
Solution

Sketching both curves on the same axes, we can see by setting y = 0 that the curve y = x(3−x)
cuts the x-axis at x = 0 and x = 3. Furthermore, the coefficient of x2 is negative and so we
have an inverted U-shape curve. The line y = x goes through the origin and meets the curve
y = x(3 − x) at the point P . It is this point that we need to find first of all.

P
y  =  x(3 − x)

y  =  x

At P the y co-ordinates of both curves are equal. Hence:

x(3 − x) = x

3x − x2 = x

2x − x2 = 0

x(2 − x) = 0

so that either x = 0, the origin, or else x = 2, the x co-ordinate of the point P .

We now need to find the shaded area in the diagram. To do this we need the area under the
upper curve, the graph of y = x(3 − x), between the x-axis and the ordinates x = 0 and x = 2.
Then we need to subtract from this the area under the lower curve, the line y = x, and between
the x-axis and the ordinates x = 0 and x = 2.

The area under the curve is
�

2

0

y dx =

�

2

0

x(3 − x)dx

=

�

2

0

(3x − x2)dx

=

�

3x2

2
−

x3

3

�2

0

= [6 − 8

3
] − [0]

= 31

3
,

and the area under the straight line is
�

2

0

y dx =

�

2

0

x dx

=

�

x2

2

�2

0

= [2] − [0]

= 2 .

Thus the shaded area is 31

3
− 2 = 1 1

3
units of area.
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Since the parabola lies above the line on ��1, 2�, the area integrand is 2 � x2 � ��x�.

A � �2

�1

�2 � x2 ���x�� dx

� [2x � �
x
3

3

� � �
x
2

2

� ]
2

�1

� �
9
2

� units squared

Now try Exercise 5.

EXAMPLE 3 Using a Calculator

Find the area of the region enclosed by the graphs of y � 2 cos x and y � x2 � 1.

SOLUTION

The region is shown in Figure 7.9.

Using a calculator, we solve the equation

2 cos x � x2 � 1

to find the x-coordinates of the points where the curves intersect. These are the limits of
integration. The solutions are x � �1.265423706. We store the negative value as A and
the positive value as B. The area is 

NINT �2 cos x � �x2 � 1�, x, A, B� � 4.994907788.

This is the final calculation, so we are now free to round. The area is about 4.99.

Now try Exercise 7.

Boundaries with Changing Functions
If a boundary of a region is defined by more than one function, we can partition the region
into subregions that correspond to the function changes and proceed as usual.

EXAMPLE 4 Finding Area Using Subregions

Find the area of the region R in the first quadrant that is bounded above by y � 	x
 and
below by the x-axis and the line  y � x � 2.

SOLUTION

The region is shown in Figure 7.10.

[–3, 3] by [–2, 3]

y1 = 2 cos x
y2 = x2 – 1

x

y

0

2

2

(4, 2)

y � x � 2

y � 0 4

1

y � ⎯√⎯x
2

B

A

Area �      √⎯⎯x � x � 2 dx
⌠
⎮
⌡

4
⎡
⎣ ⎡

⎣

Area �    √⎯⎯x dx
⌠
⎮
⌡

2

0

Figure 7.9 The region in Example 3.

Finding Intersections by 
Calculator

The coordinates of the points of inter-
section of two curves are sometimes
needed for other calculations. To take
advantage of the accuracy provided by
calculators, use them to solve for the
values and store the ones you want.

Figure 7.10 Region R split into subregions A and B. (Example 4) continued
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While it appears that no single integral can give the area of R (the bottom boundary is
defined by two different curves), we can split the region at x � 2 into two regions A and
B. The area of R can be found as the sum of the areas of A and B.

Area of R � �2

0

	x
 dx � �4

2

�	x
 � �x � 2�� dx

area of A area of B

� �
2
3

� x3�2] 2

0

� [ �
2
3

� x3�2 � �
x
2

2

� � 2x] 4

2

� �
1
3
0
� units squared

Now try Exercise 9.

