
◦ ����� �� ��� ���������� �� �������� r� �� ��� �� � ������ ��� ���� �������� �� �������� ���� ��� �����
������ �� ������ ��������� �� ��� �������� ������ �� ��� ������ �� r = 5 cm� ��� ������ �� h = 10 cm� ���
��� ��������� ������ �� V = 250πcm3�

• ����� ��� ��������� �� �������� ������������ �������� �� ��� ������� � ����������� ������������ �������
������ �� ����� ��� ���������� ���������� ���� ��������� �� ���������� ������ ���� ��� ����������� ��� �������
�� ���������� �� ����� �����������

• ������ ��������� ������������ � ������������ �� ��� ��� ������� ������ �� f(x, y, z) ������� �� � ����������
g(x, y, z) = c� ����� ��� �������� �������� L(x, y, z,λ) = f(x, y, z) − λ · [g(x, y, z) − c]� ���� ��� �������
����� �� f(x, y, z) ������� �� ��� ���������� g(x, y, z) = c ���� ����� �� � �������� ����� �� L(x, y, z,λ)� �� �����
������ �� �� �������� �� ����� ��� ������ �� ���� ��������� x, y, z,λ ����� �� fx = λgx� fy = λgy� fz = λgz�
g(x, y, z) = c� ��� ���� ������ ����� ��� ��������� ������� (x, y, z) �� ��� ��� ������� ��� ��������

◦ �� �� ���� ��� ���������� �� ����� ������� ����� ��� ������ fx = λgx� fy = λgy� g(x, y) = c�

◦ ������� ��� ����� λ �� ������ � �������� �����������
◦ ���� �� ��� ��������� ���� ������ ��� �������

∗ ������� �� ��� ������� ������ ��� ����� ��� g(x, y, z) = c� ��� �������� ���� ��� �������� �� f(x, y, z)
��� ����� �� �� ���� �������

∗ �� ������� ��� �������� �� f ��� g ���� �� ��������� ��� ���� ���� ����� ��� ��������

∗ ��� �� �� ��� �� � ����� ����� f �� ���������� ���� �� �� ���� ������ ������ ���� �������� ��
���� ��� ���� �������� �� f ���� � ������� ����� ���� ��� ��������

∗ ����� �� ���� �������� ��� ������� g(x, y, z) = c �� ������� �� ��� ������� �� f �

∗ ���� ����������� ���� �� ����� �� ������������� �� ������ ���� ��� ������ ∇f = �fx, fy, fz� �� ��������
�� ��� ������ ∇g = �gx, gy, gz�� �� �� ����� ������ ����� ������ � ������ λ ��� ����� ∇f = λ∇g� ����
������ ��� �������� ���������� fx = λgx� fy = λgy� fz = λgz ����� ������

• ��� ������������ �� ���� ������� ���� ����� �� �� ��������� ��������� ��� � ������� ���� ��� ������������

• ������ ��������� ������������ � ������������� �� ��� ��� ������� ������ �� f(x, y, z) ������� �� � ���� ��
����������� g(x, y, z) = c ��� h(x, y, z) = d� ����� ��� �������� �������� L(x, y, z,λ, µ) = f(x, y, z) − λ ·
[g(x, y, z)− c]− µ · [h(x, y, z)− d]� ���� ��� ������� ����� �� f(x, y, z) ������� �� ��� ���������� �����������
g(x, y, z) = c ��� h(x, y, z) = d ���� ����� �� � �������� ����� �� L(x, y, z,λ, µ)�

◦ ��� ������ ���� ����� ���� ���� ���� ����� ���������� ��� ��� � ������� �������������� �� ���� ����
��� ������������ ��� �� ������ ���� �� ��������� ������� ���� ���� ���� ��� �������������

• �������� ���� ��� ������� ��� ������� ������ �� f(x, y) = 2x+3y ������� �� ��� ���������� x2+4y2 = 100�

◦ �� ���� g = x2 + 4y2� ��� �� ������� fx = 2� gx = 2x� fy = 3� ��� gy = 8y�

◦ ���� �� ���� ��� ������ 2 = 2xλ� 3 = 8yλ� ��� x2 + 4y2 = 100�

◦ ������� ��� ���� ��� ��������� ����� x =
1

λ
��� y =

3

8λ
� ���� �������� �� �� ��� ����� �������� ������

�
1

λ

�2

+4

�
3

8λ

�2

= 100� �� ����
1

λ2
+

9

16λ2
= 100� ����������� ���� ����� �� 16λ2 ������ 25 = 100(16λ2)�

�� ���� λ2 =
1

64
� ����� λ = ±1

8
�

◦ ����� �� ������ ��� ��� ������ (x, y) = (8, 3) ��� (−8,−3)�

◦ ����� f(8, 3) = 25 ��� f(−8,−3) = −25� ��� ������� �� f(8, 3) = 25 ��� ��� ������� �� f(−8,−3) = −25 �

• �������� ���� ��� ������� ��� ������� ������ �� f(x, y, z) = x + 2y + 2z ������� �� ��� ����������
x2 + y2 + z2 = 9�

◦ �� ���� g = x2 + y2 + z2� ��� ���� fx = 1� gx = 2x� fy = 2� gy = 2y� fz = 2� gz = 2z�

◦ ���� �� ���� ��� ������ 1 = 2xλ� 2 = 2yλ� 2 = 2zλ� ��� x2 + y2 + z2 = 9�

��
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Figure : Graph of  along with the constraint . Note that there is no relative
extremum at , although this point will satisfy the Lagrange Multiplier equation with .

Example : Using Lagrange Multipliers

Use the method of Lagrange multipliers to find the minimum value of  subject to the
constraint 

Solution

Let’s follow the problem-solving strategy:

1. The objective function is  The constraint function is equal to the left-hand side of the
constraint equation when only a constant is on the right-hand side. So here . The problem asks us to solve
for the minimum value of , subject to the constraint (Figure ).

-2-1

-2
-1

-2

-1

-2

-1

1x 2

1

2yy

x -2-1

-2
-1

z

1

2

z

1

2

1x 2

1

2y

z

y

z

x

-1-1
-0.8-0.8

-0.6-0.6

-0.4-0.4

-0.2-0.2

00

0.20.2
0.40.4

0.60.6
0.80.8

1

1

f(2, 0) = 4

13.10.3 f(x, y) = −x2 y3 (x−1 + = 1)2 y2

(0, 0) λ = 0

13.10.1

f(x, y) = +4 −2x+8yx2 y2

x+2y = 7.

f(x, y) = +4 −2x+8y.x2 y2

g(x, y) = x+2y

f 13.10.4
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Figure : Graph of level curves of the function  corresponding to  and . The
red graph is the constraint function.

2. We then must calculate the gradients of both  and :

The equation  becomes

which can be rewritten as

Next, we set the coefficients of  and  equal to each other:

The equation  becomes . Therefore, the system of equations that needs to be solved is

3. This is a linear system of three equations in three variables. We start by solving the second equation for  and
substituting it into the first equation. This gives , so substituting this into the first equation gives

Solving this equation for  gives . We then substitute this into the third equation:

Since  this gives 

4. Next, we evaluate  at the point ,

To ensure this corresponds to a minimum value on the constraint function, let’s try some other points on the constraint from
either side of the point , such as the intercepts of , Which are  and .

13.10.4 f(x,y) = +4 −2x+8yx2 y2 c = 10 26

f g

f (x, y) = (2x−2) +(8y+8)∇
⇀

î ĵ

g (x, y) = +2 .∇
⇀

î ĵ

(13.10.4)

f (x, y) = λ g (x, y)∇
⇀

∇
⇀

(2x−2) +(8y+8) = λ( +2 ) ,î ĵ î ĵ (13.10.5)

(2x−2) +(8y+8) = λ +2λ .î ĵ î ĵ (13.10.6)

î ĵ

2x−2

8y+8

= λ

= 2λ.

(13.10.7)

(13.10.8)

g (x, y) = k x+2y = 7

2x−2

8y+8

x+2y

= λ

= 2λ

= 7.

(13.10.9)

(13.10.10)

(13.10.11)

λ

λ = 4y+4

2x−2 = 4y+4.

x x = 2y+3

(2y+3)+2y

4y

y

= 7

= 4

= 1.

x = 2y+3, x = 5.

f(x, y) = +4 −2x+8yx2 y2 (5, 1)

f(5, 1) = +4(1 −2(5)+8(1) = 27.52 )2 (13.10.12)

(5, 1) g(x, y) = 0 (7, 0) (0, 3.5)
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We get  and .

