## 24th lesson

http://www.karlin.mff.cuni.cz/~kuncova/,

1. $f(x)=\frac{x}{(x+1)(x+2)(x+3)}$

## Solution:

We are looking for the decomposion in the form

$$
\frac{x}{(x+1)(x+2)(x+3)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3}
$$

If we multiply both sides, we obtain

$$
x=A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)
$$

Let us set $x=-1,-2,-3$. Then we get

$$
\begin{aligned}
& -1=2 A \Longrightarrow A=-\frac{1}{2} \\
& -2=-B \Longrightarrow B=2 \\
& -3=2 C \Longrightarrow C=-\frac{3}{2}
\end{aligned}
$$

Thus

$$
\begin{gathered}
\int \frac{x}{(x+1)(x+2)(x+3)} d x=\int \frac{-1}{2} \frac{1}{x+1} d x+\int \frac{2}{x+2} d x+\int \frac{-3}{2} \frac{1}{x+3} d x=\frac{C}{=} \\
\stackrel{C}{=}-\frac{1}{2} \ln |x+1|+2 \ln |x+2|-\frac{3}{2} \ln |x+3|=\frac{1}{2} \ln \left|\frac{(x+2)^{4}}{(x+1)(x+3)^{3}}\right|
\end{gathered}
$$

2. $f(x)=\frac{x}{x^{3}-1}$

## Solution:

We have $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, whereas the second bracket has no real roots. We are looking for the decomposition:

$$
\frac{x}{x^{3}-1}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1}
$$

Let us multiply

$$
x=A\left(x^{2}+x+1\right)+(B x+C)(x-1)
$$

For $x=1$ we get $A=\frac{1}{3}$.
If we set $A=1 / 3$, we obtain

$$
x=\frac{1}{3} x^{2}+\frac{1}{3} x+\frac{1}{3}+B x^{2}-B x+C x-C
$$

which implies $C=\frac{1}{3}$ (constants) and $B=-\frac{1}{3}$ (coefficients with $x^{2}$ ). Thus, the decomposition is of the form

$$
\frac{x}{x^{3}-1}=\frac{1}{3} \frac{1}{x-1}-\frac{1}{3} \frac{x-1}{x^{2}+x+1}
$$

Then

$$
\begin{gathered}
\int \frac{1}{3} \frac{1}{x-1} \mathrm{~d} x \stackrel{C}{=} \frac{1}{3} \ln |x-1| \\
\int \frac{1}{3} \frac{x-1}{x^{2}+x+1} \mathrm{~d} x=\int \frac{1}{6} \frac{2 x+1}{x^{2}+x+1} \mathrm{~d} x-\int \frac{1}{2} \frac{1}{x^{2}+x+1} \mathrm{~d} x-\stackrel{C}{=} \\
\frac{1}{6} \ln \left(x^{2}+x+1\right)-\frac{1}{\sqrt{3}} \arctan \frac{2 x+1}{\sqrt{3}}
\end{gathered}
$$

Together

$$
\int \frac{x}{x^{3}-1} \mathrm{~d} x \stackrel{C}{=} \frac{1}{3} \ln |x-1|-\frac{1}{6} \ln \left(x^{2}+x+1\right)+\frac{1}{\sqrt{3}} \arctan \frac{2 x+1}{\sqrt{3}}
$$

3. $f(x)=\frac{x^{3}+1}{x^{3}-5 x^{2}+6 x}$

## Solution:

The degrees of the polynomials are equal - we need to divide polynomials. However, there is an easier way:

$$
\frac{x^{3}+1}{x^{3}-5 x^{2}+6 x}=\frac{\left(x^{3}-5 x^{2}+6 x\right)+5 x^{2}-6 x+1}{x^{3}-5 x^{2}+6 x}=1+\frac{5 x^{2}-6 x+1}{x^{3}-5 x^{2}+6 x}
$$

Now we can use the partial fraction decomposition

$$
=1+\frac{5 x^{2}-6 x+1}{x(x-2)(x-3)}=1+\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x-3}
$$

Let us multiply both sides with the denominator

$$
5 x^{2}-6 x+1=A(x-2)(x-3)+B x(x-3)+C x(x-2)
$$

Let us set $x=0, x=2$ and $x=3$. We obtain

$$
\begin{gathered}
1=6 A \Longrightarrow A=\frac{1}{6} \\
9=-2 B \Longrightarrow B=-\frac{9}{2} \\
45-18+1=3 C \Longrightarrow C=\frac{28}{3}
\end{gathered}
$$

Hence

$$
\int \frac{x^{3}+1}{x^{3}-5 x^{2}+6 x} d x=\int\left(1+\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x-3}\right) d x \stackrel{C}{=} x+\frac{1}{6} \ln |x|-\frac{9}{2} \ln |x-2|+\frac{28}{3} \ln |x-3|
$$

