∂y2
= 4x =

∂3f

∂y2 ∂x
=

∂3f

∂y ∂x ∂y

2. f(x, y) = ex
2y ∂f

∂x
= 2xyex

2y,
∂f

∂y
= x2ex

2y,

∂2f

∂x2
= 4x2y2ex

2y + 2yex
2y,

∂2f

∂y ∂x
= 2xex

2y + 2x3yex
2y,

∂2f

∂y2
= x4ex

2y,
∂2f

∂x ∂y
= 2xex

2y + 2x3yex
2y

3. f(x, y) = xex
2y ∂f

∂x
= ex

2y + 2x2yex
2y,

∂f

∂y
= x3ex

2y,

∂2f

∂x2
= 6xyex

2y + 4x3y2ex
2y,

∂2f

∂y ∂x
= 3x2ex

2y + 2x4yex
2y,

∂2f

∂y2
= x5ex

2y,
∂2f

∂x ∂y
= 3x2ex

2y + 2x4yex
2y

4. h(x, y, z) =
yzex

x2 sin(y)

∂h

∂x
=

yzexx2 sin(y)− yzex2x sin(y)

(x2 sin(y))
2 = . . . =

yzex(x− 1)

x3 sin(y)
,

∂h

∂y
=

zexx2 sin(y)− yzexx2 cos(y)

(x2 sin(y))
2 =

zex (sin(y)− y cos(y))

x4 sin2(y)
,
∂h

∂z
=

yex

x2 sin(y)

Some additional examples we’ll look at if time permits:

5. f(x, y, z) = 2x2y + eyz +
√
z ln(x)

∂f

∂x
= 4xy +

√
z

x
,
∂f

∂y
= 2x2 + eyz,

∂f

∂z
= ey +

ln(x)

2
√
z

6. f(x, y, z) = zex
2+xy ∂f

∂x
= z(2x+ y)ex

2+xy,
∂f

∂y
= xzex

2+xy,
∂f

∂z
= ex

2+xy

7. f(x, y, z) =
x

(xy − z)2
∂f

∂x
= − xy + z

(xy − z)3
,
∂f

∂y
= − 2x2

(xy − z)3
,
∂f

∂z
=

2x

(xy − z)3

Higher Order Derivatives

We can find second order derivatives by simply differentiating the first order partial derivatives again. We can find
third or higher order derivatives in a similar manner.
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MA2 Practice problems 2 solutions c° pHabala 2010

MA2: Practice problems—Derivatives, geometry

Brief solutions

1. ∂f
∂x = (4x + 2y)e2x2+y2+2xy+2y, ∂f

∂y = (2y + 2x + 2)e2x2+y2+2xy+2y.

2. ∂f
∂x = (x+y2)−x

(x+y2)2 = y2

(x+y2)2 , ∂f
∂y = − 2xy

(x+y2)2 .

3. ∂f
∂x = cos(x3 + z)3x2 ln(z) + 2xy2z, ∂f

∂y = x22yz, ∂f
∂z = cos(x3 + z) ln(z) + sin(x3 + z) 1

z + x2y2.

4. ∂f
∂x = 2x e5y+3z

sin(z) + y xy−1, ∂f
∂y = 5e5y+3z x2

sin(z) + ln(x)xy, ∂f
∂z = x2 3e5y+3z sin(z)−e5y+3z cos(z)

sin2(z)
.

5. ∂f
∂x = (2x + y) cos(x2 + xy), ∂f

∂y = x cos(x2 + xy);
∂2f
∂x2 = 2 cos(x2 + xy) − (2x + y)2 sin(x2 + xy), ∂2f

∂x∂y = cos(x2 + xy) − x(2x + y) sin(x2 + xy),
∂2f
∂y2 = −x2 sin(x2 + xy).

6. ∂f
∂x =

√
y + 2z, ∂f

∂y = x
2
√

y+2z
, ∂f

∂z = x√
y+2z

;

∂2f
∂x2 = 0, ∂2f

∂x∂y = ∂2f
∂y∂x = 1

2
√

y+2z
, ∂2f

∂x∂z = ∂2f
∂z∂x = 1√

y+2z
, ∂2f

∂y2 = −x
4[
√

y+2z ]3
,

∂2f
∂y∂z = ∂2f

∂z∂y = −x
2[
√

y+2z ]3
, ∂2f

∂z2 = −x
[
√

y+2z ]3
.