So it appears that  has a relative minimum of  at , subject to the given constraint.

Exercise 

Use the method of Lagrange multipliers to find the maximum value of

subject to the constraint 

Let’s now return to the problem posed at the beginning of the section.

Example : Golf Balls and Lagrange Multipliers

The golf ball manufacturer, Pro-T, has developed a profit model that depends on the number  of golf balls sold per month
(measured in thousands), and the number of hours per month of advertising y, according to the function

where  is measured in thousands of dollars. The budgetary constraint function relating the cost of the production of
thousands golf balls and advertising units is given by  Find the values of  and  that maximize profit,
and find the maximum profit.

Solution:

Again, we follow the problem-solving strategy:

1. The objective function is  To determine the constraint function, we divide
both sides by , which gives  The constraint function is equal to the left-hand side, so 
The problem asks us to solve for the maximum value of , subject to this constraint.

2. So, we calculate the gradients of both  and :

The equation  becomes

which can be rewritten as

We then set the coefficients of  and  equal to each other:

The equation  becomes . Therefore, the system of equations that needs to be solved is

3. We use the left-hand side of the second equation to replace  in the first equation:

f(7, 0) = 35 > 27 f(0, 3.5) = 77 > 27

f 27 (5, 1)

13.10.1

f(x, y) = 9 +36xy−4 −18x−8yx2 y2

3x+4y = 32.

13.10.2

x

z= f(x, y) = 48x+96y− −2xy−9 ,x2 y2

z

20x+4y = 216. x y

f(x, y) = 48x+96y− −2xy−9 .x2 y2

4 5x+y = 54. g(x, y) = 5x+y.

f

f g

f(x, y)∇
⇀

g(x, y)∇
⇀

= (48−2x−2y) +(96−2x−18y)î ĵ

= 5 + .î ĵ

f(x, y) = λ g(x, y)∇
⇀

∇
⇀

(48−2x−2y) +(96−2x−18y) = λ(5 + ),î ĵ î ĵ

(48−2x−2y) +(96−2x−18y) = λ5 +λ .î ĵ î ĵ

î ĵ

48−2x−2y

96−2x−18y

= 5λ

= λ.

g(x, y) = k 5x+y = 54

48−2x−2y

96−2x−18y

5x+y

= 5λ

= λ

= 54.

λ



to state the method of Lagrange multipliers using a new piece of notation. The gradient of

a function of two variables f(x, y) is the (two component) vector

∇f(x, y) = hfx(x, y) , fy(x, y)i

Let f(x, y) and g(x, y) have continuous first partial derivatives in a region of R2 that

contains the curve C given by the equation g(x, y) = 0. Assume that ∇g(x, y) 6= 0

there. If f , restricted to the curve C, has a local extreme value at the point (a, b)

on C, then there is a real number λ (called a Lagrange multiplier) such that

∇f(a, b) = λ∇g(a, b) i.e. fx(a, b) = λgx(a, b) fy(a, b) = λgy(a, b)

Theorem 20 (Lagrange Multipliers).

So to find the maximum and minimum values of f(x, y) on a curve g(x, y) = 0, assuming

that both the objective function f(x, y) and constraint function g(x, y) have continuous first

partial derivatives and that ∇g(x, y) 6= 0, you

1. build up a list of candidate points (x, y) by finding all solutions to the equations

fx(x, y) = λgx(x, y) fy(x, y) = λgy(x, y) g(x, y) = 0

2. and then you evaluate f(x, y) at each (x, y) on the list of candidates. The biggest of

these candidate values is the absolute maximum and the smallest of these candidate

values is the absolute minimum.

Example 21

Find the maximum and minimum of x2 − 10x− y2 on the ellipse x2 + 4y2 = 16.

Solution. For this problem the objective function is f(x, y) = x2−10x−y2 and the constraint

function is g(x, y) = x2 + 4y2 − 16. The first order derivatives of these functions are

fx = 2x− 10 fy = −2y gx = 2x gy = 8y

So, according to the method of Lagrange multipliers, we need to find all solutions to

2x− 10 = λ(2x) ⇐⇒ (λ− 1)x = −5 (7a)

−2y = λ(8y) ⇐⇒ (4λ+ 1)y = 0 (7b)

0 = x2 + 4y2 − 16 (7c)

From (7b), we see that we must have either λ = −1/4 or y = 0.

• If λ = −1/4, (7a) gives −5
4
x = −5, i.e. x = 4, and then (7c) gives y = 0.

c� Joel Feldman. 2014. All rights reserved. 18 January 29, 2014



• If y = 0, then (7c) gives x = ±4.

So we have the following table of candidates.

point (4, 0) (−4, 0)

value of f −24 56

min max

Example 21

Example 22

Find the rectangle of largest area (with sides parallel to the coordinates axes) that can be

inscribed in the ellipse x2 + 2y2 = 1.

x

y

(x, y)

(x,−y)(−x,−y)

x2 + 2y2 = 1

Solution. Call the coordinates of the upper right corner of the rectangle (x, y), as in the

figure above. The four corners of the rectangle are (±x,±y) so the rectangle has width 2x

and height 2y and the objective function is f(x, y) = 4xy. The constraint function for this

problem is g(x, y) = x2 + 2y2 − 1. The first order derivatives of these functions are

fx = 4y fy = 4x gx = 2x gy = 4y

So, according to the method of Lagrange multipliers, we need to find all solutions to

4y = λ(2x) ⇐⇒ y =
1

2
λx (8a)

4x = λ(4y) =⇒ x = λy =
1

2
λ2x =⇒ x

�

1− λ2

2

�

= 0 (8b)

0 = x2 + 2y2 − 1 (8c)

So (8b) is satisfied if either x = 0 or λ =
√
2 or λ = −

√
2.

• If x = 0, then (8a) gives y = 0 too. But (0, 0) violates the constraint.

• If λ =
√
2, then (8a) gives x =

√
2y and then (8c) gives 2y2 + 2y2 = 1 so that y = ±1/2

and x = ±1/
√
2.

• If λ = −
√
2, then (8a) gives x = −

√
2y and then (8c) gives 2y2 + 2y2 = 1 so that

y = ±1/2 and x = ∓1/
√
2.

c� Joel Feldman. 2014. All rights reserved. 19 January 29, 2014
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For (2, 1,−2) we get

H =





8 −2 1
−2 2 −1
1 −1 2



 =⇒ Δ1 = 8, Δ2 =

¯

¯

¯

¯

8 −2
−2 2

¯

¯

¯

¯

= 12, Δ3 = |H| = 28.

Since always Δi > 0, we conclude that f(2, 1,−2) = −7 is a local minimum.

Recall that for a local maximum we need Δ1 < 0, Δ2 > 0, and Δ3 < 0.

3. Since expressing y from the constraint would be messy, this calls for Lagrange multipliers
with g(x, y) = x2 − 2x + 2y2 + 4y. Equations to solve are ∇f = λ∇g and g = 0, that is,

∂f
∂x

= λ ∂g
∂x

∂f
∂y

= λ ∂g
∂y

g = 0











=⇒
2x = λ(2x − 2)

4y = λ(4y + 4)

x2 − 2x + 2y2 + 4y = 0











=⇒
x = λ(x − 1)

y = λ(y + 1)

x2 − 2x + 2y2 + 4y = 0

A typical strategy is to eliminate λ from the first two equations in order to obtain some rela-
tionship between the variables x, y, this is then used with condition g = 0 to find the desired
points.

We would like to isolate λ from the first equation. Can we have x = 1? The first equation then
reads 1 = 0, which is not true. Thus for sure x 6= 1 and we can write λ = x

x−1 . Putting it into the
second equation and multiplying out we get y = −x. Now this can be put into the constraint,
we obtain 3x2 − 6x = 0 and two solutions, x = 0 and x = 2. Thus there are two suspicious
points: (0, 0) and (2,−2). We substitute them into f : f(0, 0) = 0, f(2,−2) = 12. Comparing
values we guess that the former is a local minimum and the latter is a local maximum.

Determining global extrema usually involves some analysis of the situation. We have two local
extrema, but we do not know whether they give global extrema. In general, we find global
extrema by comparing values at local extrema and also values at “borders” of the set. Thus we
need to know more about M , the set determined by the given condition where we look at f .

A frequent trouble arises when the given set is not bounded, since then we have to ask what
happens to f when points of M run away to some infinity. Could it happen that x tends to
infinity within this set? Since points from M satisfy 2y 2 + 4y = 2x − x2, this would force the
expression 2y2 + 4y to tend to minus infinity, but that is not possible. Similarly we argue that
also y cannot go to infinity and we thus have a bounded set M .

