x It may require some algebraic manipulation to find the solutions: a basic technique is to solve one
equation for one of the variables, and then plug the result into the other equation. Another technique
is to try to factor one of the equations and then analyze cases.

o Step 3: At each critical point, evaluate D = fu, - fyy — (fzy)? and apply the Second Derivatives Test:

If| D > 0 and f,; > 0: local minimum ‘ If ‘ D >0 and f,, < 0: local maximum ‘ If ‘ D < 0: saddle point |.

e Example: Verify that f(z,y) = 22 + 32 has only one critical point, a minimum at the origin.

[e]

[e]

[¢]

[¢]

First, we have f; = 22 and f, = 2y. Since they are both defined everywhere, we need only find where
they are both zero.

Setting both partial derivatives equal to zero yields x = 0 and y = 0, so the only critical point is (0, 0).
To classify the critical points, we compute fy; =2, fzy =0, and fy, =2. Then D =2-2—0? = 4.

So, by the classification test, since D > 0 and f,, > 0 at (0,0), we see that ’ (0,0)is a local minimum ‘

‘él, e Example: For the function f(z,y) = 322 + 2y — 62y, find the critical points and classify them as minima,
maxima, or saddle points.

[¢]

[e]

[¢]

[¢]

First, we have f, = 6z — 6y and f, = 6y? — 6z. Since they are both defined everywhere, we need only
find where they are both zero.

Next, we can see that f, is zero only when y = x. Then the equation f, = 0 becomes 6z% — 6z =
0, which by factoring we can see has solutions + = 0 or x = 1. Since y = z, we conclude that

‘ (0,0), and (1,1) are critical points ‘

To classify the critical points, we compute f,, = 6, fzy = —6, and f,, = 12y. Then D(0,0) =
6-0—(—6)2<0and D(1,1) =6-12 — (—6)% > 0.

So, by the classification test, ‘ (0,0) is a saddle point ‘ and ‘ (1,1) is a local minimum |.

/{_b e Example: For the function g(z,y) = 2%y — 32y + 8y, find the critical points and classify them as minima,
maxima, or saddle points.

[¢]

First, we have g, = 32%y — 3y® and g, = 23 — 9zy* + 8. Since they are both defined everywhere, we need
only find where they are both zero.

Setting both partial derivatives equal to zero. Since g, = 3y(z? — y?) = 3y(z + y)(z — y), we see that
gz = 0 precisely when y =0or y =z or y = —x.

If y = 0, then g, = 0 implies 2% + 8 = 0, so that = —2. This yields the point (z,y) = (—2,0).
If y = z, then g, = 0 implies —82® + 8 = 0, so that = 1. This yields the point (z,y) = (1,1).
If y = —x, then g, = 0 implies —823 + 8 = 0, so that = 1. This yields the point (z,y) = (1, —1).

To summarize, we see that ‘ (=2,0), (1,1), and (1, —1) are critical points ‘

To classify the critical points, we compute gy, = 62y, g2y = 32> — 9y?, and g,,, = —18zy.
Then D(—2,0) = 0-0—(12)2 < 0, D(1,1) = 6-(—18)—(—6)% < 0, and D(1,—1) = (—6)-(18) —(—6)% < 0.
(=2,0), (1,1), and (1, —1) are all saddle points ‘

So, by the classification test,

e Example: Find the value of the function h(x,y) = = + 2y* — In(z*y®) at its local minimum, for = and y
positive.

o

[¢]

To solve this problem, we will search for all critical points of h(z,y) that are minima.

4 3,8 4 8 4,7 8
Y _1-Zandh, = 8% — TV 8y% — —. Both partial derivatives are
xy8 x Y Tty y

4,8
defined everywhere in the given domain.

First, we have h, =1 —
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38 Partial Differentiations

for every (x,y) on the R? plane. Both are positive numbers. You may be tempted to conclude
that (0,0) is a local maximum point. However, if one plots the graph of this function (see
Figure 2.18), one can see easily that (0,0) is neither a local maximum or a local minimum.

2

Figure 2.18: (0,0) is neither a maximum or minimum

Around (0,0), the graph is a concave up in some directions but concave down in other
directions. We call this (0,0) a saddle.

This example shows the signs of fyx and f,; alone could not conclude the nature of the
critical point. In fact, the second derivative test for two-variable functions is slightly more
complicated than that in single-variable calculus:

Theorem 2.5 — Second Derivative Test for Two-Variable Functions. Let f(x,y) be a twice dif-
ferentiable function and (xo, o) is a critical point of f, i.e. Vf(xo,10) = 0. Then the nature
of this critical point (xg, o) is determined by the following table:

(fxxfyy - f%y) ‘(XO ) fex(x0,¥0) | (x0,%0) is a:
>0 >0 local minimum
>0 <0 local maximum
<0 anything saddle

Any other cases are inconclusive.

