18th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teaching.php
kuncova@karlin.mff.cuni.cz

Theory

Theorem 1 (Lagrange multiplier theorem). Let $G \subset \mathbb{R}^{2}$ be an open set, $f, g \in C^{1}(G)$, $M=\{[x, y] \in G ; g(x, y)=0\}$ and let $[\tilde{x}, \tilde{y}] \in M$ be a point of local extremum of f with respect to M. Then at least one of the following conditions holds:

1. $\operatorname{grad} g(\tilde{x}, \tilde{y})=\vec{o}$,
2. there exists $\lambda \in \mathbb{R}$ satisfying

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(\tilde{x}, \tilde{y})+\lambda \frac{\partial g}{\partial x}(\tilde{x}, \tilde{y})=0, \\
& \frac{\partial f}{\partial y}(\tilde{x}, \tilde{y})+\lambda \frac{\partial g}{\partial y}(\tilde{x}, \tilde{y})=0 .
\end{aligned}
$$

Theorem 2 (Lagrange multipliers theorem). Let $m, n \in \mathbb{N}, m<n, G \subset \mathbb{R}^{n}$ an open set, $f, g_{1}, \ldots, g_{m} \in C^{1}(G)$,

$$
M=\left\{\vec{z} \in G ; g_{1}(\vec{z})=0, g_{2}(\vec{z})=0, \ldots, g_{m}(\vec{z})=0\right\}
$$

and let $\overrightarrow{\tilde{z}} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:

1. the vectors

$$
\operatorname{grad} g_{1}(\overrightarrow{\tilde{z}}), \operatorname{grad} g_{2}(\overrightarrow{\tilde{z}}), \ldots, \operatorname{grad} g_{m}(\overrightarrow{\tilde{z}})
$$

are linearly dependent,
2. there exist numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}$ satisfying

$$
\operatorname{grad} f(\overrightarrow{\tilde{z}})+\lambda_{1} \operatorname{grad} g_{1}(\overrightarrow{\tilde{z}})+\lambda_{2} \operatorname{grad} g_{2}(\overrightarrow{\tilde{z}})+\cdots+\lambda_{m} \operatorname{grad} g_{m}(\overrightarrow{\tilde{z}})=\vec{o} .
$$

Remarks 3. - For $m=1$: One vector is linearly dependent if it is the zero vector.

- For $m=2$: Two vectors are linearly dependent if one of them is a multiple of the other one.

Exercises

1. Find suspect points of a function subject to the given constraint
(a) $f(x, y)=2 x+3 y, x^{2}+4 y^{2}=100$
(b) $f(x, y)=x^{2}+4 y^{2}-2 x+8 y, x+2 y=7$ (find local minimum)
(c) $f(x, y)=x^{2}-10 x-y^{2}, x^{2}+4 y^{2}=16$
(d) $f(x, y)=x^{2}+2 y^{2}, x^{2}-2 x+2 y^{2}+4 y=0$
2. Find suspect points of a function subject to the given constraint
(a) $f(x, y, z)=x^{2}+y^{2}+z^{2}, x+y-2 z-6=0$
(b) $f(x, y, z)=x+2 y+2 z, x^{2}+y^{2}+z^{2}=9$
(c) $f(x, y, z)=y^{2}-10 z, x^{2}+y^{2}+z^{2}=36$
(d) $f(x, y, z)=x^{2}+y^{2}+z^{2}, x^{4}+y^{4}+z^{4}=1$
3. Find suspect points of a function subject to the given constraints
(a) $f(x, y, z)=x^{2}+2 y^{2}+z^{2}, x+2 y+3 z=1, x-2 y+z=5$
(b) $f(x, y, z)=4 y-2 z, x^{2}+y^{2}=1,2 x-y-z=2$
(c) $f(x, y, z)=3 x-y-3 z, x+y-z=0, x^{2}+2 z^{2}=1$
(d) $f(x, y, z)=3 x^{2}+y, x^{2}+z^{2}=9,4 x-3 y=9$
4. Find a point, that is closest to $P=(0,-3,2)$ and lies on the plane $x+y-z=1$.
5. Find the rectangle (sides are parallel to the coordinates) which is inscribed into ellipse $x^{2}+2 y^{2}=1$ and has the possible greatest area.
6. The farmer has 100 m of fencing and wants to make a place for sheep next to the river - it means, that he has to fence only three sides of the rectangular place. Of course, he wants to have maximum dimension for the sheep.

How to use the Lagrange multipliers?
(a) $f(x, y)=x y, g(x, y)=2 x+y-100$
(b) $f(x, y)=2 x+2 y-100, g(x, y)=x y$
(c) $f(x, y)=x y, g(x, y)=x+y-100$
(d) $f(x, y)=x+y, g(x, y)=x y-100$
(Inspiration: https://www.cpp.edu/conceptests/question-library/mat214. shtml\#Partial\%20Derivatives)

Source 1: https://www.cbr.com/shaun-the-sheep-best-worst-episodes-imdb/