Another source of trouble is if the set M is a curve that has some endpoints, then we would
have to check on those. How does M actually look like? In fact, rewriting the condition as

(x − 1)2 + 2(y + 1)2 = 3

we see that M is an ellipse. This is a close curve without any end, so whatever important
happens to values of f on it, it must happen at one of the points we found earlier. Thus we can
conclude that f(0, 0) = 0 is a minimum and f(2,−2) = 12 is a maximum of f on the given set.

4. The unknown point Q = (x, y, z) satisfies x + y − z = 1, that would be the constraint with
g(x, y, z) = x + y − z. The function to minimize should be the distance between P and Q, but
that would mean a square root. It will be easier to minimize the distance squared, which is
equivalent (think about it). Thus we have f(x, y, z) = dist(P,Q)2 = x2 + (y + 3)2 + (z − 2)2.
We use Lagrange multipliers, the equations ∇f = λ∇g and g = 1 now give

∂f
∂x

= λ ∂g
∂x

∂f
∂y

= λ ∂g
∂y

∂f
∂z

= λ∂g
∂z

g = 1























=⇒

2x = λ · 1
2(y + 3) = λ · 1
2(z − 2) = λ · (−1)

x + y − z = 1



















=⇒

x = 1
2λ

y + 3 = 1
2λ

z − 2 = − 1
2λ

x + y − z = 1

3



The answer is that the method of Lagrange multipliers is a general method that is effective in

solving a wide variety of problems. It may not always be possible to express one variable in terms

of the others (recall our discussion on implicit functions). Furthermore, the method of Lagrangians

is very useful in more general or abstract problems involving an arbitrary number of independent

variables and/or constraints. For example, in a future course or courses in Physics (e.g., thermal

physics, statistical mechanics), you should see a derivation of the famous “Boltzman distribution” of

the energies of atoms in an ideal gas using Lagrange multipliers.

Example: Let us return to the optimization problem with constraints discusssed earlier: Find the

point P on the plane x + y − 2z = 6 that lies closest to the origin. Recall that we sought to minimize

the square of the distance:

Minimize f(x, y, z) = x2 + y2 + z2

subject to x + y − 2z − 6 = 0.

Solution: The Lagrangian function associated with this problem is

L(x, y, z,λ) = f(x, y, z) + λF (x, y, z) (11)

= x2 + y2 + z2 + λ(x + y − 2z − 6).

We must find the critical points of L in terms of the four variables x, y, z and λ:

∂L

∂x
= 2x + λ = 0 (12)

∂L

∂y
= 2y + λ = 0

∂L

∂z
= 2z − 2λ = 0

∂L

∂λ
= x + y − 2z − 6 = 0.

Note that the final equation simply correponds to the constraint applied to the problem. Clever, eh?

There are often several ways to solve problems involving Lagrangians and Lagrangian multipliers. The

most important point to remember is that one method does not often work for all problems. In this

case, we can find the critical point rather easily as follows. We use the first three equations to express

x, y and z in terms of λ:

x = −λ

2
, y = −λ

2
, z = λ. (13)

94



We now substitute these results into the fourth equation:

−λ

2
− λ

2
− 2λ − 6 = 0 => 3λ = −6, (14)

which implies that λ = −2. From the above three equations, we have determined x, y and z:

x = 1, y = 1, z = −2. (15)

Therefore the desired point is (1, 1,−2), which is in agreement with the result obtained in the previous

lecture.

We continue with another illustrative example.

Example:

Maximize/minimize f(x, y, z) = xyz on the ellipse x2 + 2y2 + 3z2 = 1. (16)

The ellipse represents the constraint in this problem. We first express this constraint in the form

F (x, y, z) = 0, i.e.,

F (x, y, z) = x2 + 2y2 + 3z2 = 1 = 0. (17)

The Lagrangian associated with this problem is then

L(x, y, z,λ) = xyz + λ(x2 + 2y2 + 3z2 − 1). (18)

The critical points of the Lagrangian must satisfy the following equations

∂L

∂x
= yz + 2λx = 0 (a) (19)

∂L

∂y
= xz + 4λy = 0 (b)

∂L

∂z
= xy + 6λz = 0 (c)

The final condition
∂L

∂λ
= 0 yields the constraint.

Once again, we’re faced with the problem of solving this system of equations, which is now

nonlinear. Here is a “trick” that works because of the symmetry of the problem. (It won’t always
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◦ ����� �� ��� ���������� �� �������� r� �� ��� �� � ������ ��� ���� �������� �� �������� ���� ��� �����
������ �� ������ ��������� �� ��� �������� ������ �� ��� ������ �� r = 5 cm� ��� ������ �� h = 10 cm� ���
��� ��������� ������ �� V = 250πcm3�

• ����� ��� ��������� �� �������� ������������ �������� �� ��� ������� � ����������� ������������ �������
������ �� ����� ��� ���������� ���������� ���� ��������� �� ���������� ������ ���� ��� ����������� ��� �������
�� ���������� �� ����� �����������

• ������ ��������� ������������ � ������������ �� ��� ��� ������� ������ �� f(x, y, z) ������� �� � ����������
g(x, y, z) = c� ����� ��� �������� �������� L(x, y, z,λ) = f(x, y, z) − λ · [g(x, y, z) − c]� ���� ��� �������
����� �� f(x, y, z) ������� �� ��� ���������� g(x, y, z) = c ���� ����� �� � �������� ����� �� L(x, y, z,λ)� �� �����
������ �� �� �������� �� ����� ��� ������ �� ���� ��������� x, y, z,λ ����� �� fx = λgx� fy = λgy� fz = λgz�
g(x, y, z) = c� ��� ���� ������ ����� ��� ��������� ������� (x, y, z) �� ��� ��� ������� ��� ��������

◦ �� �� ���� ��� ���������� �� ����� ������� ����� ��� ������ fx = λgx� fy = λgy� g(x, y) = c�

◦ ������� ��� ����� λ �� ������ � �������� �����������
◦ ���� �� ��� ��������� ���� ������ ��� �������

∗ ������� �� ��� ������� ������ ��� ����� ��� g(x, y, z) = c� ��� �������� ���� ��� �������� �� f(x, y, z)
��� ����� �� �� ���� �������

∗ �� ������� ��� �������� �� f ��� g ���� �� ��������� ��� ���� ���� ����� ��� ��������

∗ ��� �� �� ��� �� � ����� ����� f �� ���������� ���� �� �� ���� ������ ������ ���� �������� ��
���� ��� ���� �������� �� f ���� � ������� ����� ���� ��� ��������

∗ ����� �� ���� �������� ��� ������� g(x, y, z) = c �� ������� �� ��� ������� �� f �

∗ ���� ����������� ���� �� ����� �� ������������� �� ������ ���� ��� ������ ∇f = �fx, fy, fz� �� ��������
�� ��� ������ ∇g = �gx, gy, gz�� �� �� ����� ������ ����� ������ � ������ λ ��� ����� ∇f = λ∇g� ����
������ ��� �������� ���������� fx = λgx� fy = λgy� fz = λgz ����� ������

• ��� ������������ �� ���� ������� ���� ����� �� �� ��������� ��������� ��� � ������� ���� ��� ������������

• ������ ��������� ������������ � ������������� �� ��� ��� ������� ������ �� f(x, y, z) ������� �� � ���� ��
����������� g(x, y, z) = c ��� h(x, y, z) = d� ����� ��� �������� �������� L(x, y, z,λ, µ) = f(x, y, z) − λ ·
[g(x, y, z)− c]− µ · [h(x, y, z)− d]� ���� ��� ������� ����� �� f(x, y, z) ������� �� ��� ���������� �����������
g(x, y, z) = c ��� h(x, y, z) = d ���� ����� �� � �������� ����� �� L(x, y, z,λ, µ)�

◦ ��� ������ ���� ����� ���� ���� ���� ����� ���������� ��� ��� � ������� �������������� �� ���� ����
��� ������������ ��� �� ������ ���� �� ��������� ������� ���� ���� ���� ��� �������������

• �������� ���� ��� ������� ��� ������� ������ �� f(x, y) = 2x+3y ������� �� ��� ���������� x2+4y2 = 100�

◦ �� ���� g = x2 + 4y2� ��� �� ������� fx = 2� gx = 2x� fy = 3� ��� gy = 8y�

◦ ���� �� ���� ��� ������ 2 = 2xλ� 3 = 8yλ� ��� x2 + 4y2 = 100�

◦ ������� ��� ���� ��� ��������� ����� x =
1

λ
��� y =

3

8λ
� ���� �������� �� �� ��� ����� �������� ������

�
1

λ

�2

+4

�
3

8λ

�2

= 100� �� ����
1

λ2
+

9

16λ2
= 100� ����������� ���� ����� �� 16λ2 ������ 25 = 100(16λ2)�

�� ���� λ2 =
1

64
� ����� λ = ±1

8
�

◦ ����� �� ������ ��� ��� ������ (x, y) = (8, 3) ��� (−8,−3)�

◦ ����� f(8, 3) = 25 ��� f(−8,−3) = −25� ��� ������� �� f(8, 3) = 25 ��� ��� ������� �� f(−8,−3) = −25 �

• �������� ���� ��� ������� ��� ������� ������ �� f(x, y, z) = x + 2y + 2z ������� �� ��� ����������
x2 + y2 + z2 = 9�

◦ �� ���� g = x2 + y2 + z2� ��� ���� fx = 1� gx = 2x� fy = 2� gy = 2y� fz = 2� gz = 2z�

◦ ���� �� ���� ��� ������ 1 = 2xλ� 2 = 2yλ� 2 = 2zλ� ��� x2 + y2 + z2 = 9�

��



◦ ������� ��� ���� ����� ��������� ����� x =
1

2λ
� y =

1

λ
� z =

1

λ
� �������� �� �� ��� ���� �������� ������

�
1

2λ

�2

+

�
1

λ

�2

+

�
1

λ

�2

= 9� ��
9

4λ2
= 9� �� ���� λ = ±1

2
�

◦ ���� ����� ��� ��� ������ (x, y, z) = (1, 2, 2) ��� (−1,−2,−2)�

◦ ����� f(1, 2, 2) = 9 ��� f(−1,−2,−2) = −9� ��� ������� �� f(1, 2, 2) = 9 ��� ��� ������� ��

f(−1,−2,−2) = −9 �

• �������� �������� ��� ������ V = πr2h �� � ����������� ��� ����� ���� ��� ������� ���� SA = 2πr2 + 2πrh
�� 150π cm2�

◦ �� ���� f(r, h) = πr2h ��� g(r, h) = 2πr2 + 2πrh� �� fr = 2πrh� gr = 4πr + 2πh� fh = πr2� gh = 2πr�

◦ ���� �� ���� ��� ������ 2πrh = (4πr + 2πh)λ� πr2 = (2πr)λ� ��� 2πr2 + 2πrh = 150π�

◦ �� ������� ������ ���� r = 0 ����� ���� ����������� ��� ����� ��������� �� �� ��� ������ r �= 0�

◦ ���������� r ���� ��� ������ �������� ��� ���� ������� ��� λ ������ λ =
r

2
� �������� ���� ��� ����

�������� ���� ���������� ��� π�� ������ 2rh = (4r + 2h) · r
2
� �� �������� �� r ������ 2h = 2r + h� �� ����

h = 2r�

◦ �������� �������� �� h = 2r �� ��� ����� �������� ������ ���������� ��� π�� ������ 2r2 +4r2 = 150� �� ����
r2 = 25 ��� ���� r = ±5�

◦ ��� ��� ��������� ������ ��� (r, h) = (5, 10) ��� (−5,−10)� ����� �� ���� ���� �������� ������ �� ���
���� ���� ���� (5, 10)� ����� �� ��� �������� ����� �� ��� ������� ���� �� ��� ��������

◦ ���������� ��� ������� ������ ������ ���� r = 5cm ��� h = 10cm� ��� �� f(5, 10) = 250πcm3 �

• �������� �� �������� ���� ��������� f ��������� �������� p ��������� �������� ��� r ������ ��� � �����
���������� ����� �� T (f, p, r) = 80f0.7p0.2r0.1 ������ ��� ���� ���� ��������� �������� ������������ ������
���� ��� ���� ���� ��������� �������� ������������ ������ ��� ��� ���� ��� ���� ������� ����������� �����
����� ��� ��� ���� �� ��� ����� ��������� ������ �� ������ ��� ���� �� ���� ���� �� ������� ��� ��� ����
������� ������ �� �������� �� �������� ����� ����� �����������

◦ �� ���� �� �������� ��� �������� T (f, p, r) = 80f0.7p0.2r0.1 ������� �� ��� ���������� 200f+80p+40r =
4000� �� ���� g(f, p, r) = 200f + 80p+ 40r�

◦ �� ��� �������� ��� �������� T ��������� ��� ��� ��������� ����������� �� �������� ����������� �� ��
������ �� �������� ��� ��������� �� T � ������ ln(T ) = ln(80) + 0.7 ln(f) + 0.2 ln(p) + 0.1 ln(r)� ��������

◦ ������ ��� ������� ����������� ���� ������ ��� ������ 0.7

f
= 200λ�

0.2

p
= 80λ�

0.1

r
= 40λ� ��� 200f +

80p+ 40r = 4000�

◦ ��� ���� ����� ��������� ����� f =
7

2000λ
� p =

1

400λ
� ��� r =

1

400λ
�

◦ �������� ����� ����������� ���� ��� ���� �������� ���� ������ 200 · 7

2000λ
+80 · 1

400λ
+40 · 1

400λ
= 4000�

����� ��������� ��
1

λ
= 4000 ��� ���� λ =

1

4000
� ���� ������ � ������ ��������� ������ (f, p, r) =

(14, 10, 10)� ����� �� ��� ����� �� ��� ������� ���� �� � ��������

◦ �� �������� ���� ��� ������� ���������� ������ ���� �� ��������� �������� �� ��������� �������� ��� �� ������ �
��� �� T (14, 10, 10) ≈ 1012.46 ������ ��� ����

◦ ������� �� �� ����� �� �������� T ��������� ��� ������ �� ��������� ����� �� 56f−0.3p0.2r0.1 = 200λ�
16f0.7p−0.8r0.1 = 80λ� 8f0.7p0.2r−0.9 = 40λ� 200f + 80p+ 40r = 4000� ���� ������ �� ��� ������ �� ����
�� ����� �� ��� ��� ������ ��� �������� �� �� ������ ��� ������ ��� ����� ��������� �� ��� ���� ���� ����
����� ��� ��� �� f, p, r �� ����� �� ��� ����� ���� ��� ������ ���� �� �� ��� ���� ���������

����� ������ �� ��� ��� �� �� �������� ���� �� ��� ��������
��������� ������� ���� �������� �� ��������� ���� ������� ���������� ��� ��� ��� ��������� �� ���������� ����
�������� ������� �� ������� �����������

��



Step 1  
Before proceeding with the problem let’s note because our constraint is the sum of three terms that are 

squared (and hence positive) the largest possible range of x is 6 6x− ≤ ≤  (the largest values would 

occur if 0y =  and 0z = ).  Likewise, we’d get the same ranges for both y and z.   

 
Note that, at this point, we don’t know if x, y or z will actually be the largest possible value.  At this point 
we are simply acknowledging what they are.  What this allows us to say is that whatever our answers 
will be they must occur in these bounded ranges and hence by the Extreme Value Theorem we know 
that absolute extrema will occur for this problem. 
 
This step is an important (and often overlooked) step in these problems.  It always helps to know that 
absolute extrema exist prior to actually trying to find them! 
 
Step 2  
The first actual step in the solution process is then to write down the system of equations we’ll need to 
solve for this problem. 
 
 

 

2 2 2

0 2

2 2

10 2

36

x

y y

z

x y z

λ
λ
λ

=
=

− =

+ + =

  

 
Step 3  
For most of these systems there are a multitude of solution methods that we can use to find a solution.  
Some may be harder than other, but unfortunately, there will often be no way of knowing which will be 
“easy” and which will be “hard” until you start the solution process. 
 
Do not be afraid of these systems.  They are probably unlike anything you’ve ever really been asked to 
solve up to this point.  Most of the systems can be solved using techniques that you already know and 
aren’t really as “bad” as they may appear at first glance.  Some do require some additional techniques 
and can be quite messy but for the most part still involve techniques that you do know how to use, you 
just may not have ever seen them done in the context of solving systems of equations. 
 
For this system let’s start with the third equation and note that because the left side is -10, or more 

importantly can never by zero, we can see that we must therefore have 0z ≠  and 0λ ≠ .  The fact that 

λ  can’t be zero is really important for this problem.   
 
Step 4  

Okay, because we now know that 0λ ≠  we can see that the only way for the first equation to be true is 

to have 0x = . 
 