Integrating with Respect to y
Sometimes the boundaries of a region are more easily described by functions of y than by
functions of x. We can use approximating rectangles that are horizontal rather than vertical
and the resulting basic formula has y in place of x.

x

A = ∫ [f (y) – g(y)]dy.
d

c

y

c

0

For regions like these

use this formula

x � f(y)

d

x

y

c

0

d

x

y

c

0

d

x � g(y)

x � f (y)

x � g(y)

x � f (y)x � g(y)

EXAMPLE 5 Integrating with Respect to y

Find the area of the region in Example 4 by integrating with respect to y.

SOLUTION

We remarked in solving Example 4 that “it appears that no single integral can give the
area of R,” but notice how appearances change when we think of our rectangles being
summed over y. The interval of integration is �0, 2�, and the rectangles run between 
the same two curves on the entire interval. There is no need to split the region 
(Figure 7.11).

We need to solve for x in terms of y in both equations:

y � x � 2 becomes x � y � 2,

y � 	x
 becomes x � y2, y � 0.

continued

x

y

0

1

2 4

2

y � 0

x � y � 2

x � y 2
(4, 2)

�y

(g(y), y)

( f (y), y)

f (y) � g(y)

Figure 7.11 It takes two integrations to
find the area of this region if we integrate
with respect to x. It takes only one if we
integrate with respect to y. (Example 5)
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Example 3 
Find the volume of the solid formed by rotating the area under ( ) xexf −=  on the interval [0,1] 
about the x-axis. 
 
This is the region pictured in the earlier example.  We substitute 
in the function and bounds into the formula we derived to set up 
the definite integral. 

Volume = ( )∫ −1

0

2dxe xπ  

 
Using exponent rules, the integrand can be simplified.  The 
constant π can be pulled out of the integral.   

∫ −1

0

2 dxe xπ  

 
Using the substitution u = -2x, we can integrate this function. 

358.1
2

1

2

1

2

1 )0(2)1(21

0

1

0

22 ≈





−−






−=

−= −−−−∫ eeedxe xx ππππ cubic units 

 
 

Average Value 
 
We know the average of n numbers, a1, a2, . . . , an , is their sum divided by n.  But what if we need 

to find the average temperature over a day’s time --  there are too many possible temperatures to add 
them up.  This is a job for the definite integral.   
 
 The average value of a function f(x) on the interval [a, b] is given by 

   ( )∫−

b

a
dxxf

ab

1
 

  
 
 
The average value of a positive f  has a nice 
geometric interpretation.  Imagine that the area 
under  f  (Fig. a)  is a liquid that can "leak" 
through the graph to form a rectangle with the 
same area  (Fig. b).  
 
If the height of the rectangle is  H, then the area 
of the rectangle is ( )abH −⋅  .  We know the area of the rectangle is the same as the area under  

f  so ( ) ( )∫=−⋅
b

a
dxxfabH .  Then ( )∫−

=
b

a
dxxf

ab
H

1
, the average value of  f  on  [a,b]. 

The average value of a positive function  f  is the height  H  of the rectangle whose area is the 
same as the area under  f. 

0 1 

1 
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and the volume of a thin “slab” is then

(1− x2
i )
√
3(1− x2

i )Δx.

Thus the total volume is
� 1

−1

√
3(1− x2)2 dx =

16

15

√
3.

One easy way to get “nice” cross-sections is by rotating a plane figure around a line.

For example, in figure 9.3.3 we see a plane region under a curve and between two vertical

lines; then the result of rotating this around the x-axis, and a typical circular cross-section.

...................................................................................................................
............
...........
...........
..........
...........
...........
..............
...................................................

Figure 9.3.3 A solid of rotation. (AP)

Of course a real “slice” of this figure will not have straight sides, but we can approxi-

mate the volume of the slice by a cylinder or disk with circular top and bottom and straight

sides; the volume of this disk will have the form πr2Δx. As long as we can write r in terms

of x we can compute the volume by an integral.