For the function f(x,y) = x2 + 4xy + y? in the above example, to determine the nature of (0,0)
we also need fy,(0,0), which can be found as equal to 4.
Therefore, we have:

2 _ 2
(fxxfyy _fxy) ‘(0,0) =2x2—-4°<0,

fxx(0,0) =2 >0.
From the table in Theorem 2.5, we conclude (0,0) is a saddle, as expected from the plot of the
its graph.

Let’s look at one more example before we learn the proof of the Second Derivative
Test.
= Example 2.10 Let f(x,y) = 3y*> — 2y> — 3x? + 6xy. Find all critical points and determine

the nature of each of them.

n Solution To find all critical points, we set:

of _ _
Fr 6x + 6y =0,

of _ 2 —
ay—6y 6y° +6x = 0.

From the first equation, we get y = x. Substitute this into the second equation, we yield:

6x — 63> + 6x = 0, or equivalently 2x — x* = 0.



2.6 Local Extrema 39

By factorization, we get x(2 — x) = 0. Therefore
x=0orx=2

By noting that y = x, we have two critical points: (0,0) and (2,2).
Next we compute the second derivatives of f:

fxx = _6 fxy = 6
fyx=6 fyy =612y
Critical point P fyx(P)  fyy(P)  fxy(P) (fxxfyy — ffy) (P) ‘ Nature of P
(0,0) -6 6 6 -72 saddle
(2,2) -6 -18 6 72 local maximum

Explanation of the Second Derivative Test
In single-variable, the second derivative test can be explained using convexity of the graph
y = f(x). However, this approach can hardly be generalized to higher dimensions.

Before we explain why the above second derivative test works for two-variable functions
f(x,y), we first seek an alternative explanation of the single-variable second derivative test
using Taylor’s series.

Recall that the Taylor’s series of a given function f(x) about x = a is given by:

1 a " a
f(x) = f(a)+ f'(a)(x — a) + fT(!)(x —a)?+ fTS)(x —a)P+...
If f(x) has a critical point at x = a, then f'(a) = 0. Also, when x is very close to 4, the

higher-order terms (x — a)3, (x —a)*, etc. are significantly smaller than the quadratic term
(x — a)?. Therefore, the function f(x) is approximately given by:

f(x) ~ f(a) + f”z(!a) (x —a)?> when x is near a.

The right—ha/rlld side f(a) + %(x —a)? is a quadratic function/; If f(a) > 0, then the graph
y=f(a)+ fz—(,”)(x —a)?is a concave up parabola and so f(a) + fz—(,a)(x —a)? > f(a). Therefore,
f(x), which is approximately f(a) + % (x —a)?,is also > f(a) when x is near a. This explains
f(x) has a local minimum at x = a.

On the other hand, if f”(a) < 0, then the graph y = f(a) + % (x —a)? is a concave down
parabola. Similar argument as above shows f(x) has a local maximum at x = a.

Figure 2.19: blue graph shows y = f(x) where f'(0) = 0; yellow graph shows y = f(0) +
fz—(!o)x2 where f”(0) > 0

Back to multivariable calculus, we now explain the second derivative test using the Taylor’s
series approach. Given a function f(x,y), the multivariable Taylor’s series about (x,y) =
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MAZ2: Solved problems—Functions of more variables: Extrema
1. Find and identify local extrema of f(x,y) = 223 + 9xy? + 1522 + 27¢2.
2. Find and identify local extrema of f(z,y, z) = 23 — 222 + y? + 22 — 22y + 22 — yz + 3=z.
3. Find the global extrema of f(x,y) = 22 + 2y? given the condition
x? — 2 4 2y% + 4y = 0.
4. Find the point on the plane given by x +y — z = 1 that is closest to the point P = (0, —3,2)
and calculate their distance. Use Lagrange multipliers.

5. A certain line in 3D is given by the equations
r+y+z=1, 20 —y+ 2 =3.
Find the distance between this line and the point P = (1,2, —1).

6. Find the global extrema of f(z,y) = 2 + 4y on the finite region M bounded by the curves
2+ y+1)2=4,y=—-1landy=x+ 1.

7. Find the global extrema of f(z,y) = 22 + y* — 6x + 6y on the disk of radius 2, centred at
the origin.

8. The equation y? + 22y = 2z — 422 defines an implicit function y(x). Find and classify its
local extrema.
Solutions:

1. First we find stationary points. Partial derivatives:

95 = 622 + 9y* + 30z, 5L = 18zy + 54y.
We have to make them equal to zero. We get the system
227 + 3y* + 10z = 0 xy + 3y = 0.

The second equation looks promising, since we can write it as y(x + 3) = 0. Thus there are two
possibilities:

1) y = 0. Then the first equation reads z? + 5z = 0, which yields x = 0 and z = —5. This
possibility therefore leads to points (0,0) and (—5,0)

2) x = —3. Then the first equation reads y? = 4, which yields y = 42 and points (—3, £2).
Thus we obtain four stationary points: (0,0), (—=5,0), (—3,2), and (=3, —2).

