
Note it is not expected that you should be able to plot these graphs -
they are displayed here for information.

Graph of y3 + y = x.

We can now ask for the slope of the tangent to this curve at a particular
point by finding dy/dx.

Example 5 A curve is given by

y3 + y = x.

(a) Show that the point (−2,−1) lies on the curve.

(b) Find dy/dx by using implicit differentiation.

(c) Find the slope of the tangent at the point (−2,−1).

Solution.

(a) To show that the point (−2,−1) lies on the curve all we do is to
substitute these values into the equation and see if they satisfy the
equation.
We get on putting x = −2, y = −1 :

(−1)3 + (−1) = −2

which is clearly true, hence the point lies on the curve.

9



(b) Differentiate both sides of the equation to get:

d

dx
(y3 + y) =

d

dx
(x) ⇒

3y2
dy

dx
+

dy

dx
= 1 ⇒ on collecting terms in dy/dx

(3y2 + 1)
dy

dx
= 1 ⇒

dy

dx
=

1

3y2 + 1
.

(c) Putting x = −2, y = −1 in the expression for dy/dx gives the
slope of the tangent at the point (−2,−1) i.e.

dy

dx
=

1

3× (−1)2 + 1
=

1

4
.

Example 6 A curve is given by

y + sin(y) = x2 + x

(a) Show that the point (0, 0) lies on the curve.

(b) Find the slope of the tangent at the point (0, 0).

(c) Find the equation of the tangent at the point (0, 0).

Solution.

(a) To show that the point (0, 0) lies on the curve all we do is to substi-
tute these values into the equation and see if they satisfy the equa-
tion.
We get on putting x = 0, y = 0 :

0 + sin(0) = 02 + 0

which is clearly true, hence the point lies on the curve.

10
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2. Collect all terms with dy/dx on one side of the equation.

2
dy

dx
− 3y2 dy

dx
= −2x

3. Factor dy/dx:
dy

dx

�

2− 3y2
�

= −2x

4. Solve for dy/dx:
dy

dx
=

2x

3y2
− 2

✷

Try This 2

Find the derivative
dy

dx
.

a) y3
− x− y = 1 b) xy2 = y + 2

Example 3 Using Implicit Differentiation to find the Slope

Find the slope of the graph of x3 + y3 = 6xy at the point (3, 3).
The graph is called the folium of Descartes, see Figure 1.

3
x

3

y

Figure 1
The folium of Descartes
at the point (3, 3) has
slope dy/dx = −1.

�2,�1�

1 2
x

�1

y

Figure 2
The point (2,−1)
on the graph of
y2 + x2 = x− 2xy − 1.

Solution First, we determine dy/dx.

d

dx

�

x3 + y3
�

= 6
d

dx
[xy]

3x2 + 3y2 dy

dx
= 6

�

x
dy

dx
+ y

�

Sum and Product Rules

3x2 + 3y2 dy

dx
= 6x

dy

dx
+ 6y

3y2 dy

dx
− 6x

dy

dx
= 6y − 3x2 Collect all dy/dx

dy

dx

�

3y2
− 6x

�

= 6y − 3x2 Factor dy/dx

dy

dx
=

6y − 3x2

3y2
− 6x

Solve for dy/dx

dy

dx
=

2y − x2

y2
− 2x

Simplify

Next, substitute the coordinates of (3, 3) into the derivative.
Then the slope of the graph at (3, 3) is

dy

dx
=

2(3)− 32

32 − 2(3)
= −1.

✷

Try This 3

Find the slope of the tangent line to the graph of y2 + x2 = x − 2xy − 1 at the point
(2,−1), see Figure 2.



(b) Differentiate both sides of the equation to get:

d

dx
(y3 + y) =

d

dx
(x) ⇒

3y2
dy

dx
+

dy

dx
= 1 ⇒ on collecting terms in dy/dx

(3y2 + 1)
dy

dx
= 1 ⇒

dy

dx
=

1

3y2 + 1
.

(c) Putting x = −2, y = −1 in the expression for dy/dx gives the
slope of the tangent at the point (−2,−1) i.e.

dy

dx
=

1

3× (−1)2 + 1
=

1

4
.