EXAMPLE 9.3.3 Find the volume of a right circular cone with base radius 10 and

height 20. (A right circular cone is one with a circular base and with the tip of the cone

directly over the center of the base.) We can view this cone as produced by the rotation

of the line y = x/2 rotated about the x-axis, as indicated in figure 9.3.4.

At a particular point on the x-axis, say xi, the radius of the resulting cone is the

y-coordinate of the corresponding point on the line, namely yi = xi/2. Thus the total

volume is approximately
n−1
�

i=0

π(xi/2)
2 dx

and the exact volume is
� 20

0

π
x2

4
dx =

π

4

203

3
=

2000π

3
.
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0 20

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..........

Figure 9.3.4 A region that generates a cone; approximating the volume by circular disks.
(AP)

Note that we can instead do the calculation with a generic height and radius:

� h

0

π
r2

h2
x2 dx =

πr2

h2

h3

3
=

πr2h

3
,

giving us the usual formula for the volume of a cone.

EXAMPLE 9.3.4 Find the volume of the object generated when the area between

y = x2 and y = x is rotated around the x-axis. This solid has a “hole” in the middle; we

can compute the volume by subtracting the volume of the hole from the volume enclosed

by the outer surface of the solid. In figure 9.3.5 we show the region that is rotated, the

resulting solid with the front half cut away, the cone that forms the outer surface, the

horn-shaped hole, and a cross-section perpendicular to the x-axis.

We have already computed the volume of a cone; in this case it is π/3. At a particular

value of x, say xi, the cross-section of the horn is a circle with radius x2
i , so the volume of

the horn is
� 1

0

π(x2)2 dx =

� 1

0

πx4 dx = π
1

5
,

so the desired volume is π/3− π/5 = 2π/15.

As with the area between curves, there is an alternate approach that computes the

desired volume “all at once” by approximating the volume of the actual solid. We can

approximate the volume of a slice of the solid with a washer-shaped volume, as indicated

in figure 9.3.5.

The volume of such a washer is the area of the face times the thickness. The thickness,

as usual, is Δx, while the area of the face is the area of the outer circle minus the area of
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Figure 9.3.5 Solid with a hole, showing the outer cone and the shape to be removed to
form the hole. (AP)

the inner circle, say πR2 − πr2. In the present example, at a particular xi, the radius R is

xi and r is x2
i . Hence, the whole volume is

� 1

0

πx2 − πx4 dx = π

�

x3

3
− x5

5

�
�

�

�

�

1

0

= π

�

1

3
− 1

5

�

=
2π

15
.

Of course, what we have done here is exactly the same calculation as before, except we

have in effect recomputed the volume of the outer cone.

Suppose the region between f(x) = x + 1 and g(x) = (x − 1)2 is rotated around the

y-axis; see figure 9.3.6. It is possible, but inconvenient, to compute the volume of the

resulting solid by the method we have used so far. The problem is that there are two

“kinds” of typical rectangles: those that go from the line to the parabola and those that

touch the parabola on both ends. To compute the volume using this approach, we need to
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break the problem into two parts and compute two integrals:

π

� 1

0

(1 +
√
y)2 − (1−√

y)2 dy + π

� 4

1

(1 +
√
y)2 − (y − 1)2 dy =

8

3
π +

65

6
π =

27

2
π.

If instead we consider a typical vertical rectangle, but still rotate around the y-axis, we

get a thin “shell” instead of a thin “washer”. If we add up the volume of such thin shells

we will get an approximation to the true volume. What is the volume of such a shell?

Consider the shell at xi. Imagine that we cut the shell vertically in one place and “unroll”

it into a thin, flat sheet. This sheet will be almost a rectangular prism that is Δx thick,

f(xi) − g(xi) tall, and 2πxi wide (namely, the circumference of the shell before it was

unrolled). The volume will then be approximately the volume of a rectangular prism with

these dimensions: 2πxi(f(xi)− g(xi))Δx. If we add these up and take the limit as usual,

we get the integral
� 3

0

2πx(f(x)− g(x)) dx =

� 3

0

2πx(x+ 1− (x− 1)2) dx =
27

2
π.