To classify them we need to find second order partial derivatives and form the Hess matrix:

&1 — 12z + 30, DF 18y, °f _ 18z 4 54

Oy? =
— 122 + 30 18y
N 18y 18z + 54

Now the classification.
30 0
For (0,0) we get H = 0 54

Ay = ay; = 30 and Ag = det(H) = 30 - 54 = 1620. Their signs are A; > 0, Ay > 0, which
shows that the point f(0,0) = 0 is a local minimum.

For (—5,0) we get H = (—g)() —%6)' Subdeterminants are A; = —30 and Ay = 780. Their
signs are Ay < 0, Ag > 0, which shows that the point f(—5,0) = 125 is a local maximum.

-6 —36
For (—3,—-2) we get H = 36 0
Their signs are Ay < 0, Ay < 0, this does not follow pattern for any local extreme. But from

Ay < 0 we conclude that the point f(—3,2) = 81 is a saddle point.

Determinants of principal minors (subdeterminants) are

. Subdeterminants are A; = —6 and Ay = —(—36)2.

1
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-6 —36
For (—3,2) we get H = <—36 0

above, from Ay < 0 we conclude that the point f(—3,—2) = 81 is a saddle point.

). Subdeterminants are A; = —6 and Ay = —362. As

Some people prefer a different approach that might be simpler if the derivatives are not too bad,
it is also somewhat more organized.

First we evaluate those subdeterminants in general, we obtain A, = 12z + 30 and

A = (122+30)(182+54) — (18y)? = 36(62% +23x+45—9y?). Then we substitute the stationary
points and reach conclusions:

point: (0,0) (=5,0) |(=3,2)|(-3,-2)
Aq: + — — —
As: + + — —
conclusion: |loc. min. |loc. max. |saddle | saddle

Then one has to write the answer: f(0,0) = 0 is a local minimum, f(—5,0) = 125 is a local
maximum, f(—3,2) = f(—3,—2) = 81 are saddle points.

2. First we find stationary points. Partial derivatives:

%:3x2—4x—2y+z, g—£:2y—2x—z, %z?z—kx—y—k&

We have to solve the system
322 —4x —2y+2=0
20 —2x—2z=0
224+2x—-—y+3=0
Now noe of the equations has the convenient form of a product, so the method used in the
previous problem does not help. Another popular method is elimination.
Since there is 22 in the first equation, we will try to use the others to get rid of y and z in this
first equation and then apply the quadratic rule. We can express z = 2y — 2x from the second
equation and put into the first and the third, obtaining 322 — 6z = 0 and 3y — 3z = —3. What
a piece of luck, the first one already features only z, the third one will also come handy when
we express y = — 1.
The equation 322 — 6z = 0 has two solutions: z = 0 and = = 2.
Ifx=0,theny = -1 and z = —=2. If x = 2, then y = 1 and 2z = —2. Thus we have two
stationary points, (0,—1,—2) and (2,1, —2).
Now we use the second derivative test. First we need second partial derivatives arranged into
the Hess matrix.
6r—4 -2 1
H = -2 2 -1
1 -1 2
Calculating subdeterminant in general does not sound very appealing (but you can try this
approach), we handle each point separately.
For (0,—1,—2) we get
-4 -2 1
H = —2 2 —1 :>A1:—4,A2:‘
1 -1 2
Since Ag < 0, at the stationary point (0, —1, —2) there is no local extreme but a saddle point.
Better answer: f(0,—1,2) = 13 is a saddle point (we give more information this way).
(Some authors do not use the notion of saddle in cases of more than two variables, they would
just say that this point is not a local extreme.)

—4 _2‘ = —12, A3z = |H| = —26.

-2 2



x It may require some algebraic manipulation to find the solutions: a basic technique is to solve one
equation for one of the variables, and then plug the result into the other equation. Another technique
is to try to factor one of the equations and then analyze cases.

o Step 3: At each critical point, evaluate D = fu, - fyy — (fzy)? and apply the Second Derivatives Test:

If| D > 0 and f,; > 0: local minimum ‘ If ‘ D >0 and f,, < 0: local maximum ‘ If ‘ D < 0: saddle point |.

e Example: Verify that f(x,y) = 2% + y? has only one critical point, a minimum at the origin.

[e]

[e]

[¢]

[¢]

First, we have f; = 22 and f, = 2y. Since they are both defined everywhere, we need only find where
they are both zero.

Setting both partial derivatives equal to zero yields x = 0 and y = 0, so the only critical point is (0, 0).
To classify the critical points, we compute fy; =2, fzy =0, and fy, =2. Then D =2-2—0? = 4.

So, by the classification test, since D > 0 and f,, > 0 at (0,0), we see that ’ (0,0)is a local minimum ‘

e Example: For the function f(z,y) = 322 + 2y — 62y, find the critical points and classify them as minima,
maxima, or saddle points.

[¢]

[e]

[¢]

[¢]

First, we have f, = 6z — 6y and f, = 6y? — 6z. Since they are both defined everywhere, we need only
find where they are both zero.

