16th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teaching.php
kuncova@karlin.mff.cuni.cz

Theory

Theorem 1 (Necessary condition of the existence of local extremum). Let $n \in \mathbb{N}$, $G \subset \mathbb{R}^{n}$ be an open set, $a \in G$ and $i \in\{1, \cdots, n\}$. Let us suppose that a function $f: G \rightarrow \mathbb{R}$ has a local extremum at a point a. Then the partial derivative $\frac{\partial f}{\partial x i}(a)$ does not exist or $\frac{\partial f}{\partial x_{i}}(a)=0$.

Theorem 2 (Sufficient condition of the existence of local extremum). Let $G \subset \mathbb{R}^{n}$ be an open set, $a \in G$ and let $f \in C^{2}(G)$. Let $\operatorname{grad} f(a)=0$. Then

1. If (the matrix of second derivatives) $f^{\prime \prime}(a)$ is positive definite, then f has a strict local minimum at a.
2. If $f^{\prime \prime}(a)$ is negative definite, then f has a strict local maximum at a.
3. If $f^{\prime \prime}(a)$ is indefinite, then f does not have a local extrema at a (saddle point).

Exercises

1. Find the local extrema (= find all critical points and decide, whether it is loc. minimum, loc. maximum or the saddle point):
(a) $f(x, y)=3 x^{2}+2 y^{3}-6 x y$
(b) $f(x, y)=x^{3} y-3 x y^{3}+8 y$
(c) $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$
(d) $f(x, y)=2 x^{3}+9 x y^{2}+15 x^{2}+27 y^{2}$
(e) $f(x, y)=x+2 y^{4}-\ln \left(x^{4} y^{8}\right)$ for $x, y>0$
(f) $f(x, y)=e^{x^{2}-y}(5-2 x+y)$
(g) $f(x, y, z)=x^{3}-2 x^{2}+y^{2}+z^{2}-2 x y+x z-y z+3 z$
2. Find the minimum distance between a point on the plane $x+y+z=1$ and the point $(2,-1,-2)$.
3. We should deliver $480 \mathrm{~m}^{3}$ of kids pool balls. The trucker uses open-top boxes in numerous trips. The cost to the trucker is the cost of the box plus $\$ 80$ per trip. We know that the height of the box is fixed $=2$ meters. But we can choose the length and width.
About the box: the cost is $\$ 100 / \mathrm{m}^{2}$ for the ends, $\$ 50 / \mathrm{m}^{2}$ for the sides and $\$ 200 / \mathrm{m}^{2}$ for the bottom. (Smaller box is cheaper, but we need more trips.) What size of the box minimize our total cost?
Source: Calculus: Single and Multivariable, Deborah Hughes-Hallett and col.

Source 1: Calculus: Single and Multivariable, Deborah Hughes-Hallett and col.

Source 2: https://commons.wikimedia.org/wiki/Category:Ball_pits