Therefore, no matter what else is going on with y and z in this problem we must always have 0x =  and 
we’ll need to keep that in mind. 
 
Step 5  



Next, let’s take a look at the second equation.  A quick rewrite of this equation gives, 
 

( )2 2 2 1 0 0 or 1y y y yλ λ λ− = − = → = =   

 
Step 6  

We now have two possibilities from Step 4.  Either 0y =  or 1λ = .  We’ll need to go through both of 

these possibilities and see what we get. 
 

Let’s start by assuming that 0y =  and recall from Step 3 that we also know that 0x = .  In this case we 

can plug these values into the constraint to get, 
 

 2 36 6z z= → = ±   
 
Therefore, from this part we get two points that are potential absolute extrema, 
 

 ( ) ( )0,0, 6 0,0,6−   

 
Step 7  

Next, let’s assume that 1λ = .  If we head back to the third equation we can see that we now have, 
 
 10 2 5z z− = → = −   
 

So, under this assumption we must have 5z = −  and recalling once more from Step 3 that we have 

0x =  we can now plug these into the constraint to get, 
 

 2 225 36 11 11y y y+ = → = → = ±   
 
So, this part gives us two more points that are potential absolute extrema, 
 

 ( ) ( )0, 11, 5 0, 11, 5− − −   

 
Step 8  
In total, it looks like we have four points that can potentially be absolute extrema. So, to determine the 
absolute extrema all we need to do is evaluate the function at each of these points.  Here are those 
function evaluations. 
 

 ( ) ( ) ( ) ( )0, 11, 5 61 0, 11, 5 61 0,0, 6 60 0,0,6 60f f f f− − = − = − = = −   

 

The absolute maximum is then 61 which occurs at ( )0, 11, 5− −  and ( )0, 11, 5− .  The absolute 

minimum is -60 which occurs at ( )0,0,6 .  Do not get excited about the absolute extrema occurring at 

multiple points.  That will happen on occasion with these problems. 
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1. 3 = 2λx

2. 1 = 2λy

3. x2 + y2 = 10

Now we want to solve for each variable. At this point, you should take a moment and try to
cleverly think of a way to solve for one of the three. Let’s plug in equations (1) and (2) into (3).
This allows us to solve for λ.

✓

3

2λ

◆2

+

✓

1

2λ

◆2

= 10 =) λ = ±1

2

Now, we plug λ back into our original equations and get x = ±3 and y = ±1. We get the
following extreme points

(3, 1), (−3,−1)

We can classify them by simply finding their values when plugging into f(x, y).

• f(3, 1) = 9 + 1 = 10

• f(−3,−1) = −9− 1 = −10

So the maximum happens at (3, 1) and the minimum happens at (−3,−1).

Example 5.8.1.2 Use Lagrange multipliers to find the maximum and minimum values of the func-

tion subject to the given constraint x4 + y4 + z4 = 1.

f(x, y, z) = x2 + y2 + z2

• rf = h2x, 2y, 2zi

• rg = h4x3, 4y3, 4z3i

This gives us the following equation

h2x, 2y, 2zi = λ
⌦

4x3, 4y3, 4z3
↵

Therefore, we have the following equations:

1. 2x = 4λx3

2. 2y = 4λy3

3. 2z = 4λz3
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4. x4 + y4 + z4 = 1

If x, y, z are nonzero, then we can consider
Therefore, we have the following equations:

1. 1 = 2λx2

2. 1 = 2λy2

3. 1 = 2λz2

4. x4 + y4 + z4 = 1

Remember, we can only make this simplification if all the variables are nonzero! In this form,
we can plug in (1), (2), and (3) into (4). This gives us

✓

1

2λ

◆2

+

✓

1

2λ

◆2

+

✓

1

2λ

◆2

= 1

From this, we can solve for λ to get

λ = ±
p
3

2

Now, we plug λ back into our original equations and get ± 1
4
p
3
for each variable.

Regardless of the sign, we see that

f

✓

± 1
4
p
3
,± 1

4
p
3
,± 1

4
p
3

◆

=
1p
3
+

1p
3
+

1p
3
=

p
3

Now, what if one of the variables is zero? How can we deal with that? We can assume one of
the variables is zero and see what happens. That means when we plug into equation (4), we only
get two nonzero terms.

If x is zero, then

(0)2 +

✓

1

2λ

◆2

+

✓

1

2λ

◆2

= 1 =) λ = ± 1p
2

Notice that if y or z were chosen to be zero instead of x, we’d still conclude that λ = ± 1p
2
. That’s

why we can just consider one of the variables and think of it as considering all three possibilities. In

this case, we get one variable to be zero and the remaining nonzero variables as ± 1
4
p
2
. Therefore,

we get the critical points
✓

0,± 1
4
p
2
,± 1

4
p
2

◆

,

✓

± 1
4
p
2
, 0,± 1

4
p
2

◆

,

✓

± 1
4
p
2
,± 1

4
p
2
, 0

◆
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For either of these points, we get

f( critical point ) =
2p
2
=

p
2

Still, we haven’t considered all possible values. What if two variables were zero?
Then, when we plug into equation (4), we get

(0)2 + (0)2 +

✓

1

2λ

◆2

= 1 =) λ = ±1

2

For the variable that is not zero, we’d get the value ±1. Therefore, we have the critical points

(±1, 0, 0), (0,±1, 0), (0, 0,±1)

For either of these points, we get

f( critical point ) = 1

It’s not possible that all three variables are zero. Otherwise equation (4) would be false.
Therefore, are maximums are obtained at the points

•
✓

1
4
p
3
,
1
4
p
3
,
1
4
p
3

◆

•
✓

−
1
4
p
3
,
1
4
p
3
,
1
4
p
3

◆

•
✓

1
4
p
3
,−

1
4
p
3
,
1
4
p
3

◆

•
✓

1
4
p
3
,
1
4
p
3
,−

1
4
p
3

◆

•
✓

−
1
4
p
3
,−

1
4
p
3
,
1
4
p
3

◆

•
✓

−
1
4
p
3
,
1
4
p
3
,−

1
4
p
3

◆

•
✓

1
4
p
3
,−

1
4
p
3
,−

1
4
p
3

◆

•
✓

−
1
4
p
3
,−

1
4
p
3
,−

1
4
p
3

◆
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The minimums are obtained at the points

• (1, 0, 0)

• (−1, 0, 0)

• (0, 1, 0)

• (0,−1, 0)

• (0, 0, 1)

• (0, 0,−1)

This example shows how complicated these problems can get, especially with an added dimen-
sion. We could have easily missed the minimum values if we weren’t careful.

Example 5.8.1.3 Use Lagrange multipliers to find the absolute maximum and absolute minimum

of

f(x, y) = xy

over the region D = {(x, y) | x2 + y2  8}.

As before, we will find the critical points of f over D. Then, we’ll restrict f to the boundary of
D and find all extreme values. It is in this second step that we will use Lagrange multipliers.

The region D is a circle of radius 2
p
2.

• fx(x, y) = y

• fy(x, y) = x

We therefore have a critical point at (0, 0) and f(0, 0) = 0.
Now let us consider the boundary. We will use Lagrange multipliers and let the constraint be

x2 + y2 = 9. We begin with rf = λrg.

hy, xi = λ h2x, 2yi

This gives us the following equations:
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Before we outline the solution of this problem, let us step back for a moment and consider its

geometrical interpretation. The level sets of f(x, y, z) are concentric ellipsoids centered at the origin

(0, 0, 0). As we move outward, the values associated with these level sets increase.

The two constraints represent equations of planes. The fact that they must be satisfied simulta-

neously means that the planes are intersecting – in this case, their intersection produces a line in R 3.

As one moves along this line, closer and closer to the origin, the value of f on the line will decrease

as it intersects level sets associated with lower and lower values of f . If the line actually were to go

through the origin (which is not the case, since (0, 0, 0) does not satisfy any of the two equations),

the value of f evaluated on the line would go to zero.) At some point, a minimal value of f will be

attained, and the values will begin to increase.

Solution: The two constraints can be written in the form

F (x, y, z) = x + 2y + 3z − 1 = 0 (56)

G(x, y, z) = x − 2y + z − 5 = 0.

The associated Lagrangian function then has the form

L(x, y, z,λ, µ) = x2 + 2y2 + z2 + λ(x + 2y + 3z − 1) + µ(x − 2y + z − 5). (57)

The conditions for a critical point become:

∂L

∂x
= 0 : 2x + λ + µ = 0 (58)

∂L

∂y
= 0 : 4y + 2λ − 2µ = 0

∂L

∂z
= 0 : 2z + 3λ + µ = 0

∂L

∂λ
= 0 : x + 2y + 3z − 1 = 0

∂L

∂µ
= 0 : x − 2y + z − 5 = 0.