Derivatives are simpler with 1√
y+2z

= (y + 2z)−1/2.

7. ∂f
∂x = ln(xy + 1) + xy

xy+1 , ∂f
∂y = x2

xy+1 ;

therefore ∇f(1, 0) = (0, 1) and D~uf(1, 0) = ∇f(1, 0) • ~u = 1√
5
.

8. a) We need the direction of the maximal descent, which is −∇f(1, 2). We have

∇f =
�

∂f
∂x , ∂f

∂y

�

=
� −6x

(3x2+y2+1)2 , −2y
(3x2+y2+1)2

�

. Thus −∇f(1, 2) =
�

3
32 , 2

32

�

, we can take ~d = (3, 2).

b) We need the directional derivative D~uf(1, 2), where ~u = ~v
k~vk = 1

5 (−3, 4), therefore

D~uf(1, 2) = ∇f(1, 2) • ~u = 1
32 (3, 2) • 1

5 (−3, 4) = −1
160 . The ground goes down in this direction.

9. There are several possible ways to approach this problem.
1) One can place the rectangle so that the upper left corner is at the origin, then the lower right corner is
at (10,−5). The area is given by A(x, y) = −xy. We want to know the rate of change of A when the point
(10,−5) changes in direction (and magnitude) ~v = (2, 2).
∇A = (−y,−x) =⇒ ∇A(10,−5) = (5,−10), therefore D~vA(10,−5) = −10. The area starts getting smaller
at the rate 10 cm2/sec.
2) We may simply consider the area A(x, y) = xy and consider the case when x = x(t), y = y(t) depend on
time. We differentiate with respect to t: A′(x, y) = ∂A

∂x x′(t) + ∂A
∂y y′(t) = y x′(t) + x y′(t).

We have x = 10, y = 5 and the given data are x′ = 2, y′ = −2. Thus A′(10, 5) = 5 · 2 + 10 · (−2) = −10.
We can also use the total differential, dA(10, 5) = 5dx + 10dy.

10. We interpret it as a level curve problem for f(x, y) = x2

4 + y2 = 1. We check that the given point P
satisfies f(x, y) = 1, so it indeed lies on this curve.
∂f
∂x = 1

2x, ∂f
∂y = 2y, therefore ∇f

�√
3,− 1

2

�

=
�

1
2

√
3,−1

�

.

This vector is perpendicular (normal) to the curve, hence also to the tangent line. Thus its equation is
∇f(P ) • ((x, y) − P ) = 0 =⇒ 1

2

√
3
�

x −
√

3
�

−
�

y + 1
2

�

= 0 =⇒ y = 1
2

√
3x − 1.

To find the normal line, we can use ∇f(P ) as its directional vector, obtaining parametric equations
x =

√
3 + 1

2

√
3 t, y = − 1

2 t. To get classical equations we elliminate t, obtaining x + 1
2

√
3y = 3

4

√
3.

One can also find a vector perpendicular to ∇f(P ), for instance vector
�

1, 1
2

√
3

�

, and find the equation of

the normal line using
�

1, 1
2

√
3

�

• ((x, y) − P ) = 0, again we end up with x + 1
2

√
3y = 3

4

√
3.

11. We interpret it as a level curve problem, f(x, y, z) = (x−1)2

2 + y2

3 + z2

6 = 1. We check that the given
point P satisfies f(x, y, z) = 1, so it indeed lies on this curve.
∂f
∂x = x − 1, ∂f

∂y = 2
3y, ∂f

∂y = 1
3z, therefore ∇f(0, 1,−1) =

�

−1, 2
3 ,− 1

3

�

.

This vector is perpendicular (normal) to the curve, hence also to the tangent plane. Thus its equation is
∇f(P )•((x, y, z)−P ) = 0 =⇒ −x+ 2

3 (y−1)− 1
3 (z+1) = 0 =⇒ −x+ 2

3y− 1
3z = 1 =⇒ 3x−2y+z+3 = 0.
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Solution.