Example 6 A curve is given by

y + sin(y) = x2 + x

(a) Show that the point (0, 0) lies on the curve.

(b) Find the slope of the tangent at the point (0, 0).

(c) Find the equation of the tangent at the point (0, 0).

Solution.

(a) To show that the point (0, 0) lies on the curve all we do is to substi-
tute these values into the equation and see if they satisfy the equa-
tion.
We get on putting x = 0, y = 0 :

0 + sin(0) = 02 + 0

which is clearly true, hence the point lies on the curve.
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(b) Differentiate both sides of the equation:

d

dx
(y + sin(y)) =

d

dx
(x2 + x) ⇒

dy

dx
+ cos(y)

dy

dx
= 2x+ 1 ⇒ on collecting terms in dy/dx

(1 + cos(y))
dy

dx
= 2x+ 1 ⇒

dy

dx
=

2x+ 1

1 + cos(y)
.

Hence at the point (0, 0) we have the slope of the tangent is

dy

dx
=

2× 0 + 1

1 + cos(0)
=

1

2
.

(c) The equation of the tangent at (0, 0) is of the form

y =
1

2
x+ c

but at x = 0, y = 0 hence c = 0.
So the equation of the tangent is

y =
1

2
x.

Note
On differentiating the implicit expression we found:

d(sin(y))

dx
= cos(y)

dy

dx
.

Once again this is because we are using the Chain Rule where sin(y) is
a function of a function with y as the ”innermost” function.

11



68 Chapter 6. Implicit functions

The given equation therefore implicitly defines a function y = f (x) in the neighbourhood of (x0,y0). We know
that f (1) = 2. Further, let us assume f is defined on O0.11(1) = (0.89,1.11). What would be the function value
of f at x = 0.9?

By substituting x = 0.9 into the equation x3 + y3 −3xy−3 = 0 one derives

y3 −2.7y−2.271 = 0.

This equation has to have exactly one solution y = f (0.9) in the neighbourhood of the point y0 = 2. The first
approximation of this solution by the Newton’s method is

y = f (0.9) .
= 1.963783.

�

The theorem below shows us how to differentiate implicit functions. The computed derivatives can be
used to decide monotonicity, convexity and concavity of implicit functions, to construct Taylor polynomials to
approximate implicit functions, to determine their tangents and differentials.

Theorem 6.1.2 Let G ⊆ R2 be an open set and let F ∈Ck(G) for k ∈ N. Let (x0,y0) ∈ G be a point such that

F(x0,y0) = 0 and
∂F
∂y

(x0,y0) �= 0.

Then the derivative of an implicit function y = f (x) defined by the equation F(x,y) = 0 in a neighbourhood of
(x0,y0) is given as

f �(x) =−
∂F
∂x (x, f (x))
∂F
∂y (x, f (x))

for x ∈ (x0 −δ ,x0 +δ ) for some δ > 0. (6.1)

Proof. The proof follows from the rule on how to differentiate composed functions:
The composed function h(x) = F(x, f (x)) is identically zero on a neighbourhood of x0 and thus

0 = h�(x) =
∂F
∂x

(x, f (x)) ·1+ ∂F
∂y

(x, f (x)) · dy
dx

=
∂F
∂x

(x, f (x))+
∂F
∂y

(x, f (x)) f �(x)

in the same neighbourhood. Because ∂F
∂y (x0,y0) �= 0 and because ∂F

∂y (x,y) is continuous, the derivative ∂F
∂y (x,y) �=

0 in a neighbourhood of (x0,y0). Therefore,

f �(x) =−
∂F
∂x (x, f (x))
∂F
∂y (x, f (x))

for x ∈ (x0 −δ ,x0 +δ ) for some δ > 0.

�

� Example 6.7 Let us differentiate the implicit function y = f (x) given by the equation

F(x,y) = x3 + y3 −3xy−3 = 0

in the neighbourhood of (x0,y0) = (1,2).
According to the results in Example 6.6 the function f exists. Let us recall that

∂F
∂y

(x,y) = 3y2 −3x and
∂F
∂y

(1,2) = 9 �= 0.