4. $f(x)=\frac{x^{4}}{x^{4}+5 x^{2}+4}$

## Solution:

We have

$$
\frac{x^{4}}{x^{4}+5 x^{2}+4}=\frac{\left(x^{4}+5 x^{2}+4\right)-5 x^{2}-4}{x^{4}+5 x^{2}+4}=1-\frac{5 x^{2}+4}{x^{4}+5 x^{2}+4}=1-\frac{5 x^{2}+4}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

The partial decomposition should be in the form

$$
\frac{5 x^{2}+4}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A+B x}{x^{2}+1}+\frac{C+D x}{x^{2}+4}
$$

However, since there is no $x$ (just $x^{2}$ ), we can consider

$$
\frac{5 x^{2}+4}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A}{x^{2}+1}+\frac{C}{x^{2}+4}
$$

It can be helpful to write $t$ instead of $x^{2}$. (This is not the integral substitution, only auxiliary calculation.)

$$
\frac{5 t+4}{(t+1)(t+4)}=\frac{A}{t+1}+\frac{C}{t+4}
$$

If we multiply both sides, we obtain

$$
5 t+4=A(t+4)+C(t+1)
$$

Let us set $t=-4$ and $t=-1$. Then we get

$$
\begin{gathered}
-16=-3 C \Longrightarrow C=\frac{16}{3} \\
-1=3 A \Longrightarrow A=-\frac{1}{3}
\end{gathered}
$$

Together

$$
\frac{5 t+4}{(t+1)(t+4)}=-\frac{1}{3} \frac{1}{t+1}+\frac{16}{3} \frac{1}{t+4}
$$

and

$$
\frac{5 x^{2}+4}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=-\frac{1}{3} \frac{1}{x^{2}+1}+\frac{16}{3} \frac{1}{x^{2}+4}
$$

Now let us integrate

$$
\begin{gathered}
\int \frac{x^{4}}{x^{4}+5 x^{2}+4} d x=\int\left(1+\frac{1}{3} \frac{1}{x^{2}+1}-\frac{16}{3} \cdot \frac{1}{4} \frac{1}{(x / 2)^{2}+1}\right) d x \stackrel{C}{=} \\
\stackrel{C}{=} x+\frac{1}{3} \arctan x-\frac{4}{3} \cdot \frac{1}{1 / 2} \arctan \frac{x}{2}=x+\frac{1}{3} \arctan x-\frac{8}{3} \arctan \frac{x}{2}
\end{gathered}
$$

5. $f(x)=\frac{x^{2}+1}{(x+1)^{2}(x-1)}$

## Solution:

The partial fraction decomposion

$$
\frac{x^{2}+1}{(x+1)^{2}(x-1)}=\frac{A}{(x+1)^{2}}+\frac{B}{x+1}+\frac{C}{x-1}
$$

After multiplying by the denominator

$$
x^{2}+1=A(x-1)+B(x+1)(x-1)+C(x+1)^{2}
$$

Let us set $x=1$ and $x=-1$, then we have

$$
\begin{gathered}
2=4 C \Longrightarrow C=\frac{1}{2} \\
2=-2 A \Longrightarrow A=-1
\end{gathered}
$$

Let us set $x=0$ :

$$
1=-A-B+C \Longrightarrow B=-A+C-1=-(-1)+\frac{1}{2}-1=\frac{1}{2}
$$

Hence

$$
\begin{gathered}
\int \frac{x^{2}+1}{(x+1)^{2}(x-1)} d x=\int\left(\frac{-1}{(x+1)^{2}}+\frac{1}{2} \cdot \frac{1}{x+1}+\frac{1}{2} \cdot \frac{1}{x-1}\right) d x \stackrel{C}{=} \\
\stackrel{C}{=} \frac{1}{x+1}+\frac{1}{2} \ln |x+1|+\frac{1}{2} \ln |x-1|=\frac{1}{x+1}+\frac{1}{2} \ln \left|x^{2}-1\right|
\end{gathered}
$$

6. $f(x)=\frac{1}{x(1+x)\left(1+x+x^{2}\right)}$

Solution: Quadratic polynomial $x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$ has no real roots. Therefore we are looking for the partial fraction decomposion as

$$
\frac{1}{x(1+x)\left(1+x+x^{2}\right)}=\frac{A}{x}+\frac{B}{1+x}+\frac{C x+D}{x^{2}+x+1}
$$

Let us multiply by the denominator

$$
1=A(1+x)\left(1+x+x^{2}\right)+B x\left(1+x+x^{2}\right)+(C x+D) x(x+1)
$$

Setting $x=0$ we obtain $A=1$. Further, let $x=-1$, then $B=-1$. Setting $A$ and $B$ gives

$$
\begin{gathered}
1=(1+x)\left(1+x+x^{2}\right)-x\left(1+x+x^{2}\right)+(C x+D) x(x+1) \\
1=1+x+x^{2}+C x^{3}+C x^{2}+\mathrm{d} x^{2}+\mathrm{d} x
\end{gathered}
$$

which implies $D=-1$ and $C=0$. Thus

$$
\frac{1}{x(1+x)\left(1+x+x^{2}\right)}=\frac{1}{x}-\frac{1}{1+x}-\frac{1}{x^{2}+x+1}
$$