∂z

∂x
= 8x− 8y4

∂z

∂y
= −8x(4y3) + 35y4 = −32xy3 + 35y4

∂2z

∂x2
=

∂

∂x

�
∂z

∂x

�
= 8

∂2z

∂y2
=

∂

∂y

�
∂z

∂y

�

=
∂

∂y
(−32xy3 + 35y4) = −32x(3y2) + 140y3

= −96xy2 + 140y3

∂2z

∂x∂y
=

∂

∂x

�
∂z

∂y

�
=

∂

∂x
(−32xy3 + 35y4) = −32y3

∂2z

∂y∂x
=

∂

∂y

�
∂z

∂x

�
=

∂

∂y
(8x− 8y4) = −32y3

0.9 Example

Find all the first and second order partial derivatives of the function z = sinxy.
Solution.

∂z

∂x
= y cos xy

∂z

∂y
= x cos xy

∂2z

∂x2
= −y2 sinxy

∂2z

∂y2
= −x2 sinxy

∂2z

∂x∂y
=

∂

∂x

�
∂z

∂y

�
=

∂

∂x
(x cos xy) = x(−y sinxy) + cos xy = −xy sinxy + cos xy

∂2z

∂y∂x
=

∂

∂y

�
∂z

∂x

�
=

∂

∂y
(y cos xy) = y(−x sinxy) + cos xy = −xy sinxy + cos xy

0.10 Subscript notation for second order partial derivatives

If z = f(x, y) then

• zxx means ∂2z
∂x2

• zyy means ∂2z
∂y2
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2/21/20 Multivariate Calculus: Multivariable Functions Havens

Solution: Observe that the function is undefined along the line x = 0. Its graph is the portion
of the helicoid2 surface shown in figure 4.

The first partial derivatives are:

fx(x, y) =
−y

x2
1

1 + y2/x2
=

−y

x2 + y2
, x �= 0 ,

fy(x, y) =
1

x

1

1 + y2/x2
=

x

x2 + y2
, x �= 0 .

To compute the second partial derivatives, we merely differentiate the above functions with
respect to either x or y:

fxx(x, y) = ∂x

Å −y

x2 + y2

ã
=

2xy

(x2 + y2)2
, x �= 0 ,

fxy(x, y) = ∂y

Å −y

x2 + y2

ã
=

−x2 − y2 + 2y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
, x �= 0 ,

fyy(x, y) = ∂y

Å
x

x2 + y2

ã
=

−2xy

(x2 + y2)2
, x �= 0 ,

fyx(x, y) = ∂x

Å
x

x2 + y2

ã
=

x2 + y2 − 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
, x �= 0 .

Observe that fxy(x, y) = fyx(x, y).

The graphs of the first and second partial derivative functions are shown below in figures 5, 6
and 7.

(a) (b)

Figure 5. (A) – The graph of fx(x, y) = −y/r2 for f(x, y) = arctan(y/x). (B) –
The graph of fy(x, y) = x/r2 for f(x, y) = arctan(y/x).

2A helicoid is a surface swept out by revolving a line around an axis as you slide it along the axis. Stacking the
graphs of functions zk = arctan y/x+ kπ for k ∈ Z, and filling in the z - axis and lines x = 0, z = kπ gives an entire
helicoid. It can also be parameterized as the surface σ(u, v) = �u cos v, u sin v, v�, for u ∈ R and v ∈ R.
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MA2 Practice problems 2 solutions c° pHabala 2010

MA2: Practice problems—Derivatives, geometry

Brief solutions

1. ∂f
∂x = (4x + 2y)e2x2+y2+2xy+2y, ∂f

∂y = (2y + 2x + 2)e2x2+y2+2xy+2y.

2. ∂f
∂x = (x+y2)−x

(x+y2)2 = y2

(x+y2)2 , ∂f
∂y = − 2xy

(x+y2)2 .

3. ∂f
∂x = cos(x3 + z)3x2 ln(z) + 2xy2z, ∂f

∂y = x22yz, ∂f
∂z = cos(x3 + z) ln(z) + sin(x3 + z) 1

z + x2y2.