Further,

∂F
∂x

(x,y) = 3x2 −3y and
∂F
∂x

(1,2) =−3.
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Then

f �(1) =−
∂F
∂x (1,2)
∂F
∂y (1,2)

=−−3
9

=
1
3
.

Moreover,

f �(x) =−
∂F
∂x (x, f (x))
∂F
∂y (x, f (x))

=
f (x)− x2

f (x)2 − x
> 0

for x ∈ (1−δ ,1+δ ) for δ > 0. This means f is increasing in a neighbourhood of the point x0 = 1. �

R Higher order derivatives of an implicit function y = f (x) can be derived by differentiating the formula (6.1).
For instance:

f ��(x) =−

�
∂ 2F
∂x2 (x, f (x))+ ∂ 2F

∂y∂x (x, f (x)) f �(x)
�

∂F
∂y (x, f (x))−

�
∂ 2F
∂x∂y (x, f (x))+ ∂ 2F

∂y2 (x, f (x)) f �(x)
�

∂F
∂x (x, f (x))

�
∂F
∂y (x, f (x))

�2

or shortly

y�� =−

�
∂ 2F
∂x2 (x,y)+

∂ 2F
∂y∂x (x,y)y

�
�

∂F
∂y (x,y)−

�
∂ 2F
∂x∂y (x,y)+

∂ 2F
∂y2 (x,y)y�

�
∂F
∂x (x,y)

�
∂F
∂y (x,y)

�2

where y is viewed as the function y = f (x).

� Example 6.8 From Example 6.6 and 6.7, the equation

F(x,y) = x3 + y3 −3xy−3 = 0

defines an implicit function y = f (x) in the neighbourhood of (x0,y0) = (1,2) such that f (1) = 2 and f �(1) = 1
3 .

By differentiating the expression

f �(x) =−
∂F
∂x (x, f (x))
∂F
∂y (x, f (x))

=
f (x)− x2

f (x)2 − x

one derives

f ��(x) =
( f �(x)−2x)( f (x)2 − x)− ( f (x)− x2)(2 f (x) f �(x)−1)

( f (x)2 − x)2

and thus

f ��(1) =
( f �(1)−2)( f (1)2 −1)− ( f (1)−1)(2 f (1) f �(1)−1)

( f (1)2 −1)2 =
(1−6)− (4 1

3 −1)
32 =

−5− 1
3

32 =
−16
27

< 0

which means that f is concave in a neighbourhood of the point x0 = 1.
Note that with the notation y = f (x) one may write

y� =
y− x2

y2 − x

and by differentiating with respect to x:

y�� =
(y� −2x)(y2 − x)− (y− x2)(2yy� −1)

(y2 − x)2 .

Consequently one substitutes the values x = 1, y = 2 and y� = 1/3. �
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• By differentiating the formula for the first derivative:
The first derivative of the function f (x) in a neighbourhood of 0 defined by the equation F(x,y) = 0 equals

f �(x) =−
∂F
∂x (x, f (x))
∂F
∂y (x, f (x))

=− 2e2x +1
e f (x) +2

.

Therefore, since f (0) = 0, f �(0) =−1. Further,

f ��(x) = [ f �(x)]� =−4e2x(e f (x) +2)− (2e2x +1)e f (x) f �(x)
(e f (x) +2)2

and, by evaluating the formula for x = 0, f ��(0) =− 12+3
32 =− 5

3 . Finally,

f ���(x) = [ f ��(x)]� = −
�
8e2x(e f (x) +2)− (2e2x +1)e f (x)( f �(x))2 − (2e2x +1)e f (x) f ��(x)

�
(e f (x) +2)2

(e f (x) +2)4

+

�
4e2x(e f (x) +2)− (2e2x +1)e f (x) f �(x)

�
2(e f (x) +2)e f (x) f �(x)

(e f (x) +2)4

and then

f ���(0) =−(24−4+4−3+5)9+(12+3)6
34 =−36

9
=−4.