We search for x, y, z, λ and µ that simultaneously satisfy these equations.

As mentioned in class, there are usually several ways to solve these equations. And a method that

solves one problem will not necessarily apply to another. To solve this problem, one method is to use
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the first three equations from above to express x, y and z in terms of λ and µ:

x = −1

2
(λ + µ), y = −1

4
(2λ − 2µ), z = −1

2
(3λ + µ). (59)

Now substitute these results into the final two equations, which represent the constraints:

−6λ − µ = 1 (60)

−λ − 2µ = 5.

The solution of this simultaneous linear system is given by

λ =
3

11
, µ = −29

11
. (61)

From these values, we compute x, y and z to be

x =
13

11
, y = −16

11
, z =

10

11
. (62)

This is the only critical point for this problem. At this point, f(x, y, z) =
71

11
. This must correspond

to a global minimum since f(x, y, z) can assume arbitrary large values by letting x, y and z become

arbitrarily large while they satisfy the two constraints.

An important application of Lagrange multipliers to Physics – the Boltzman dis-

tribution of Statistical Mechanics

The discussion in this section is intended to be brief. We outline the application of method of La-

grangian multipliers a fundamental problem in Statistical Mechanics: finding the most probable dis-

tribution of energies assumed by a system of atoms or molecules. From now on, we simply refer to

these particles as molecules.

Consider a system of N independent, identical and distinguishable atoms or molecules, for ex-

ample, a container of oxygen gas. By “distinguishable,” we mean that we can index each molecule

uniquely and keep track of it. We assume that each molecule can exist in one of n states, 1, 2, · · · , n,

with respective energies E1, E2, · · · , En. (Examples of these energies: the electronic energies that can

be assumed by an atom, the vibrational energies of a diatomic molecule.) We’ll also let Nk denote the

“occupation number” of the kth state, i.e. the number of molecules in that state.
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So, in this case we get two Lagrange Multipliers.  Also, note that the first equation really is three 
equations as we saw in the previous examples.  Let’s see an example of this kind of optimization 
problem. 
 

Example 5  Find the maximum and minimum of ( ), , 4 2f x y z y z= −  subject to the constraints 

2 2x y z− − =  and 2 2 1x y+ = . 

 
Solution 
Verifying that we will have a minimum and maximum value here is a little trickier.  Clearly, because of 
the second constraint we’ve got to have 1 , 1x y− ≤ ≤ .  With this in mind there must also be a set of 

limits on z in order to make sure that the first constraint is met.  If one really wanted to determine 

that range you could find the minimum and maximum values of 2x y−  subject to 2 2 1x y+ =  and 

you could then use this to determine the minimum and maximum values of z.  We won’t do that here.  
The point is only to acknowledge that once again the possible solutions must lie in a closed and 
bounded region and so minimum and maximum values must exist by the Extreme Value Theorem. 
 
Here is the system of equations that we need to solve. 

 ( )0 2 2 x x xx f g hλ µ λ µ= + = +  (14) 

 ( )4 2 y y yy f g hλ µ λ µ= − + = +  (15) 

 ( )2 z z zf g hλ λ µ− = − = +  (16) 

 2 2x y z− − =  (17) 

 2 2 1x y+ =  (18) 
 

First, let’s notice that from equation (16) we get 2λ = .  Plugging this into equation (14) and equation 
(15) and solving for x and y respectively gives, 

 

2
0 4 2

3
4 2 2

x x

y y

µ
µ

µ
µ

= + ⇒ = −

= − + ⇒ =
 

 
Now, plug these into equation (18). 

 
2 2 2

4 9 13
1 13µ

µ µ µ
+ = = ⇒ = ±  

 

So, we have two cases to look at here.  First, let’s see what we get when 13µ = .  In this case we 

know that, 

 
2 3

13 13
x y= − =  

Plugging these into equation (17) gives, 

 
4 3 7

2 2
13 13 13

z z− − − = ⇒ = − −  



So, we’ve got one solution. 
 

Let’s now see what we get if we take 13µ = − .  Here we have, 

 
2 3

13 13
x y= = −  

Plugging these into equation (17) gives, 

 
4 3 7

2 2
13 13 13

z z+ − = ⇒ = − +  

and there’s a second solution. 
 
Now all that we need to is check the two solutions in the function to see which is the maximum and 
which is the minimum. 
 

 

2 3 7 26
, , 2 4 11.2111

13 13 13 13

2 3 7 26
, , 2 4 3.2111

13 13 13 13

f

f

 − − − = + = 
 
 − − + = − = − 
 

 

 

So, we have a maximum at ( )3 72
13 13 13

, , 2− − −  and a minimum at ( )3 72
13 13 13

, , 2− − + . 
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2. Solve this system of equations to get (possibly multiple) solutions for x, y, z,λ, and µ.

3. For each solution (x, y, z,λ, µ), find f(x, y, z) and compare the values you get. The largest
value corresponds to maximums, the smallest value corresponds to minimums.

5.8.2 Examples

Example 5.8.2.1 Use Lagrange multipliers to find the maximum and minimum values of the func-

tion subject to the given constraints x+ y − z = 0 and x2 + 2z2 = 1.

f(x, y, z) = 3x− y − 3z

As you’ll see, the technique is basically the same. It only requires that we look at more equations.

• rf = h3,−1,−3i

• rg = h1, 1,−1i

• rh = h2x, 0, 4zi

These combine to
h3,−1,−3i = λ h1, 1,−1i+ µ h2x, 0, 4zi

Therefore, we have the following equations:

1. 3 = λ+ 2µx

2. −1 = λ

3. −3 = −λ+ 4µz

4. x+ y − z = 0

5. x2 + 2z2 = 1

Already, we that λ = −1 and

−3 = 1 + 4µz =) −
1

µ
= z

3 = −1 + 2µx =) 2

µ
= x
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We can combine these two facts to get x = −2z. Let’s use our fifth equation to solve.

1 = 4z2 + 2z2 =) 6z2 = 1 =) z = ± 1p
6
, x = ⌥

2p
6

Plugging in either x or z to solve for µ will give you µ = ⌥
p
6. That means we know

λ = −1, µ = ⌥

p
6, x = ⌥

2p
6

and z = ± 1p
6

We now use equation 4 to find y.

⌥
2p
6
+ y ⌥

1p
6
= 0 =) y = ± 3p

6

Therefore, my two points are

✓

2p
6
,−

3p
6
,−

1p
6

◆

and

✓

−
2p
6
,
3p
6
,
1p
6

◆

• f

✓

2p
6
,−

3p
6
,−

1p
6

◆

=
6p
6
+

3p
6
+

3p
6
= 2

p
6 (This is a max)

• f

✓

−
2p
6
,
3p
6
,
1p
6

◆

= −
6p
6
−

3p
6
−

3p
6
= −2

p
6 (This is a min)

For all these problems, it’s important to take your time when simplifying. When we do algebra,
we often want to just “plug and chug” through the problem. After all, that has worked pretty
well in the past. Here, however, you’ll quickly find that you will go in circles and never solve for
anything. Just take your time and think about each step you take. It often helps to write out all
the equations before trying to plug in anything.
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The absolute maximum is then 2
3  which occurs at ( )1

32, , 1− −  and ( )1
32, ,1 .  The absolute minimum is 

2
3−  which occurs at ( )1

32, ,1−  and ( )1
32, , 1− .  Do not get excited about the absolute extrema occurring 

at multiple points.  That will happen on occasion with these problems. 
 
Before leaving this problem we should note that some of the solution processes for the systems that 
arise with Lagrange multipliers can be quite involved.  It can be easy to get lost in the details of the 
solution process and forget to go back and take care of one or more possibilities.  You need to always be 
very careful and before finishing a problem go back and make sure that you’ve dealt with all the possible 
solution paths in the problem. 
 

 
 

5. Find the maximum and minimum values of ( ) 2, , 3f x y z x y= +  subject to the constraints 

4 3 9x y− =  and 2 2 9x z+ = . 

 
Step 1  
Before proceeding with the problem let’s note that the second constraint is the sum of two terms that 

are squared (and hence positive).  Therefore, the largest possible range of x is 3 3x− ≤ ≤  (the largest 

values would occur if 0z = ).  We’ll get a similar range for z. 
 