4. ∂f
∂x = 2x e5y+3z

sin(z) + y xy−1, ∂f
∂y = 5e5y+3z x2

sin(z) + ln(x)xy, ∂f
∂z = x2 3e5y+3z sin(z)−e5y+3z cos(z)

sin2(z)
.

5. ∂f
∂x = (2x + y) cos(x2 + xy), ∂f

∂y = x cos(x2 + xy);
∂2f
∂x2 = 2 cos(x2 + xy) − (2x + y)2 sin(x2 + xy), ∂2f

∂x∂y = cos(x2 + xy) − x(2x + y) sin(x2 + xy),
∂2f
∂y2 = −x2 sin(x2 + xy).

6. ∂f
∂x =

√
y + 2z, ∂f

∂y = x
2
√

y+2z
, ∂f

∂z = x√
y+2z

;

∂2f
∂x2 = 0, ∂2f

∂x∂y = ∂2f
∂y∂x = 1

2
√

y+2z
, ∂2f

∂x∂z = ∂2f
∂z∂x = 1√

y+2z
, ∂2f

∂y2 = −x
4[
√

y+2z ]3
,

∂2f
∂y∂z = ∂2f

∂z∂y = −x
2[
√

y+2z ]3
, ∂2f

∂z2 = −x
[
√

y+2z ]3
.

Derivatives are simpler with 1√
y+2z

= (y + 2z)−1/2.

7. ∂f
∂x = ln(xy + 1) + xy

xy+1 , ∂f
∂y = x2

xy+1 ;

therefore ∇f(1, 0) = (0, 1) and D~uf(1, 0) = ∇f(1, 0) • ~u = 1√
5
.

8. a) We need the direction of the maximal descent, which is −∇f(1, 2). We have

∇f =
�

∂f
∂x , ∂f

∂y

�

=
� −6x

(3x2+y2+1)2 , −2y
(3x2+y2+1)2

�

. Thus −∇f(1, 2) =
�

3
32 , 2

32

�

, we can take ~d = (3, 2).

b) We need the directional derivative D~uf(1, 2), where ~u = ~v
k~vk = 1

5 (−3, 4), therefore

D~uf(1, 2) = ∇f(1, 2) • ~u = 1
32 (3, 2) • 1

5 (−3, 4) = −1
160 . The ground goes down in this direction.

9. There are several possible ways to approach this problem.
1) One can place the rectangle so that the upper left corner is at the origin, then the lower right corner is
at (10,−5). The area is given by A(x, y) = −xy. We want to know the rate of change of A when the point
(10,−5) changes in direction (and magnitude) ~v = (2, 2).
∇A = (−y,−x) =⇒ ∇A(10,−5) = (5,−10), therefore D~vA(10,−5) = −10. The area starts getting smaller
at the rate 10 cm2/sec.
2) We may simply consider the area A(x, y) = xy and consider the case when x = x(t), y = y(t) depend on
time. We differentiate with respect to t: A′(x, y) = ∂A

∂x x′(t) + ∂A
∂y y′(t) = y x′(t) + x y′(t).

We have x = 10, y = 5 and the given data are x′ = 2, y′ = −2. Thus A′(10, 5) = 5 · 2 + 10 · (−2) = −10.
We can also use the total differential, dA(10, 5) = 5dx + 10dy.

10. We interpret it as a level curve problem for f(x, y) = x2

4 + y2 = 1. We check that the given point P
satisfies f(x, y) = 1, so it indeed lies on this curve.
∂f
∂x = 1

2x, ∂f
∂y = 2y, therefore ∇f

�√
3,− 1

2

�

=
�

1
2

√
3,−1

�

.

This vector is perpendicular (normal) to the curve, hence also to the tangent line. Thus its equation is
∇f(P ) • ((x, y) − P ) = 0 =⇒ 1

2

√
3
�

x −
√

3
�

−
�

y + 1
2

�

= 0 =⇒ y = 1
2

√
3x − 1.

To find the normal line, we can use ∇f(P ) as its directional vector, obtaining parametric equations
x =

√
3 + 1

2

√
3 t, y = − 1

2 t. To get classical equations we elliminate t, obtaining x + 1
2

√
3y = 3

4

√
3.