• By differentiating the equation:
Because the equation F(x,y) = 0 implicitly defines a function y = f (x) in a neighbourhood of (0,0), we
substitute f (x) into y, where x is considered from a neighbourhood of 0:

e2x + e f (x) + x+2 f (x)−2 = 0.

By differentiating both sides of this equation with respect to x one obtains

2e2x + e f (x) f �(x)+1+2 f �(x) = 0

which specifies the first derivative of f in a neighbourhood of 0. Specifically, f �(0) = −1. By further
differentiation of this equation, the relation specifying the second derivative of f is obtained:

4e2x + e f (x)( f �(x))2 + e f (x) f ��(x)+2 f ��(x) = 0.

Thus, the substitution x = 0 implies f ��(0) =− 5
3 . Lastly, differentiation of the equation specifying f ��(x)

leads to the equation which specifies f ���(x) for x in a neighbourhood of 0:

8e2x + e f (x)( f �(x))3 + e f (x)2 f �(x) f ��(x)+ e f (x) f �(x) f ��(x)+ e f (x) f ���(x)+2 f ���(x) = 0.

Therefore, by substituting x = 0, f ���(0) =−4.
�

� Example 6.11 Show that the equation

ln(x+ y) = x+ y− xy− x2 − y2

defines an implicit function y = f (x) in a neighbourhood of the point (0,1). Determine the tangent line to the
graph of f at the point (0,1).

Let F(x,y) = ln(x+ y)− x− y+ xy+ x2 + y2. Then, because F(0,1) = ln(1)− 1+ 1 = 0 and ∂F
∂y (0,1) =�

1
x+y −1+ x+2y

����
(x,y)=(0,1)

= 2 �= 0, the equation F(x,y) = 0 implicitly defines a function y = f (x) in a

neighbourhood of the point (0,1).
Because

f �(0) =−
∂F
∂x (0,1)
∂F
∂y (0,1)

=−

�
1

x+y −1+ y+2x
����

(x,y)=(0,1)�
1

x+y −1+ x+2y
����

(x,y)=(0,1)

=−1/2,
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This section has shown how to find the derivatives of implicitly defined functions, whose graphs include a wide variety of
interesting and unusual shapes. Implicit differentiation can also be used to further our understanding of "regular''
differentiation.

One hole in our current understanding of derivatives is this: what is the derivative of the square root function? That is,

We allude to a possible solution, as we can write the square root function as a power function with a rational (or, fractional)
power. We are then tempted to apply the Power Rule and obtain

The trouble with this is that the Power Rule was initially defined only for positive integer powers, . While we did not
justify this at the time, generally the Power Rule is proved using something called the Binomial Theorem, which deals only
with positive integers. The Quotient Rule allowed us to extend the Power Rule to negative integer powers. Implicit
Differentiation allows us to extend the Power Rule to rational powers, as shown below.

Let , where  and  are integers with no common factors (so  and  is fine, but  and  is
not). We can rewrite this explicit function implicitly as . Now apply implicit differentiation.

The above derivation is the key to the proof extending the Power Rule to rational powers. Using limits, we can extend this
once more to include all powers, including irrational (even transcendental!) powers, giving the following theorem.

Let , where  is a real number. Then  is a differentiable function, and .

This theorem allows us to say the derivative of  is .

We now apply this final version of the Power Rule in the next example, the second investigation of a "famous'' curve.

Find the slope of  at the point .

Solution

This is a particularly interesting curve called an astroid. It is the shape traced out by a point on the edge of a circle that is
rolling around inside of a larger circle, as shown in Figure 2.25.

( ) = ( ) = ?
d

dx
x−−√

d

dx
x1/2 (3.5.18)

( ) = = .
d

dx
x1/2 1

2
x−1/2 1

2 x−−√
(3.5.19)

n > 0

y = xm/n m n m = 2 n = 5 m = 2 n = 4
=yn xm

y

yn

( )
d

dx
yn

n ⋅ ⋅yn−1 y′

y′

= xm/n

= xm

= ( )
d

dx
xm

=m ⋅ xm−1

= (now substitute   for y)
m

n

xm−1

yn−1
xm/n

= (apply lots of algebra)
m

n

xm−1

(xm/n)n−1

=
m

n
x(m−n)/n

= .
m

n
xm/n−1

Theorem 21: Power Rule for Differentiation

f(x) = xn n ≠ 0 f (x) = n ⋅f ′ xn−1

xπ πxπ−1

Example 72: Using the Power Rule

+ = 8x2/3 y2/3 (8, 8)
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Figure 2.25: An astroid, traced out by a point on the smaller circle as it rolls inside the larger circle.