Let us integrate

$$
\begin{aligned}
& \int \frac{1}{x(1+x)\left(1+x+x^{2}\right)} \mathrm{d} x=\ln |x|-\ln |1+x|-\int \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} \mathrm{~d} x= \\
& \quad \stackrel{C}{=} \ln \left|\frac{x}{1+x}\right|-\sqrt{\frac{4}{3}} \arctan \frac{x+\frac{1}{2}}{\sqrt{\frac{3}{4}}}=\ln \left|\frac{x}{1+x}\right|-\frac{2}{\sqrt{3}} \arctan \frac{2 x+1}{\sqrt{3}}
\end{aligned}
$$

7. $f(x)=\left(\frac{x}{x^{2}-3 x+2}\right)^{2}$

## Solution:

At first we need to decompose the denominator

$$
x^{2}-3 x+2=(x-1)(x-2)
$$

Therefore we are looking for the decomposition of

$$
\frac{x^{2}}{(x-1)^{2}(x-2)^{2}}
$$

It is in the form of

$$
\frac{x^{2}}{(x-1)^{2}(x-2)^{2}}=\frac{A}{(x-1)^{2}}+\frac{B}{x-1}+\frac{C}{(x-2)^{2}}+\frac{D}{x-2}
$$

Let us multiply both sides

$$
x^{2}=A(x-2)^{2}+B(x-1)(x-2)^{2}+C(x-1)^{2}+D(x-2)(x-1)^{2}
$$

and set $x=1$ and $x=2$. We obtain

$$
1=A, \quad 4=C
$$

Further, let us set $x=0$ and $x=3$. We get

$$
\begin{aligned}
& 0=4 A-4 B+C-2 D=4-4 B+4-2 D \Longrightarrow-8=-4 B-2 D \\
& 9=A+2 B+4 C+4 D=1+2 B+16+4 D \Longrightarrow-8=2 B+4 D
\end{aligned}
$$

It gives $D=-4$ and $B=4$.
Hence

$$
\int\left(\frac{x}{x^{2}-3 x+2}\right)^{2} \mathrm{~d} x=\int\left(\frac{1}{(x-1)^{2}}+\frac{4}{x-1}+\frac{4}{(x-2)^{2}}-\frac{4}{x-2}\right) \mathrm{d} x \stackrel{C}{=}
$$

$$
\begin{gathered}
\stackrel{C}{=}-\frac{1}{x-1}+4 \ln |x-1|-\frac{4}{x-2}-4 \ln |x-2|=-\frac{x-2+4(x-1)}{(x-1)(x-2)}+4 \ln \left|\frac{x-1}{x-2}\right|= \\
-\frac{5 x-6}{x^{2}-3 x+2}+4 \ln \left|\frac{x-1}{x-2}\right|
\end{gathered}
$$

8. $f(x)=\frac{1}{x^{3}+1}$

## Solution:

It holds $x^{3}+1=(x+1)\left(x^{2}-x+1\right)=(x+1)\left(\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}\right)$. The second bracket has no real roots, hence we are looking for

$$
\frac{1}{x^{3}+1}=\frac{A}{x+1}+\frac{B x+C}{x^{2}-x+1}
$$

After multiplying

$$
1=A\left(x^{2}-x+1\right)+(B x+C)(x+1)
$$

set $x=-1$, then we have $A=\frac{1}{3}$. It gives

$$
1=\frac{1}{3}\left(x^{2}-x+1\right)+B x^{2}+B x+C x+C
$$

which implies $C=\frac{2}{3}$ (the constants) and $B=-\frac{1}{3}$ (coefficients with $x^{2}$ ). Together

$$
\frac{1}{x^{3}+1}=\frac{1}{3} \frac{1}{x+1}-\frac{1}{3} \frac{x-2}{x^{2}-x+1}
$$

Integration

$$
\begin{gathered}
\int \frac{1}{3} \frac{1}{x+1} \mathrm{~d} x \stackrel{C}{=} \frac{1}{3} \ln |x+1| \\
\int \frac{1}{3} \frac{x-2}{x^{2}-x+1} \mathrm{~d} x=\int \frac{1}{6} \frac{2 x-1}{x^{2}-x+1} \mathrm{~d} x-\int \frac{1}{2} \frac{1}{x^{2}-x+1} \mathrm{~d} x \stackrel{C}{=} \\
\stackrel{C}{=} \frac{1}{6} \ln \left(x^{2}-x+1\right)-\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}}
\end{gathered}
$$

Finally

$$
\int \frac{1}{x^{3}+1} \mathrm{~d} x \stackrel{C}{=} \frac{1}{3} \ln |x+1|-\frac{1}{6} \ln \left(x^{2}-x+1\right)+\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}}
$$