Next, we can see that f, is zero only when y = x. Then the equation f, = 0 becomes 6z% — 6z =
0, which by factoring we can see has solutions + = 0 or x = 1. Since y = z, we conclude that

‘ (0,0), and (1,1) are critical points ‘

To classify the critical points, we compute f,, = 6, fzy = —6, and f,, = 12y. Then D(0,0) =
6-0—(—6)2<0and D(1,1) =6-12 — (—6)2 > 0.

So, by the classification test,

(0,0) is a saddle point ‘ and ‘ (1,1) is a local minimum ‘

e Example: For the function g(x,y) = 23y — 3xy> + 8y, find the critical points and classify them as minima,
maxima, or saddle points.

[¢]

First, we have g, = 32%y — 3y® and g, = 23 — 9zy* + 8. Since they are both defined everywhere, we need
only find where they are both zero.

Setting both partial derivatives equal to zero. Since g, = 3y(z? — y?) = 3y(z + y)(z — y), we see that
gz = 0 precisely when y =0or y =z or y = —x.

If y = 0, then g, = 0 implies 2% + 8 = 0, so that = —2. This yields the point (z,y) = (—2,0).
If y = z, then g, = 0 implies —82® + 8 = 0, so that = 1. This yields the point (z,y) = (1,1).
If y = —x, then g, = 0 implies —823 + 8 = 0, so that = 1. This yields the point (z,y) = (1, —1).

To summarize, we see that ‘ (=2,0), (1,1), and (1, —1) are critical points ‘

To classify the critical points, we compute gy, = 62y, g2y = 32> — 9y?, and g,,, = —18zy.
Then D(—2,0) = 0-0—(12)2 < 0, D(1,1) = 6-(—18)—(—6)% < 0, and D(1,—1) = (—6)-(18) —(—6)% < 0.
(—2,0), (1,1), and (1, —1) are all saddle points ‘

So, by the classification test,

positive.

, e Example: Find the value of the function h(x,y) = = + 2y* — In(z*y®) at its local minimum, for = and y

o

[¢]

To solve this problem, we will search for all critical points of h(z,y) that are minima.

4 3,8 4 8 4,7 8
Y _1-Zandh, = 8% — TV 8y% — —. Both partial derivatives are
xy8 x Y Tty y

4,8
defined everywhere in the given domain.

First, we have h, =1 —
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8
o We see that h, = 0 only when = = 4, and also that h, = 0 is equivalent to —(y* — 1) = 0, which holds
Yy

for y = +1. Since we only want y > 0, there is a unique critical point: (4,1).

4 8 1
o Next, we compute hzy = —, gay = 0, and gy, = 24y® + —. Then D(4,1) = 1 -32-0%>0.

o Thus, there is a unique critical point, and it is a minimum. Therefore, we conclude that the function has

a local minimum at (4, 1), and the minimum value is h(4,1) = |6 — In(4*) |

e Example: Find the minimum distance between a point on the plane 2 + y + z = 1 and the point (2, -1, —2).

o The distance from the point (z,y, 2) to (2,—1,2)isd = \/(z — 2)2 + (y + 1) + (z + 2)2. Since r+y+2 =
1 on the plane, we can view this as a function of z and y only: d(z,y) = /(z —2)2 + (y + 1)2 + (3 — x — y)2.

o We could minimize d(z,y) by finding its critical points and searching for a minimum, but it will be much
easier to find the minimum value of the squared distance f(z,y) = d(z,y)? = (z—2)?+(y+1)2+(3—z—y)2.

o We compute fo =2(x —2)-2(3 -2 —y)=4r+2y—10and f, =2(y+1)-2B -z —y) =2z +4y — 4.
Both partial derivatives are defined everywhere, so we need only find where they are both zero.

o Setting f, = 0 and solving for y yields y = 5 — 2z, and then plugging this into f, = 0 yields 2z + 4(5 —
2x) —4 =0, so that —6x + 16 = 0. Thus, x = 8/3 and then y = —1/3.

o Furthermore, we have fy. =4, foy = 2, and fy, = 4, so that D = f,.fy, — f2, = 12 > 0. Thus, the
point (z,y) = (8/3,—1/3) is a local minimum.

o Thus, there is a unique critical point, and it is a minimum. We conclude that the distance function has

its minimum at (4, 1), so the minimum distance is d(8/3, —1/3) = \/(2/3)2 + (2/3)% + (2/3)2 = .

1.4 Optimization of a Function on a Region, Linear Programming

e We now discuss the problem of finding the minimum and maximum values of a function on a region in the
plane, rather than the entire plane itself.

o In general, if the region is not closed (i.e., does not contain its boundary, like the region 2% + 32 < 1
which does not contain the boundary circle 22 +y2 = 1) or not bounded (i.e., extends infinitely far away
from the origin, like the half-plane > 0) then a continuous function may not attain its minimum or
maximum values anywhere in the region.

o In order to ensure that a function does attain its minimum and maximum values at some point inside
the region, the region must be both closed and bounded. If the region is not bounded or not closed, we
must additionally study what happens to the function as we approach the region’s boundary, or what
happens as we move far away from the origin.