To find the slope of the astroid at the point , we take the derivative implicitly.

Plugging in  and , we get a slope of . The astroid, with its tangent line at , is shown in Figure 2.26.

Figure 2.26: An astroid with a tangent line.

Implicit Differentiation and the Second Derivative

We can use implicit differentiation to find higher order derivatives. In theory, this is simple: first find , then take its

derivative with respect to . In practice, it is not hard, but it often requires a bit of algebra. We demonstrate this in an example.

Given , find .

Solution

We found that  in Example 71. To find , we apply implicit differentiation to .

(8, 8)

+
2

3
x−1/3 2

3
y−1/3y′

2

3
y−1/3y′

y′

y′

= 0

= −
2

3
x−1/3

= −
x−1/3

y−1/3

= − = − .
y1/3

x1/3

y

x

−−
√3

x = 8 y = 8 −1 (8, 8)

dy

dx

x

Example 73: Finding the second derivative

+ = 1x2 y2 =
yd2

dx2
y′′

= = −x/yy′
dy

dx
y′′ y′



MA2 Solved problems 2 c° pHabala 2010

two equations, so this is no problem, we eliminate. We get

∂2f

∂x∂y
= 2

√
s
∂f

∂t
+ 2

√
s3

∂2f

∂s∂t
+ t2

√
s
∂2f

∂t2

Dividing by 2 we get exactly the same answer as before.

Note that we were lucky that in the equation for ∂f
∂t

, only one partial derivative remained on
the right. In general we can expect both equations in part 1) to feature derivatives by x and y,
like the first equation does. The we would need to differentiate both equations by both s and

t, obtaining four equations with four unknown partial derivatives ∂2f
∂x2 , ∂2f

∂y2 , ∂2f
∂x∂y

, and ∂2f
∂y∂x

, the
system then would have to be solved. So indeed, this procedure is longer, but as we remarked
before, more general.

Bonus: We will find ∂2f
∂y∂x

. We start with

∂f

∂x
= 2x

∂f

∂s
+ 2xy

∂f

∂t
.

and then calculate (similarly as above)

∂2f

∂y∂x
=

∂

∂y

�

2x
∂f

∂s
+ 2xy

∂f

∂t

�

= 2x
∂

∂y

�∂f

∂s

�

+ 2x
∂f

∂t
+ 2xy

∂

∂y

�∂f

∂t

�

= 2x
�∂2f

∂s2

∂s

∂y
+

∂2f

∂t∂s

∂t

∂y

�

+ 2x
∂f

∂t
+ 2xy

� ∂2f

∂s∂t

∂s

∂y
+

∂2f

∂t2
∂t

∂y

�

= 2x3 ∂2f

∂t∂s
+ 2x

∂f

∂t
+ 2x3y

∂2f

∂t2
.

Thus
1

2

∂2f

∂y∂x
=

√
s
∂f

∂t
+

�√
s
�3 ∂2f

∂t∂s
+ t

√
s
∂2f

∂t2
.

If f is “nice”, the two mixed derivatives should be the same.

10. We have F (x, y) = sin(xy) + x2 + y2. We check that F (0, 1) = 1, so the question makes
sense.

a) ∂F
∂y

(0, 1) = x cos(xy) + 2y
�

�

x=0,y=1
= 2. Since ∂F

∂y
(0, 1) 6= 0, by the Implicit Function The-

orem there is a function y(x) defined on some neighborhood of x = 0 such that y(0) = 1 and
F (x, y(x)) = 0.

b) We can use the Implicit Function Theorem to find y ′(x), but it is easier just to differentiate
the given equation, keeping in mind that now y is a function of x. We get

sin(xy) + x2 + y2 = 1

[sin(xy(x))]′ + [x2]′ + [y(x)2]′ = [1]′

cos(xy) · [y + xy′] + 2x + 2y · y′ = 0. (⋆)

Substituting (0, 1) into it we get cos(0) · [1 + 0 · y ′(0)] + 0 + 2 · y′(0) = 0, solving for y′(0) we get
y′(0) = − 1

2 .