Not only does this accomplish the task with only one integral, the integral is somewhat

easier than those in the previous calculation. Things are not always so neat, but it is

often the case that one of the two methods will be simpler than the other, so it is worth

considering both before starting to do calculations.
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Figure 9.3.6 Computing volumes with “shells”. (AP)

EXAMPLE 9.3.5 Suppose the area under y = −x2 + 1 between x = 0 and x = 1 is

rotated around the x-axis. Find the volume by both methods.

Disk method:

� 1

0

π(1− x2)2 dx =
8

15
π.

Shell method:

� 1

0

2πy
�

1− y dy =
8

15
π.



solid is

V (b) =

� b

1

A(x) dx

=

� b

1

π
1

x6
dx

= π

� −1

5x5

�b

1

= π

� −1

5b5 + 1
5

�

= π

�
1

5
− 1

5b5

�
.

As b goes to ∞, the term 1
5b5 goes to zero rather quickly, so the function V (b) goes to π

5 as b → ∞.

8. Write down an integral which will compute the length of the part of the curve y = ln(cosx) from x = 0
to x = π/4. Don’t worry about evaluating this integral.

Answer: I plan to use the arc length integral, which says that the length of a curve y = f(x) from
x = a to x = b is given by

� b

a

�
1 +

�
dy

dx

�2

dx,

so I need to figure out dy
dx . Using the Chain Rule,

dy

dx
=

d

dx

�
ln(cosx)

�

=
1

cosx

d

dx
(cosx)

=
1

cosx
(− sinx)

=
− sinx

cosx
.

Therefore, the length of the curve from x = 0 to x = π/4 is given by the integral

� π/4

0

�
1 +

�− sinx

cosx

�2

dx =

� π/4

0

�
1 + tan2 x dx =

� π/4

0

secx dx.

At this point, we haven’t yet learned how to find the antiderivative of secx, so this is as far as we can
go.

9. Calculate the surface area of the surface obtained by revolving the curve y = x3

3 around the x-axis for
1 ≤ x ≤ 2.

I plan to use the fact that the surface area of a surface given by revolving the graph of y = f(x) around
the x-axis from x = a to x = b is given by

� b

a

2πf(x)

�
1 + (f �(x))2 dx.

7



Therefore, it’s important to know f �(x) (or, saying the same thing, dy
dx ). But of course f �(x) = x2, so

the surface area between x = 1 and x = 2 will be
� 2

1

2π
x3

3

�
1 + (x2)

2
dx =

� 2

1

2π
x3

3

�
1 + x4 dx.

Let u = 1 + x4. Then du = 4x3 dx and we can write the above integral as

2π

3
· 1
4

� 2

1

4x3
�
1 + x4 dx =

π

6

� 17

2

√
u du

=
π

6

�
2

3
u3/2

�17

2

=
π

3

�
17
√
17

3
− 2

√
2

3

�

=
π

9

�
17

√
17− 2

√
2
�

10. Calculate the surface area of the surface obtained by revolving the curve y =
√
9− x2 around the

x-axis for 1 ≤ x ≤ 3.

Answer: Again, I intend to use the surface area integral, so I need to know dy
dx :

dy

dx
=

d

dx

��
9− x2

�

=
d

dx

�
(9− x2)1/2

�

=
1

2
(9− x2)−1/2 · d

dx

�
9− x2

�

=
1

2
√
9− x2

· (−2x)

=
−x√
9− x2

.

Therefore, the surface area of the surface is given by

� 3

1

2π
�
9− x2

�
1 +

� −x√
9− x2

�2

dx = 2π

� 3

1

�
9− x2

�
1 +

x2

9− x2
dx

= 2π

� 3

1

�
9− x2

�
9− x2

9− x2
+

x2

9− x2
dx

= 2π

� 3

1

�
9− x2

�
9

9− x2
dx

= 2π

� 3

1

�
9− x2

3√
9− x2

dx

= 2π

� 3

1

3 dx

= 2π
�
3x

�3
1

= 2π(9− 3)

= 12π

8



11. Find the area between y = x
x2−1 and the x-axis for 2 ≤ x ≤ 4.

1 2 3 4

Answer: Clearly, we just need to integrate x
x2−1 − 0 = x

x2−1 from x = 2 to x = 4 to find this area; in
symbols: � 4

2

x

x2 − 1
dx.