1.4.1 Optimization on a Region

e A natural first step is to find the critical points of the function. However, if we want to find the absolute
minimum or maximum of a function f(z,y) on a closed and bounded region, we must also analyze the
function’s behavior on the boundary of the region, because the boundary could contain the minimum or
maximum.

o Example: The extreme values of f(z,y) = x? — y? on the square 0 < 2 < 1, 0 < y < 1 occur at
two of the “corner points”: the minimum is —1 occurring at (0,1), and the maximum +1 occurring
at (1,0). We can see that these two points are actually the minimum and maximum on this region
without calculus: since squares of real numbers are always nonnegative, on the region in question we
have —1 < —y?2 < 2?2 — 2 <22 < 1.

e Unfortunately, unlike the case of a function of one variable where the boundary of an interval [a,b] is very

simple (namely, the two values z = a and x = b), the boundary of a region in the plane or in higher-dimensional
space can be rather complicated.

11



384 3. DIFFERENTIATION OF MULTIVARIABLE FUNCTIONS

The characteristic equation reads
PN =(a—NDb-\)—c2=)—-4=0.

Its roots Ay = 2 and Ay = —2 do not vanish and have opposite signs.
Therefore, the points (1, £1) are saddle points of the function.
Critical point (0,0): The values of the second partial derivatives are

a=f(0,00==2, b=f,0,00=-2, c=f,(0,0)=0.
The characteristic equation
PN =(a=Nb-XN)=(-2-X)2=0

has one negative root of multiplicity 2, that is, A\; = Ao = —2 < 0. Therefore
f has a local mazimum at (0,0).
Critical point (2,0): The values of the second partial derivatives are

a=fr(2,0=2, b= ;'y(2,0) =2, c¢c= ;’y(2,0) =0.
The characteristic equation
Py = (a—= N (b=2) = 2= 12 =0
has one positive root of multiplicity 2, Ay = Ao = 2 > 0. Therefore the

function has a local minimum at (2,0). O

EXAMPLE 25.2. Investigate the function f(x,y) = e‘”z’y(5 — 2z +vy) for
extreme values.

SOLUTION: The functions is defined on the whole plane and, as the product
of an exponential and a polynomial, it has continuous partial derivatives of
any order. So its critical points are points where its gradient vanishes, and
its local extreme values, if any, can be investigated by the second-derivative
test.

Critical points. Using the product rule for partial derivatives,

F= ex2_y<2x(5—2x+y)—2) —0 = z(5-2z+y) =1

£, :eﬁ”zfy((—l)(5—2x+y)+1) =0 = 5-2z+y=1

The substitution of the second equation into the first one yields = 1. Then
it follows from the second equation that y = —2. So the function has just

one critical point (1, —2).
Second derivative test. Using the product rule for partial derivatives,

1o (fL) = e [23: (235(5 — % +y) — 2) 1252z +y) — 4]
f = (), ==Y [(—1) ((—1)(5 — 2w+ y) + 1) - 1}

by = e = 20((-1)6 - 204 ) +1) +2)
The values of the second partial derivatives at the critical point are
Y/ _ 3 Y/ _ 3 Y/ _ 3
a’*fwz(la_2)*_2e ) b*fyy(17_2)*_e ) C*fmy(lv_Q)*Qe .
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Therefore D = ab — ¢ = —2e% < 0. By Corollary 25.1, the only critical

point is a saddle point. The function has no extreme values. O

25.4. Proof of Theorem 25.3. Consider a rotation of the variables (dz, dy):
(dx, dy) = (dz'cos ¢ — dy' sin ¢, dy’ cos ¢ + da’sin ¢)

Following the proof of Theorem 9.1 (classification of quadric cylinders), the
second differential is written in the new variables (dz’, dy’) as

d?f(ro) = a(dx)? + 2cdxdy + b(dy)* = a' (d2')? + 2¢ dx’dy’ + ' (dy')*
a = % (a + b+ (a—b)cos(2¢) + 2¢ sin(2gb))
v = %(a +b— (a—b)cos(2¢) — 2¢ sin(2¢>))
2¢" = 2ccos(2¢) — (a — b) sin(2¢)

The rotation angle is chosen so that ¢/ = 0. Put A% = (a — b)? + 4% If
cos(2¢) = (a — b)/A and sin(2¢) = 2¢/A, then ¢’ = 0. With this choice,

d=2%a+b+A), bV=1%a+b—A)
Next note that
ad+b=a+b, db= i((a—l—b)Q—Ag) =ab—c2.
On the other hand, the roots of the quadratic equation Py(\) = 0 also satisfy
the same conditions
MAX=a+b, Ml=ab—c2.
Thus, a’ = A1, b’ = Ao, and
d*f(ro) = Ai(dz)® + Xa(dy')?