We have the point (0, 1) and the slope y ′(0) = − 1
2 , consequently the equation of the tangent line

is y = − 1
2 (x − 0) + 1, that is, x + 2y = 2.

c) There are two possibilities. One is to take another derivative of the equation (⋆):

− sin(xy)[y + xy′] · [y + xy′] + cos(xy)[y′ + y′ + xy′′] + 2 + 2y′y′ + 2yy′′ = 0.

Substituting x = 0, y = 1, and y ′ = − 1
2 , then solving for y′′(0) we get y′′(0) = − 3

4 .

Alternative solution: We can solve (⋆) in general for y ′:

y′(x) = −2x + cos(xy)y

2y + cos(xy)x

10
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and then take the derivative:

y′′(x) = − [2x + cos(xy)y]′ · [2y + cos(xy)x] − [2x + cos(xy)y] · [2y + cos(xy)x]′

[2y + cos(xy)x]2

= −2 − sin(xy)(y + xy′)y + cos(xy)y′

2y + cos(xy)x
+

(2x + cos(xy)y)(2y′ − sin(xy)(y + xy′)x + cos(xy))

[2y + cos(xy)x]2
.

Then we put in x = 0, y = 1, y ′ = − 1
2 and it is done.

Obviously the first solution is preferable.

11. The equation can be written as F (x, y, z) = 0, where

F (x, y, z) = sin(xz) + sin(yz) − sin(xy).

a) For the function z(x, y) to exist, we need ∂F
∂z

(0, 1,π) 6= 0. Here ∂F
∂z

= x cos(xz) + y cos(yz),

so ∂F
∂z

(0, 1,π) = −1 6= 0, and the Implicit Function Theorem does the rest.
b) The given equation defines a level surface of F , so the normal vector can be found using gra-
dient of F . We have ∇F =

�

−y cos(xy)+z cos(yz),−x cos(xy)+z cos(yz), x cos(xz)+y cos(yz)
�

,
so ~n = ∇F (0, 1,π) = (π − 1,−π,−1).
The tangent plane is given by (π − 1)x − π(y − 1) − (z − π) = 0, that is,

(π − 1)x − πy − z + 2π = 0.

Alternative solution: We will treat it as the question of finding the tangent plane to the graph
of z = z(x, y). The normal vector is then given as (zx, zy,−1). To find the partial derivatives,
we differentiate the given equation by x and by y, remembering that now z = z(x, y):

cos(xz)[z + xzx] + cos(yz)yzx = cos(xy)y

cos(xz)xzy + cos(yz)[z + yzy] = cos(xy)x

We substitute in (0, 1,π) and get zx(0, 1) = π− 1, zy(0, 1) = −π, thus ~n = (π− 1,−π,−1) as we
had before.
Note that we used the handy shortcut zx = ∂z

∂x
, zy = ∂z

∂y
to simplify the writing.

c) To find the second partial derivative, it is easiest to use the alternative solution of b). There
we differentiated the original equation by x, so we now differentiate that result by y to get the
desired zxy. Again, we have to remember that z = z(x, y), but now also zx = zx(x, y).
�

cos(xz)[z + xzx] + cos(yz)yzx

�

y
=

�

cos(xy)y
�

y
=⇒

− sin(xz)xzy[z + xzx] + cos(xz)[zy + xzxy] − sin(yz)[z + yzy]yzx + cos(yz)zx + cos(yz)yzxy

= − sin(xy)xy + cos(xy).

We substitute in the point (0, 1,π) and also zx(0, 1) = π−1, zy(0, 1) = −π and solve the resulting
equation to obtain zxy(0, 1) = 2 − 2π.
Of course, we can also take the equation we obtained in b) by differentiating the given equation
with respect to y and then differentiate it by x, obtaining the same answer.