Now, the first constraint is not the sum of two (or more) positive numbers.  However, we’ve already 

established that x is restricted to 3 3x− ≤ ≤  and this will give 7 1y− ≤ ≤  as the largest possible range 

of y’s.  Note that we can easily get this range by acknowledging that the first constraint is just a line and 
so the extreme values of y will correspond to the extreme values of x. 
 
So, because we now know that our answers must occur in these bounded ranges by the Extreme Value 
Theorem we know that absolute extrema will occur for this problem. 
 
This step is an important (and often overlooked) step in these problems.  It always helps to know that 
absolute extrema exist prior to actually trying to find them! 
 
Step 2  
The first step here is to write down the system of equations we’ll need to solve for this problem. 
 

 

2 2

6 4 2

1 3

0 2

4 3 9

9

x x

z

x y

x z

λ µ
λ
µ

= +
= −
=

− =

+ =

  

 
Step 3   
For most of these systems there are a multitude of solution methods that we can use to find a solution.  
Some may be harder than other, but unfortunately, there will often be no way of knowing which will be 
“easy” and which will be “hard” until you start the solution process. 



 
Do not be afraid of these systems.  They are probably unlike anything you’ve ever really been asked to 
solve up to this point.  Most of the systems can be solved using techniques that you already know and 
aren’t really as “bad” as they may appear at first glance.  Some do require some additional techniques 
and can be quite messy but for the most part still involve techniques that you do know how to use, you 
just may not have ever seen them done in the context of solving systems of equations. 
 
With this system we get a “freebie” to start off with.  Notice that from the second equation we quickly 

can see that 1
3λ = −  regardless of any of the values of the other variables in the system. 

 
Step 4  

Next, from the third equation we can see that we have either 0z =  or 0µ = ,  So, we have 2 
possibilities to look at.   Let’s take a look at 0z =  first. 
 
In this case we can go straight to the second constraint to get, 
 

 2 9 3x x= → = ±   
 
We can in turn plug each of these possibilities into the first constraint to get values for y. 
 

3 : 12 3 9 7

3 : 12 3 9 1

x y y

x y y

= − − − = → = −
= − = → =

  

 
Okay, from this step we have two possible absolute extrema. 
 

 ( ) ( )3, 7,0 3,1,0− −   

 
Step 5  
Now let’s go back and take a look at what happens if 0µ = .  If we plug this into the first equation in our 

system (and recalling that we also know that 1
3λ = − ) we get, 

 
4 2
3 96x x= − → = −  

 
We can plug this into each of our constraints to get values of y (from the first constraint) and z (form the 
second constraint).  Here is that work, 
 

( )
( )

892
9 27

2 2 5 292
9 9

4 3 9

9

y y

z z

− − = → = −

− + = → = ±
 

 
This leads to two more potential absolute extrema. 
 

 ( ) ( )5 29 5 2989 892 2
9 27 9 9 27 9, , , ,− − − − −   

 



Step 6  
In total, it looks like we have four points that can potentially be absolute extrema. So, to determine the 
absolute extrema all we need to do is evaluate the function at each of these points.  Here are those 
function evaluations. 
 

( ) ( ) ( ) ( )5 29 5 2989 85 89 852 2
9 27 9 27 9 27 9 273, 7,0 20 3,1,0 28 , , , ,f f f f− − = = − − − = − − − = −  

 

The absolute maximum is then 28 which occurs at ( )3,1,0 .  The absolute minimum is 85
27−  which occurs 

at ( )5 29892
9 27 9, ,− − −  and ( )5 29892

9 27 9, ,− − .  Do not get excited about the absolute extrema occurring at 

multiple points.  That will happen on occasion with these problems. 
 
Before leaving this problem we should note that, in this case, the value of the absolute extrema (as 
opposed to the location) did not actually depend on the value of z in any way as the function we were 
optimizing in this problem did not depend on z.  This will happen sometimes and we shouldn’t get too 
worried about it when it does.   
 
Note however that we still need the values of z for the location of the absolute extrema.  We need the 
values of z for the location because the points that give the absolute extrema are also required to satisfy 
the constraint and the second constraint in our problem does involve z’s! 
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For (2, 1,−2) we get

H =





8 −2 1
−2 2 −1
1 −1 2



 =⇒ Δ1 = 8, Δ2 =

¯

¯

¯

¯

8 −2
−2 2

¯

¯

¯

¯

= 12, Δ3 = |H| = 28.

Since always Δi > 0, we conclude that f(2, 1,−2) = −7 is a local minimum.

Recall that for a local maximum we need Δ1 < 0, Δ2 > 0, and Δ3 < 0.

3. Since expressing y from the constraint would be messy, this calls for Lagrange multipliers
with g(x, y) = x2 − 2x + 2y2 + 4y. Equations to solve are ∇f = λ∇g and g = 0, that is,

∂f
∂x

= λ ∂g
∂x

∂f
∂y

= λ ∂g
∂y

g = 0











=⇒
2x = λ(2x − 2)

4y = λ(4y + 4)

x2 − 2x + 2y2 + 4y = 0











=⇒
x = λ(x − 1)

y = λ(y + 1)

x2 − 2x + 2y2 + 4y = 0

A typical strategy is to eliminate λ from the first two equations in order to obtain some rela-
tionship between the variables x, y, this is then used with condition g = 0 to find the desired
points.

We would like to isolate λ from the first equation. Can we have x = 1? The first equation then
reads 1 = 0, which is not true. Thus for sure x 6= 1 and we can write λ = x

x−1 . Putting it into the
second equation and multiplying out we get y = −x. Now this can be put into the constraint,
we obtain 3x2 − 6x = 0 and two solutions, x = 0 and x = 2. Thus there are two suspicious
points: (0, 0) and (2,−2). We substitute them into f : f(0, 0) = 0, f(2,−2) = 12. Comparing
values we guess that the former is a local minimum and the latter is a local maximum.

Determining global extrema usually involves some analysis of the situation. We have two local
extrema, but we do not know whether they give global extrema. In general, we find global
extrema by comparing values at local extrema and also values at “borders” of the set. Thus we
need to know more about M , the set determined by the given condition where we look at f .

A frequent trouble arises when the given set is not bounded, since then we have to ask what
happens to f when points of M run away to some infinity. Could it happen that x tends to
infinity within this set? Since points from M satisfy 2y 2 + 4y = 2x − x2, this would force the
expression 2y2 + 4y to tend to minus infinity, but that is not possible. Similarly we argue that
also y cannot go to infinity and we thus have a bounded set M .

Another source of trouble is if the set M is a curve that has some endpoints, then we would
have to check on those. How does M actually look like? In fact, rewriting the condition as

(x − 1)2 + 2(y + 1)2 = 3

we see that M is an ellipse. This is a close curve without any end, so whatever important
happens to values of f on it, it must happen at one of the points we found earlier. Thus we can
conclude that f(0, 0) = 0 is a minimum and f(2,−2) = 12 is a maximum of f on the given set.

4. The unknown point Q = (x, y, z) satisfies x + y − z = 1, that would be the constraint with
g(x, y, z) = x + y − z. The function to minimize should be the distance between P and Q, but
that would mean a square root. It will be easier to minimize the distance squared, which is
equivalent (think about it). Thus we have f(x, y, z) = dist(P,Q)2 = x2 + (y + 3)2 + (z − 2)2.
We use Lagrange multipliers, the equations ∇f = λ∇g and g = 1 now give

∂f
∂x

= λ ∂g
∂x

∂f
∂y

= λ ∂g
∂y

∂f
∂z

= λ∂g
∂z

g = 1























=⇒

2x = λ · 1
2(y + 3) = λ · 1
2(z − 2) = λ · (−1)

x + y − z = 1



















=⇒

x = 1
2λ

y + 3 = 1
2λ

z − 2 = − 1
2λ

x + y − z = 1

3
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Again, we start by eliminating λ from the first three equations, for instance by substituting for
1
2λ from the first equation into the next two. Then

y + 3 = x

2 − z = x

x + y − z = 1











=⇒
y = x − 3

z = 2 − x

x + y − z = 1











=⇒ x + (x − 3) + (2 − x) = 1 =⇒ x = 2.

We easily find the other unknowns and obtain a suspicious point Q = (2,−1, 0). Is the function
f and hence the distance really minimal, not for instance maximal at Q? We try another point
from the plane. Say, the point R = (0, 1, 0) has dist(R,P ) =

√
42 + 22 =

√
20. On the other

hand, the distance from Q to P is dist(Q,P ) =
√

22 + 22 + 22 =
√

12, so it looks like the desired
minimum.