If A\; and Ay are strictly positive, then d2f(rg) > 0 for all (dx, dy) # (0,0)
and by Theorem 25.2 the function has a local minimum at rg. If A\; and
Ay are strictly negative, then d?f(ro) < 0 for all (dx,dy) # (0,0) and by
Theorem 25.2 the function has a local maximum at rg. If A\ and Ay do not
vanish but have opposite signs, A{As < 0, then in a neighborhood of rg, the
graph of f looks like

z= f(ro) + M\ (2 — x6)2 + Xy — y6)2

where the coordinates (z',y’) are obtained from (z,y) by rotation through
the angle . When A and As have different signs, this surface is a hyperbolic
paraboloid (a saddle), and f has neither a local minimum nor maximum.
Case (4) is easily proved by examples (see Study Problem 25.3).
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-6 —36
For (—3,2) we get H = (—36 0

above, from Ay < 0 we conclude that the point f(—3,—2) = 81 is a saddle point.

). Subdeterminants are A; = —6 and Ay = —362. As

Some people prefer a different approach that might be simpler if the derivatives are not too bad,
it is also somewhat more organized.

First we evaluate those subdeterminants in general, we obtain A, = 12z + 30 and

A = (122+30)(182+54) — (18y)? = 36(62% +23x+45—9y?). Then we substitute the stationary
points and reach conclusions:

point: (0,0) (=5,0) |(=3,2)|(-3,-2)
Aq: + — — —
As: + + — —
conclusion: |loc. min. |loc. max. |saddle | saddle

Then one has to write the answer: f(0,0) = 0 is a local minimum, f(—5,0) = 125 is a local
maximum, f(—3,2) = f(—3,—2) = 81 are saddle points.

2. First we find stationary points. Partial derivatives:
%:3x2—4x—2y+z, g—£:2y—2x—z, %z?z—kx—y—k&
We have to solve the system
322 —4x —2y+2=0
20 —2x—2z=0
224+2x—-—y+3=0
Now noe of the equations has the convenient form of a product, so the method used in the
previous problem does not help. Another popular method is elimination.
Since there is 22 in the first equation, we will try to use the others to get rid of y and z in this
first equation and then apply the quadratic rule. We can express z = 2y — 2x from the second
equation and put into the first and the third, obtaining 322 — 6z = 0 and 3y — 3z = —3. What
a piece of luck, the first one already features only z, the third one will also come handy when
we express y = — 1.
The equation 322 — 6z = 0 has two solutions: z = 0 and = = 2.
Ifx=0,theny = -1 and z = —=2. If x = 2, then y = 1 and 2z = —2. Thus we have two
stationary points, (0,—1,—2) and (2,1, —2).
Now we use the second derivative test. First we need second partial derivatives arranged into
the Hess matrix.

6r—4 -2 1
H = -2 2 -1
1 -1 2
Calculating subdeterminant in general does not sound very appealing (but you can try this
approach), we handle each point separately.
For (0,—1,—2) we get
-4 -2 1
H = —2 2 —1 :>A1:—4,A2:‘
1 -1 2
Since Ay < 0, at the stationary point (0, —1, —2) there is no local extreme but a gaddle point.
Better answer: f(0,—1,2) = 13 is a saddle point (we give more information this way).
(Some authors do not use the notion of saddle in cases of more than two variables, they would
just say that this point is not a local extreme.)

—4 _2‘ = —12, A3z = |H| = —26.

-2 2
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For (2,1,-2) we get
g8 =2 1
H = —2 2 —1 — A1:8,A2:'
1 -1 2
Since always A; > 0, we conclude that f(2,1,—2) = —7 is a local minimum.
Recall that for a local maximum we need A; < 0, Ay > 0, and Az < 0.

8 =2

o g ‘:12, As = |H| = 28.

3. Since expressing y from the constraint would be messy, this calls for Lagrange multipliers
with g(z,y) = 2% — 2z + 2y* + 4y. Equations to solve are Vf = AVg and g = 0, that is,

oL =g 21 = A(2z — 2) 2= Mz —1)
G =2\ = dy=A4y+4) — y=Ay+1)
g=0 2?2 =2 4+2y2 +4y =0 2?2 =242y +4y =0

A typical strategy is to eliminate A\ from the first two equations in order to obtain some rela-
tionship between the variables x,y, this is then used with condition g = 0 to find the desired
points.

We would like to isolate A\ from the first equation. Can we have x = 17 The first equation then
reads 1 = 0, which is not true. Thus for sure z # 1 and we can write A\ = —*5. Putting it into the
second equation and multiplying out we get y = —x. Now this can be put into the constraint,
we obtain 322 — 6z = 0 and two solutions, z = 0 and z = 2. Thus there are two suspicious
points: (0,0) and (2,—2). We substitute them into f: f(0,0) = 0, f(2,—2) = 12. Comparing
values we guess that the former is a local minimum and the latter is a local maximum.
Determining global extrema usually involves some analysis of the situation. We have two local
extrema, but we do not know whether they give global extrema. In general, we find global
extrema by comparing values at local extrema and also values at “borders” of the set. Thus we
need to know more about M, the set determined by the given condition where we look at f.