11
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Figure : Graph of the rotated ellipse defined by .

b. We have  Therefore,

Using Equation ,

Find  if is defined implicitly as a function of  by the equation . What is the
equation of the tangent line to the graph of this curve at point ?

Hint

Calculate  and , then use Equation .

Solution

Equation of the tangent line: 

Key Concepts
The chain rule for functions of more than one variable involves the partial derivatives with respect to all the independent
variables.

5 3 −2xy+ +4x−6y−11 = 0x
2

y
2

f(x, y, z) = −yz .x2ey ex

= 2x −yz
∂f

∂x
ey ex

= −z
∂f

∂y
x2ey ex

=−y
∂f

∂z
ex

7

=− =−
∂z

∂x

∂f/∂x

∂f/∂y

∂z

∂y

∂f/∂y

∂f/∂z

=− and=−
2x −yzey ex

−yex
−zx2ey ex

−yex

= =
2x −yzey ex

yex
−zx2ey ex

yex

Exercise 5

dy/dx y x +xy− +7x−3y−26 = 0x2 y2

(3, −2)

∂f/dx ∂f/dy 6

= = =−
dy

dx

2x+y+7

2y−x+3

∣

∣
∣
(3,−2)

2(3)+(−2)+7

2(−2)−(3)+3

11

4

y =− x+
11

4

25

4



d

dx
(
√

x +
√

y) =
d1

dx

1

2
x−1/2 +

1

2
y−1/2 dy

dx
= 0

Solving for dy
dx

, we bring the terms with dy
dx

to the left and all other terms to the right:

1

2
√

y

dy

dx
= − 1

2
√

x

multiplying both sides by 2
√

y, we get

dy

dx
= −2

√
y

2
√

x
= −

√
y√
x
.

To calculate y �� = d
dx

( dy
dx

), we have

y�� = − d

dx

�√y√
x

�
= −

�√
x

d(
√

y)

dx
−√y d(

√
x)

dx

(
√

x)2

�
= −

�√
x[ 1

2
√

y
dy
dx

]−√y[ 1
2
√

x
]

x

�

From above, we know that dy
dx

= −
√

y√
x
. Substituting that into the expression for y ��, we get

y�� = −
�√

x[ 1
2
√

y
[−

√
y√
x
]]−√y[ 1

2
√

x
]

x

�
.

After cancellation and factoring −1/2 out of each term, we get

y�� =
1
2
[1−

√
y√
x
]

x
.

Example Find dy
dx

by implicit differentiation if y sin(x2) = x sin(y2).
(Please attempt to solve this before looking at the solution on the next page)

4
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Let’s now return to the problem that we started before the previous theorem. Using Note and the function 

 we obtain

Then Equation  gives

which is the same result obtained by the earlier use of implicit differentiation.

a. Calculate  if y is defined implicitly as a function of  via the equation .
What is the equation of the tangent line to the graph of this curve at point ?

b. Calculate  and  given 

Solution

a. Set  then calculate  and  

The derivative is given by

The slope of the tangent line at point  is given by

To find the equation of the tangent line, we use the point-slope form (Figure ):

f(x, y) = +3 +4y−4,x2 y2

= 2x
∂f

∂x

= 6y+4.
∂f

∂y

6

=− =− =− ,
dy

dx

∂f/∂x

∂f/∂y

2x

6y+4

x

3y+2
(8)

Example : Implicit Differentiation by Partial Derivatives5

dy/dx x 3 −2xy+ +4x−6y−11 = 0x2 y2

(2, 1)

∂z/∂x ∂z/∂y, −yz = 0.x2ey ex

f(x, y) = 3 −2xy+ +4x−6y−11 = 0,x2 y2 fx : = 6x−2y+4fy fx
=−2x+2y−6.fy

=− = = .
dy

dx

∂f/∂x

∂f/∂y

6x−2y+4

−2x+2y−6

3x−y+2

x−y+3

(2, 1)

= =
dy

dx
∣(x,y)=(2,1)

3(2)−1+2

2−1+3

7

4

5

y− =m(x− )y0 x0

y−1 = (x−2)
7

4

y = x− +1
7

4

7

2

y = x− .
7

4

5

2
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Figure : Graph of the rotated ellipse defined by .

b. We have  Therefore,

Using Equation ,

Find  if is defined implicitly as a function of  by the equation . What is the
equation of the tangent line to the graph of this curve at point ?