One can also find a vector perpendicular to ∇f(P ), for instance vector
�

1, 1
2

√
3

�

, and find the equation of

the normal line using
�

1, 1
2

√
3

�

• ((x, y) − P ) = 0, again we end up with x + 1
2

√
3y = 3

4

√
3.

11. We interpret it as a level curve problem, f(x, y, z) = (x−1)2

2 + y2

3 + z2

6 = 1. We check that the given
point P satisfies f(x, y, z) = 1, so it indeed lies on this curve.
∂f
∂x = x − 1, ∂f

∂y = 2
3y, ∂f

∂y = 1
3z, therefore ∇f(0, 1,−1) =

�

−1, 2
3 ,− 1

3

�

.

This vector is perpendicular (normal) to the curve, hence also to the tangent plane. Thus its equation is
∇f(P )•((x, y, z)−P ) = 0 =⇒ −x+ 2

3 (y−1)− 1
3 (z+1) = 0 =⇒ −x+ 2

3y− 1
3z = 1 =⇒ 3x−2y+z+3 = 0.
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To see why this formula is correct, let’s first find two tangent lines to the surface . The equation of the tangent line to the curve that is
represented by the intersection of  with the vertical trace given by  is . Similarly, the equation
of the tangent line to the curve that is represented by the intersection of  with the vertical trace given by  is 

. A parallel vector to the first tangent line is ; a parallel vector to the second

tangent line is . We can take the cross product of these two vectors:

This vector is perpendicular to both lines and is therefore perpendicular to the tangent plane. We can use this vector as a normal vector to the
tangent plane, along with the point  in the equation for a plane:

Solving this equation for  gives Equation .

Find the equation of the tangent plane to the surface defined by the function  at point 

Solution

First, we must calculate  and , then use Equation with  and :

Then Equation  becomes

(See the following figure).

S

S x = x0 z= f( , )+ ( , )(y− )x0 y0 fy x0 y0 y0
S y = y0

z= f( , )+ ( , )(x− )x0 y0 fx x0 y0 x0 = + ( , )a
⇀

ĵ fy x0 y0 k̂

= + ( , )b
⇀

î fx x0 y0 k̂

× = ( + ( , ) )×( + ( , ) )a
⇀

b
⇀

ĵ fy x0 y0 k̂ î fx x0 y0 k̂

=

∣

∣

∣
∣
∣
∣

î ĵ k̂

01 ( , )fy x0 y0

10 ( , )fx x0 y0

∣

∣

∣
∣
∣
∣

= ( , ) + ( , ) − .fx x0 y0 î fy x0 y0 ĵ k̂

= ( , , f( , ))P0 x0 y0 x0 y0

⋅ ((x− ) +(y− ) +(z−f( , )) ) = 0n
⇀ x0 î y0 ĵ x0 y0 k̂

( ( , ) + ( , ) − ) ⋅ ((x− ) +(y− ) +(z−f( , )) ) = 0fx x0 y0 î fy x0 y0 ĵ k̂ x0 î y0 ĵ x0 y0 k̂

( , )(x− )+ ( , )(y− )−(z−f( , )) = 0.fx x0 y0 x0 fy x0 y0 y0 x0 y0

z 14.4.1

Example : Finding a Tangent Plane14.4.1

f(x, y) = 2 −3xy+8 +2x−4y+4x2 y2

(2, −1).

(x, y)fx (x, y)fy = 2x0 =−1y0

(x, y) = 4x−3y+2fx

(x, y) =−3x+16y−4fy

f(2, −1) = 2(2 −3(2)(−1)+8(−1 +2(2)−4(−1)+4 = 34)2 )2

(2, −1) = 4(2)−3(−1)+2 = 13fx

(2, −1) =−3(2)+16(−1)−4 =−26.fy

14.4.1

z= f( , )+ ( , )(x− )+ ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

z= 34+13(x−2)−26(y−(−1))

z= 34+13x−26−26y−26

z= 13x−26y−18.
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Figure : Calculating the equation of a tangent plane to a given surface at a given point.

Find the equation of the tangent plane to the surface defined by the function  at point .

Hint

First, calculate  and , then use Equation .