A frequent trouble arises when the given set is not bounded, since then we have to ask what
happens to f when points of M run away to some infinity. Could it happen that z tends to
infinity within this set? Since points from M satisfy 2y2 + 4y = 22 — 22, this would force the
expression 2y? + 4y to tend to minus infinity, but that is not possible. Similarly we argue that
also y cannot go to infinity and we thus have a bounded set M.

Another source of trouble is if the set M is a curve that has some endpoints, then we would
have to check on those. How does M actually look like? In fact, rewriting the condition as

(r—1)2+2(y+1)? =3
we see that M is an ellipse. This is a close curve without any end, so whatever important

happens to values of f on it, it must happen at one of the points we found earlier. Thus we can
conclude that f(0,0) = 0 is a minimum and f(2,—2) = 12 is a maximum of f on the given set.

4. The unknown point @ = (x,y, z) satisfies © + y — z = 1, that would be the constraint with
g(z,y,2) = x +y — z. The function to minimize should be the distance between P and @, but
that would mean a square root. It will be easier to minimize the distance squared, which is
equivalent (think about it). Thus we have f(z,y,2) = dist(P,Q)? = 2% + (y + 3)? + (z — 2)%
We use Lagrange multipliers, the equations Vf = AVg and g = 1 now give

%:)‘% 20 =MA-1 x:%)\
Af _ O _ _ 1
a_y_)‘a_z . 20y+3)=A-1 . y+3=3A
%:)\% 2(z=2)=X-(-1) z—2=—1)\
g=1 r+y—z=1 r+y—z=1
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o We see that h, = 0 only when = = 4, and also that h, = 0 is equivalent to —(y* — 1) = 0, which holds
Yy

for y = +1. Since we only want y > 0, there is a unique critical point: (4,1).
4 8 1
o Next, we compute hyy = —, goy = 0, and gyy = 2442 + —. Then D(4,1) = 1 -32-02>0.

o Thus, there is a unique critical point, and it is a minimum. Therefore, we conclude that the function has

a local minimum at (4, 1), and the minimum value is h(4,1) = |6 — In(4*) |

.2 e Example: Find the minimum distance between a point on the plane 2 + y + z = 1 and the point (2, -1, —2).

o The distance from the point (z,y, 2) to (2,—1,2)isd = /(z —2)2 + (y + 1)2 + (z + 2)2 Since x+y+z =

1 on the plane, we can view this as a function of z and y only: d(z,y) = \/(z — (y+1)2+B—z—y)2

o We could minimize d(z,y) by finding its critical points and searching for a minimum, but it will be much
~casier to find the minimum value of the squared distance f(x,y) = d(w,y)? = (¢—2)*+(y+1)*+(3—2=y)",

o We compute fo =2(x —2)-2(3 -2 —y)=4r+2y—10and f, =2(y+1)-2B -z —y) =2z +4y — 4.
Both partial derivatives are defined everywhere, so we need only find where they are both zero.

o Setting f, = 0 and solving for y yields y = 5 — 2z, and then plugging this into f, = 0 yields 2z + 4(5 —
2x) —4 =0, so that —6x + 16 = 0. Thus, x = 8/3 and then y = —1/3.

o Furthermore, we have f,, =4, fzy = 2, and fy, = 4, so that D = f.. fy, — xy =12 > 0. Thus, the
point (z,y) = (8/3,—1/3) is a local minimum.

o Thus, there is a unique critical point, and it is a minimum. We conclude that the distance function has

its minimum at 750 the minimum distance is d(8/3, —1/3) = \/(2/3)2 + (2/3)2 + (2/3)% =|2/V3 |

1.4 Optimization of a Function on a Region, Linear Programming

e We now discuss the problem of finding the minimum and maximum values of a function on a region in the
plane, rather than the entire plane itself.

o In general, if the region is not closed (i.e., does not contain its boundary, like the region 2% + 32 < 1
which does not contain the boundary circle 22+ y2 = 1) or not bounded (i.e., extends infinitely far away
from the origin, like the half-plane > 0) then a continuous function may not attain its minimum or
maximum values anywhere in the region.

o In order to ensure that a function does attain its minimum and maximum values at some point inside
the region, the region must be both closed and bounded. If the region is not bounded or not closed, we
must additionally study what happens to the function as we approach the region’s boundary, or what
happens as we move far away from the origin.