Hint

Calculate  and , then use Equation .

Solution

Equation of the tangent line: 

Key Concepts
The chain rule for functions of more than one variable involves the partial derivatives with respect to all the independent
variables.

5 3 −2xy+ +4x−6y−11 = 0x
2

y
2

f(x, y, z) = −yz .x2ey ex

= 2x −yz
∂f

∂x
ey ex

= −z
∂f

∂y
x2ey ex

=−y
∂f

∂z
ex

7

=− =−
∂z

∂x

∂f/∂x

∂f/∂y

∂z

∂y

∂f/∂y

∂f/∂z

=− and=−
2x −yzey ex

−yex
−zx2ey ex

−yex

= =
2x −yzey ex

yex
−zx2ey ex

yex

Exercise 5

dy/dx y x +xy− +7x−3y−26 = 0x2 y2

(3, −2)

∂f/dx ∂f/dy 6

= = =−
dy

dx

2x+y+7

2y−x+3

∣

∣
∣
(3,−2)

2(3)+(−2)+7

2(−2)−(3)+3

11

4

y =− x+
11

4

25

4



Example 7 A curve is given by the equation

y3 + 2y = sin(x) + 3.

Find the slope of the curve at the point (0, 1).
Also approximate the value of y when x = 0.05.
Solution.

In this example we use y� as shorthand for dy/dx.
Note that (0, 1) lies on the curve as we can see that x = 0, y = 1
satisfies the equation.
Differentiating both sides of the equation with respect to x gives:

3y2y� + 2y� = cos(x) ⇒
(3y2 + 2)y� = cos(x) ⇒

y� =
cos(x)

3y2 + 2
.

At x = 0, y = 1:

y� =
1

3 + 2
=

1

5
.

This is the slope of the curve at (0, 1).
To approximate the value of y at x = 0.05 we use the equation of the
tangent at (0, 1) which is of the form

y =
1

5
x+ c

and since y = 1 when x = 0 we have c = 1. Hence the equation of the
tangent is

y =
1

5
x+ 1.

The approximation for y at x = 0.05 is then y = 0.05/5 + 1 = 1.01.
The true value is y = 1.009936398 and the error is 0.000064 to 6 deci-
mal places.
The graph together with the tangent at (0, 1) is Figure 2.

12



Graph of y3 + 2y = sin(x) + 3 with tangent at (0, 1).

Exercise 2

A curve is given by the equation

y3 + y2 = x3 + 1.

Find the slope of the curve at the point (−1,−1).
Also approximate the value of y when x = −0.95.

�

Solutions to exercise 2

Once again we use y� as shorthand for dy/dx.

Note that (−1,−1) lies on the curve as we can see that x = −1, y =
−1 satisfies the equation.
Differentiating both sides of the equation with respect to x gives:

3y2y� + 2yy� = 3x2 ⇒
(3y2 + 2y)y� = 3x2 ⇒

y� =
3x2

3y2 + 2y
.

13



Note it is not expected that you should be able to plot these graphs -
they are displayed here for information.

Graph of y3 + y = x.

We can now ask for the slope of the tangent to this curve at a particular
point by finding dy/dx.

Example 5 A curve is given by

y3 + y = x.

(a) Show that the point (−2,−1) lies on the curve.

(b) Find dy/dx by using implicit differentiation.

(c) Find the slope of the tangent at the point (−2,−1).

Solution.

(a) To show that the point (−2,−1) lies on the curve all we do is to
substitute these values into the equation and see if they satisfy the
equation.
We get on putting x = −2, y = −1 :

(−1)3 + (−1) = −2

which is clearly true, hence the point lies on the curve.
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