To compute this integral, I will use u-substitution. Let u = x2−1. Then du = 2x dx, and so the above
integral is equal to

1

2

� 4

2

2x

x2 − 1
=

1

2

� 15

3

du

u

=
1

2

�
lnu

�15
3

=
1

2
[ln 15− ln 3]

=
1

2
ln 5

= ln
√
5.

12. What is the length of the curve y =
√
x− x3/2

3 between x = 0 and x = 2?

Answer: Once again, I plan to use the arc length integral, so I need to know dy
dx :

dy

dx
=

d

dx

�√
x− x3/2

3

�

=
1

2
√
x
− 1

2

√
x.

9



Therefore, the length of the curve from x = 0 to x = 2 is given by

� 2

0

�
1 +

�
1

2
√
x
−

√
x

2

�2

dx =

� 2

0

�
1 +

�
1

4x
− 1

2
+

x

4

�
dx

=

� 2

0

�
1

4x
+

1

2
+

x

4
dx

=

� 2

0

��
1

2
√
x
+

√
x

2

�2

dx

=

� 2

0

�
1

2
√
x
+

√
x

2

�
dx

=

�√
x+

x3/2

3

�2

0

=
√
2 +

2
√
2

3

=
5
√
2

3
.

13. What is the volume obtained by rotating the region between y = 1√
x2+4

and the x-axis for 0 ≤ x ≤ 3

around the y-axis?

0 1 2 3

Answer: Since the axis of rotation is vertical, washers will be horizontal and cylindrical shells will
have vertical sides. Clearly, finding the area of washers will be a problem, since some will have outer
edge given by the line x = 3 and some will have outer edge given by the curve. Instead, I will use
cylindrical shells. Since the shells change as x changes, I will be expressing everything in terms of x.

For a given x, the corresponding shell has radius x and height given by the distance from the curve to
the x-axis, which is just 1√

x2+4
− 0 = 1√

x2+4
. Therefore, the volume of the solid will be

� 3

0

2πx

�
1√

x2 + 4

�
dx = π

� 3

0

2x dx√
x2 + 4

.

10
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What happens if you fail to notice that dy�dx is undefined at x � 0 and ask your calcu-
lator to compute

NINT (�1 � ( �1�3� x�2�3 )2

, x, �8, 8)?

This actually depends on your calculator. If, in the process of its calculations, it tries to
evaluate the function at x � 0, then some sort of domain error will result. If it tries to find
convergent Riemann sums near x � 0, it might get into a long, futile loop of computa-
tions that you will have to interrupt. Or it might actually produce an answer—in which
case you hope it would be sufficiently bizarre for you to realize that it should not be
trusted.

EXAMPLE 4 Getting Around a Corner

Find the length of the curve  y � x2 � 4�x� � x from  x � �4  to  x � 4.

SOLUTION

We should always be alert for abrupt slope changes when absolute value is involved. We
graph the function to check (Figure 7.38).

There is clearly a corner at  x � 0  where neither dy�dx nor dx�dy can exist. To find the
length, we split the curve at  x � 0  to write the function without absolute values:

x2 � 3x if x � 0,
x2 � 4�x� � x � {x2 � 5x if x � 0.

Then,

L � �0

�4

	1
 �
 �
2
x
�
 3
�2
 dx � �4

0

	1
 �
 �
2
x
�
 5
�2
 dx

� 19.56. By NINT

Now try Exercise 27.

Finally, cusps are handled the same way corners are: split the curve into smooth pieces
and add the lengths of those pieces.

Quick Review 7.4 (For help, go to Sections 1.3 and 3.2.)

In Exercises 1–5, simplify the function.