1.4.1 Optimization on a Region

e A natural first step is to find the critical points of the function. However, if we want to find the absolute
minimum or maximum of a function f(z,y) on a closed and bounded region, we must also analyze the
function’s behavior on the boundary of the region, because the boundary could contain the minimum or
maximum.

o Example: The extreme values of f(z,y) = x? — y? on the square 0 < 2 < 1, 0 < y < 1 occur at
two of the “corner points”: the minimum is —1 occurring at (0,1), and the maximum +1 occurring
at (1,0). We can see that these two points are actually the minimum and maximum on this region
without calculus: since squares of real numbers are always nonnegative, on the region in question we
have —1 < —y?2 < 2?2 — 2 <22 < 1.

e Unfortunately, unlike the case of a function of one variable where the boundary of an interval [a,b] is very

simple (namely, the two values z = a and x = b), the boundary of a region in the plane or in higher-dimensional
space can be rather complicated.

11
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Since grad P is defined everywhere, the only critical points of P are those where grad P = 0.
Thus, solving for ¢, and g2, we find that

g1 =699.1 and g2 = 896.7.
The corresponding prices are
p1 =390.27 and py = 320.66.
To see whether or not we have found a local maximum, we compute second partial derivatives:

0%pP 0%pP %P
=06, S =04, -
qi dq; 0q10q2

0.2,

S0,
92P 92P 2P \? )
D 06 0g2 <5Q13QQ> (—0.6)(—0.4) — (—0.2) 0.2.

Therefore we have found a local maximum. The graph of P is an upside-down paraboloid, so
(699.1,896.7) is a global maximum. This point is within the region, so points on the boundary give
smaller values of P.

The company should produce 699.1 units of the first item priced at $390.27 per unit, and
896.7 units of the second item priced at $320.66 per unit. The maximum profit P(699.1,896.7) ~
$433,000.

Example 2

Solution

A delivery of 480 cubic meters of gravel is to be made to a landfill. The trucker plans to purchase an
open-top box in which to transport the gravel in numerous trips. The total cost to the trucker is the
cost of the box plus $80 per trip. The box must have height 2 meters, but the trucker can choose the
length and width. The cost of the box is $100/m? for the ends, $50/m? for the sides and $200/m?
for the bottom. Notice the tradeoff: A smaller box is cheaper to buy but requires more trips. What
size box should the trucker buy to minimize the total cost? 4

We first get an algebraic expression for the trucker’s cost. Let the length of the box be x meters and
the width be y meters; the height is 2 meters. (See Figure 15.20.)

Table 15.2  Trucker’s itemized cost

Expense Cost in dollars
I 2m Travel: 480/ (2zy) at $80/trip (240 - 80)/(zy)
Ends: 2 at $100/m? - 2y m? 400y
Sides: 2 at $50/m” - 22 m* 200z
* Bottom: 1 at $200/m® - zy m® 2002y

Figure 15.20: The box for transporting gravel

The volume of the box is 22y m3, so delivery of 480 m? of gravel requires 480/(2xy) trips. The
number of trips is a whole number; however, we treat it as continuous so that we can optimize using
derivatives. The trucker’s cost is itemized in Table 15.2. The problem is to minimize

40 - 80
Total cost =

96
+ 400y + 200z + 2002y = 200 <@ +2y+a+ xy) .

4 Adapted from Claude McMillan, Jr., Mathematical Programming, 2nd ed., p. 156-157 (New York: Wiley, 1978).
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The length and width of the box must be positive. Thus, the region is the first quadrant but it does
not contain the boundary, x = 0 and y = 0.
Our problem is to minimize

96
flz,y) = — +2y+a+ay.
LY
The critical points of this function occur where

96
(oY) =—— +1+4+y=0
fo(2,y) 2y y

96
fy(a:,y)z—xfzﬂ+2+x=0-

We put the 96 /(x?y) and 96/ (xy?) terms on the other side of the the equation, divide, and simplify:

96/(z*y) 14y y 14y
96/(zy?) 2+ r 2+q SOVME T2

Substituting = = 2y in the equation f,(z,y) = 0 gives

— 2+2y=0
2y~y2+ + 2y

vt 4P —24=0.

The only positive solution to this equation is y = 2, so the only critical point in the region is (4, 2).
To check that the critical point is a local minimum, we use the second-derivative test. Since

2
192 192 96 25
_ 2 _ _
D2 = ferfos = (V= g 1~ (s +1) =9 2 >0
and f,;(4,2) > 0, the point (4, 2) is a local minimum. Since the value of f increases without bound
as z or y increases without bound and as z — 0™ and y — 07, it can be shown that (4, 2) is a global
minimum. (See Problem 29.) Thus, the optimal box is 4 meters long and 2 meters wide.

Fitting a Line to Data: Least Squares

Suppose we want to fit the “best” line to some data in the plane. We measure the distance from a
line to the data points by adding the squares of the vertical distances from each point to the line.
The smaller this sum of squares is, the better the line fits the data. The line with the minimum sum
of square distances is called the least squares line, or the regression line. If the data is nearly linear,
the least squares line is a good fit; otherwise it may not be. (See Figure 15.21.)

Data almost linear: line fits well Data not very linear: line does not fit well

Figure 15.21: Fitting lines to data points

Example 3

Find a least squares line for the following data points: (1,1), (2,1), and (3, 3).



