17th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teaching.php, kuncova@karlin.mff.cuni.cz

Theory

Theorem 1 (implicit function). Let $G \subset \mathbb{R}^{n+1}$ be an open set, $F: G \to \mathbb{R}$, and $\tilde{\tilde{x}} \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}$ such that $[\tilde{\tilde{x}}, \tilde{y}] \in G$. Suppose that

1. $F \in C^1(G)$,

2.
$$F(\vec{\tilde{x}}, \tilde{y}) = 0$$
,

3.
$$\frac{\partial F}{\partial y}(\vec{x}, \vec{y}) \neq 0.$$

Then there exist a neighbourhood $U \subset \mathbb{R}^n$ of the point \vec{x} and a neighbourhood $V \subset \mathbb{R}$ of the point \tilde{y} such that for each $\vec{x} \in U$ there exists a unique $y \in V$ satisfying $F(\vec{x}, y) = 0$. If we denote this y by $\varphi(\vec{x})$, then the resulting function φ is in $C^1(U)$ and

$$\frac{\partial \varphi}{\partial x_j}(\vec{x}) = -\frac{\frac{\partial F}{\partial x_j}(\vec{x}, \varphi(\vec{x}))}{\frac{\partial F}{\partial y}(\vec{x}, \varphi(\vec{x}))} \quad \text{for } \vec{x} \in U, \, j \in \{1, \dots, n\}$$

Exercises

- 1. Find the derivative of y(x) given by the equation
 - (a) $y^3 + y = x$ at (-2, -1)(b) $x^3 + y^3 = 6xy$ at (3, 3)(c) $y + \sin y = x^2 + x$ at (0, 0)(d) $x^3 + y^3 - 3xy - 3 = 0$ at (1, 2)(e) $\ln(x + y) = x + y - xy - x^2 - y^2$ at (0, 0)(f) $x^{2/3} + y^{2/3} = 8$ at (8, 8)(g) $\sin(xy) + x^2 + y^2 = 1$ at (0, 1)(h) $\sin(xz) + \sin(yz) = \sin(xy)$ at $(0, 1, \pi)$, find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ (i) $x^2 e^y - yz e^x = 0$ find $\frac{\partial z}{\partial x}$ at an arbitrary suitable point
- 2. Find y'' if $\sqrt{x} + \sqrt{y} = 1$ (at an arbitrary suitable point).
- 3. Find the tangent line at point (2,1) to the graph given by the equation

$$3x^2 - 2xy + y^2 + 4x - 6y - 11 = 0.$$

4. Let us consider the equation

$$y^3 + 2y = \sin x + 3$$

Find the slope of the curve at (0, 1). Approximate the value of y when x = 0.05. (Find the tangent line and estimate the value at 0.05 at the tangent line.)