Answer

Find the equation of the tangent plane to the surface defined by the function  at the point 

Solution

First, calculate  and , then use Equation  with  and :

Then Equation  becomes

A tangent plane to a surface does not always exist at every point on the surface. Consider the piecewise function

14.4.2

Exercise 14.4.1

f(x, y) = − y+ −2x+3y−2x3 x2 y2 (−1, 3)

(x, y)fx (x, y)fy 14.4.1

z= 7x+8y−3

Example : Finding Another Tangent Plane14.4.2

f(x, y) = sin(2x) cos(3y) (π/3, π/4).

(x, y)fx (x, y)fy 14.4.1 = π/3x0 = π/4y0

(x, y) = 2 cos(2x) cos(3y)fx

(x, y) =−3 sin(2x) sin(3y)fy

f ( , )= sin(2( )) cos(3( )) = ( )(− ) =−
π

3

π

4

π

3

π

4

3
–

√

2

2
–

√

2

6
–

√

4

( , )= 2 cos(2( )) cos(3( ))= 2(− )(− ) =fx
π

3

π

4

π

3

π

4

1

2

2
–

√

2

2
–

√

2

( , )=−3 sin(2( )) sin(3( ))=−3( )( ) =− .fy
π

3

π

4

π

3

π

4

3
–

√

2

2
–

√

2

3 6
–

√

4

14.4.1

z= f( , )+ ( , )(x− )+ ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

=− + (x− )− (y− )6
–

√

4

2
–

√

2

π

3

3 6
–

√

4

π

4

= x− y− − +
2
–

√

2

3 6
–

√

4

6
–

√

4

π 2
–

√

6

3π 6
–

√

16
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Example 27.2: Find the equation of the tangent plane to 𝑧 = 𝑔(𝑥,𝑦) =
2𝑥+𝑦

3𝑦2
 when 𝑥0 = −2 and 

𝑦0 = 3. 
 
Solution: The point of tangency is (𝑥0,𝑦0, 𝑧0) = (−2,3,−

1

27
), where 𝑧0 =

2(−2)+(3)

3(3)2
= −

1

27
.  

 
The partial derivatives are 
 

𝑔𝑥(𝑥,𝑦) =
2

3𝑦2
       and       𝑔𝑦(𝑥,𝑦) = −

1 + 4𝑥

3𝑦3
. 

 
 Evaluated at 𝑥0 = −2 and 𝑦0 = 3, we have 𝑔𝑥(−2,3) =

2

27
 and 𝑔𝑦(−2,3) =

7

81
. Thus, the 

equation of the plane of tangency is 
 

2

27
(𝑥 − (−2))+

7

81
(𝑦 − 3) − (𝑧 − (−

1

27
)) = 0. 

 
Multiplying by 81 to clear fractions and then distributing to clear parentheses, the equation is 
simplified to 6𝑥 + 7𝑦 − 81𝑧 = 12. 
 

         
 
This process can be extended to surfaces in higher dimension. 
 
Example 27.3: Find the equation of the tangent plane to 𝑤 = 𝑓(𝑥,𝑦, 𝑧) = 𝑥2𝑦3𝑧4 at (2,1,−2,64). 
 
Solution: The partial derivatives are evaluated at 𝑥0 = 2, 𝑦0 = 1 and 𝑧0 = −2: 
 

𝑓𝑥(𝑥,𝑦, 𝑧) = 2𝑥𝑦3𝑧4 → 𝑓𝑥(2,1,−2) = 64, 
𝑓𝑦(𝑥,𝑦, 𝑧) = 3𝑥2𝑦2𝑧4 → 𝑓𝑦(2,1,−2) = 192, 
𝑓𝑧(𝑥,𝑦, 𝑧) = 4𝑥2𝑦3𝑧3 → 𝑓𝑧(2,1,−2) = −128. 

 
Thus, the plane of tangency is 
 

64(𝑥 − 2) + 192(𝑦 − 1) − 128(𝑧 − (−2)) − 1(𝑤 − 64) = 0. 
 
Solving for w, we have 
 

𝑤 = 64(𝑥 − 2) + 192(𝑦 − 1) − 128(𝑧 + 2) + 64. 
 
Simplified, we have 𝑤 = 64𝑥 + 192𝑦 − 128𝑧 − 512. 
 

         
  


