26th lesson

https://www2.karlin.mff.cuni.cz/~kuncova/en/teaching.php.
kuncova@karlin.mff.cuni.cz
Theorem 1 (Area between curves). Let f and g be continuous functions such that $f(x) \geq g(x)$ at $[a, b]$. Then the area between the curves f and g from a to b is

$$
A=\int_{a}^{b} f(x)-g(x) \mathrm{d} x
$$

Exercise 1. Find the are between the curves $y=x(3-x)$ and $y=x$.
Exercise 2. Find the are between the curves $y=\sqrt{x}, y=x-2$ and the x-axis.
Theorem 2 (Volume of a solid). Let f be continuous and nonnegative on $[a, b]$.
Let us define A as a region between the function f and the x-axis between points a and b.

Then the volume of the solid of revolution formed by revolving A around the x-axis is

$$
V=\pi \int_{a}^{b} f^{2}(x) \mathrm{d} x
$$

Further, let $f^{\prime}(x)$ be continuous. Then the surface area of the solid of revolution is

$$
S=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x
$$

Exercise 3. Find the volume of solid which is generated by the area under the function $y=e^{-x}$ on the interval $[0,1]$.

Exercise 4. Find the volume of solid which is generated by the area between the functions $y=x^{2}$ and $y=x$ revolving around the x-axis. (The solid has a hole inside.)

Exercise 5. Find the surface area of a solid which is generated by the function $y=\frac{x^{3}}{3}$ for $1 \leq x \leq 2$ revolving around the x-axis.

Exercise 6. Find the surface area of a solid which is generated by the function $y=$ $\sqrt{9-x^{2}}$ for $1 \leq x \leq 3$ revolving around the x-axis.

Theorem 3 (Length of a smooth curve). Let f is a function such that f^{\prime} is continuous on $[a, b]$. Then the length of the curve is

$$
l=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Exercise 7. Find the length of the curve $y=\sqrt{x}-\frac{\sqrt{x^{3}}}{3}$ between $x=0$ and $x=2$.

Exercise 8. Find the length of the curve $y=x^{2}-4|x|-x$ between $x=-4$ and $x=4$.
(Hint: check, if the derivative exists.)
Fact:

$$
\int \sqrt{1+t^{2}} \mathrm{~d} t=\frac{1}{2} t \sqrt{t^{2}+1}+\frac{1}{2} \ln \left(\sqrt{t^{2}+1}+t\right)
$$

Remarks 4 (Exponential growth and decay). The exponential growth follows the mathematical model

$$
y=k_{0} e^{k t}, k>0 .
$$

The exponential decay follows the mathematical model

$$
y=k_{0} e^{k t}, k<0 .
$$

Exercise 9. Consider the population of bacteria, which grows according to the formula $200 e^{0.02 t}, t$ is time in minutes.

1. How many bacteria we have after 5 hours?
2. When the population reach 100000 bacteria?

Exercise 10. Let us consider the carbon-14. Its halflife is 5730 years.

1. Now we have 100 g of carbon-14. How much of the carbon do we have in 50 years?
2. How old is an artifact, if it originally contained 100 g of carbon, but now it contains only 10 g ?