We can also argue that it is possible to go to infinity within the given plane, we can easily let
x → ∞ and the other coordinates adjust, then also the distance goes to infinity (this is obvious
when we imagine the situation) and thus the value we found cannot be the maximum.

Alternative: The first three equations offer the possibility of easily expressing all variables using
λ (say, z = 2 − 1

2λ). When we do it and substitute into the constrain, we get an equation with
one unknown λ, namely 3

2λ = 6. For this we have λ = 4 and we now have exactly the same
x = 2 etc. as before.

Note: Instead of Lagrange multipliers one could use the constraint to get x = 1 − y + z and
substitute into f , obtaining F (y, z) = (1−y+z)2 +(y+3)2 +(z−2)2. We find its local extrema:

∂F
∂y

= 0

∂F
∂z

= 0

)

=⇒ −2(1 − y + z) + 2(y + 3) = 0

2(1 − y + z) + 2(z − 2) = 0

¾

=⇒ y = −1, z = 0.

5. The distance between a point and a line is given as the distance between the given point and
the closest point of the line, so we have to find that point.

We have two constraints, one given by g(x, y, z) = x + y + z = 1, the other by h(x, y, z) =
2x− y + z = 3. We want a point Q = (x, y, z) satisfying these constraints such that its distance
from P is minimal, we will minimize the distance squared f(x, y, z) = (x−1)2+(y−2)2+(z+1)2.
Now there will be two Lagrange multipliers, we call them λ and µ (it is easier to write g, h and
λ, µ rather then g1, g2 and λ1,λ2 as in the theorem). The equations are ∇f = λ∇g + µ∇h,
g = 1 and h = 3, that is,

∂f
∂x

= λ ∂g
∂x

+ µ∂h
∂x

∂f
∂y

= λ ∂g
∂y

+ µ∂h
∂y

∂f
∂z

= λ∂g
∂z

+ µ∂h
∂z

g = 1

h = 3



































=⇒

2(x − 1) = λ · 1 + µ · 2
2(y − 2) = λ · 1 + µ · (−1)

2(z + 1) = λ · 1 + µ · 1
x + y + z = 1

2x − y + z = 3



























=⇒

2(x − 1) = λ + 2µ

2(y − 2) = λ − µ

2(z + 1) = λ + µ

x + y + z = 1

2x − y + z = 3

We will again try to eliminate the multipliers from the first three equations. For instance, we
add the second and the third equation, get λ = y +z−1, putting it back into the third equation
we get µ = z − y + 3. Substituting λ, µ into the first equation we get 2x + y − 3z = 6. This is
typical, we had 3 equations with 5 unknowns, so after using up two equations we end up with
one and only three unknowns.

Now we also take into account the two constraints, so we get

2x + y − 3z = 6

x + y + z = 1

2x − y + z = 3











=⇒ x = 2, y = 0, z = −1.

We then calculate the distance from Q = (2, 0,−1) to P : dist(P,Q) =
√

5. Just to make sure

4



• If y = 0, then (7c) gives x = ±4.

So we have the following table of candidates.

point (4, 0) (−4, 0)

value of f −24 56

min max

Example 21

Example 22

Find the rectangle of largest area (with sides parallel to the coordinates axes) that can be

inscribed in the ellipse x2 + 2y2 = 1.

x

y

(x, y)

(x,−y)(−x,−y)

x2 + 2y2 = 1

Solution. Call the coordinates of the upper right corner of the rectangle (x, y), as in the

figure above. The four corners of the rectangle are (±x,±y) so the rectangle has width 2x

and height 2y and the objective function is f(x, y) = 4xy. The constraint function for this

problem is g(x, y) = x2 + 2y2 − 1. The first order derivatives of these functions are

fx = 4y fy = 4x gx = 2x gy = 4y

So, according to the method of Lagrange multipliers, we need to find all solutions to

4y = λ(2x) ⇐⇒ y =
1

2
λx (8a)

4x = λ(4y) =⇒ x = λy =
1

2
λ2x =⇒ x

�

1− λ2

2

�

= 0 (8b)

0 = x2 + 2y2 − 1 (8c)

So (8b) is satisfied if either x = 0 or λ =
√
2 or λ = −

√
2.

• If x = 0, then (8a) gives y = 0 too. But (0, 0) violates the constraint.

• If λ =
√
2, then (8a) gives x =

√
2y and then (8c) gives 2y2 + 2y2 = 1 so that y = ±1/2

and x = ±1/
√
2.

• If λ = −
√
2, then (8a) gives x = −

√
2y and then (8c) gives 2y2 + 2y2 = 1 so that

y = ±1/2 and x = ∓1/
√
2.

c� Joel Feldman. 2014. All rights reserved. 19 January 29, 2014



The rectangle of largest area has the vertex
�

1/
√
2, 1/2

�

in the first quadrant.

Example 22

Example 23

Find the ends of the major and minor axes of the ellipse 3x2 − 2xy + 3y2 = 4. They are the

points on the ellipse that are farthest from and nearest to the origin.

Solution. Let (x, y) be a point on 3x2 − 2xy + 3y2 = 4. This point is at the end of a major

axis when it maximizes its distance from the centre, (0, 0) of the ellipse. It is at the end of a

minor axis when it minimizes its distance from (0, 0). So we wish to maximize and minimize

the distance
�

x2 + y2 subject to the constraint g(x, y) = 3x2−2xy+3y2−4 = 0. Now max-

imizing/minmizing
�

x2 + y2 is equivalent to maximizing/minmizing
�
�

x2 + y2
�2

= x2+y2.

So we are free to choose the objective function f(x, y) = x2 + y2, which we will do, because

it makes the derivatives cleaner. Since

fx(x, y) = 2x fy(x, y) = 2y gx(x, y) = 6x− 2y gy(x, y) = −2x+ 6y

we need to find all solutions to

2x = λ(6x− 2y) ⇐⇒ (1− 3λ)x+ λy = 0 (9a)

2y = λ(−2x+ 6y) ⇐⇒ λx+ (1− 3λ)y = 0 (9b)

0 = 3x2 − 2xy + 3y2 − 4 (9c)

To start, let’s concentrate on the first two equations. Pretend, for a couple of minutes, that

we already know the value of λ and are trying to find x and y. Note that λ cannot be zero

because if it is, (9a) forces x = 0 and (9b) forces y = 0 and (0, 0) is not on the ellipse. So we

may divide by λ and (9a) gives y = −1−3λ
λ

x. Subbing this into (9b) gives λx− (1−3λ)2

λ
x = 0.

Again, x cannot be zero, since then y = −1−3λ
λ

x would give y = 0 and (0, 0) is still not on

the ellipse. So we may divide λx− (1−3λ)2

λ
x = 0 by x, giving

λ− (1− 3λ)2

λ
= 0 ⇐⇒ (1− 3λ)2 − λ2 = 0 ⇐⇒ 8λ2 − 6λ+ 1 = (2λ− 1)(4λ− 1) = 0

We now know that λ must be either 1
2
or 1

4
. Subbing these into either (9a) or (9b) gives

λ =
1

2
=⇒ −1

2
x+

1

2
y = 0 =⇒ x = y

(9c)
=⇒ 3x2 − 2x2 + 3x2 = 4 =⇒ x = ±1

λ =
1

4
=⇒ 1

4
x+

1

4
y = 0 =⇒ x = −y

(9c)
=⇒ 3x2 + 2x2 + 3x2 = 4 =⇒ x = ± 1√

2

Here “
(9c)
=⇒ ” indicates that we have just used (9c). The ends of the minor axes are±

�

1√
2
,− 1√

2

�

.

The ends of the major axes are ±(1, 1).

Example 23

c� Joel Feldman. 2014. All rights reserved. 20 January 29, 2014



6. The farmer has 100 m of fencing and wants to make a place for sheep next to the
river - it means, that he has to fence only three sides of the rectangular place. Of
course, he wants to have maximum dimension for the sheep.

How to use the Lagrange multipliers?

(a) f(x, y) = xy, g(x, y) = 2x+ y − 100

(b) f(x, y) = 2x+ 2y − 100, g(x, y) = xy

(c) f(x, y) = xy, g(x, y) = x+ y − 100

(d) f(x, y) = x+ y, g(x, y) = xy − 100

(Inspiration: https://www.cpp.edu/conceptests/question-library/mat214.

shtml#Partial%20Derivatives)

Source 1: https://www.cbr.com/shaun-the-sheep-best-worst-episodes-imdb/
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