1. 	1
 �
 2
x
�
 x
2
 on �1, 5� x � 1

2. 1� �� x� �� �
x�4

2

�� on ��3, �1� �
2 �

2
x

�

3. 	1
 �
 �
ta
n
 x
�2
 on �0, p�3� sec x

4. 	1
 �
 �
x
�4
 �
 1
�x
�2
 on �4, 12� �
x2

4
�

x
4

�

5. 	1
 �
 c
o
s
2
x
 on �0, p�2� 	2
 cos x

In Exercises 6–10, identify all values of x for which the function fails
to be differentiable.

6. f �x� � �x � 4 � 4

7. f �x� � 5x2�3 0

8. f �x� � 	5 x
�
 3
 �3

9. f �x� � 	x
2
�
 4
x
�
 4
 2

10. f �x� � 1 � 	3 si
n
 x
 kp, k any integer

[–5, 5] by [–7, 5]

Figure 7.38 The graph of 

y � x2 � 4�x � � x, �4 � x � 4,

has a corner at x � 0 where neither dy/dx
nor dx/dy exists. We find the lengths of the
two smooth pieces and add them together.
(Example 4)
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Time(min) Population Size (no. of bacteria)

110 1805

120 2205

Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world
population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential
growth models, we must always be careful to interpret the function values in the context of the phenomenon we are modeling.

Consider the population of bacteria described earlier. This population grows according to the function 
where t is measured in minutes. How many bacteria are present in the population after  hours (  minutes)? When does
the population reach  bacteria?

Solution

We have  Then

There are  bacteria in the population after  hours.

To find when the population reaches  bacteria, we solve the equation

The population reaches  bacteria after  minutes.

Consider a population of bacteria that grows according to the function , where  is measured in minutes.
How many bacteria are present in the population after 4 hours? When does the population reach  million bacteria?

Answer

Use the process from the previous example.

Answer

There are  bacteria in the population after  hours. The population reaches  million bacteria after 
 minutes.

Let’s now turn our attention to a financial application: compound interest. Interest that is not compounded is called simple
interest. Simple interest is paid once, at the end of the specified time period (usually  year). So, if we put  in a savings
account earning  simple interest per year, then at the end of the year we have

Compound interest is paid multiple times per year, depending on the compounding period. Therefore, if the bank compounds
the interest every  months, it credits half of the year’s interest to the account after months. During the second half of the
year, the account earns interest not only on the initial , but also on the interest earned during the first half of the year.
Mathematically speaking, at the end of the year, we have

Example : Population Growth4.9.1

f(t) = 200 ,e0.02t

5 300

100, 000

f(t) = 200 .e0.02t

f(300) = 200 ≈ 80, 686.e0.02(300)

80, 686 5

100, 000

100, 000

500

ln500

t

= 200e0.02t

= e0.02t

= 0.02t

= ≈ 310.73.
ln500

0.02

100, 000 310.73

Exercise 4.9.1

f(t) = 500e0.05t t

100

81, 377, 396 4 100

244.12

1 $1000

2

1000(1+0.02) = $1020. (4.9.10)

6 6

$1000
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The coffee is too cold to be served about  minutes after it is poured.

Suppose the room is warmer  and, after  minutes, the coffee has cooled only to  When is the coffee first
cool enough to serve? When is the coffee be too cold to serve? Round answers to the nearest half minute.

Hint

Use the process from the previous example.

Answer

The coffee is first cool enough to serve about  minutes after it is poured. The coffee is too cold to serve about 
minutes after it is poured.

Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a
constant half-life. To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we
have

.

Note: This is the same expression we came up with for doubling time.

If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is given
by

One of the most common applications of an exponential decay model is carbon dating. Carbon-14 decays (emits a
radioactive particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon was originally
present in an object and how much carbon remains, we can determine the age of the object. The half-life of carbon-14 is
approximately 5730 years—meaning, after that many years, half the material has converted from the original carbon-14 to

155

85

17

26

ln17−ln26

t

= 130 +70e(ln 11−ln 13/2)t

= 130e(ln 11−ln 13)t

= e(ln 11−ln 13)t

=( ) t
ln11−ln13

2

=
2(ln17−ln26)

ln11−ln13

≈ 5.09.

5

Exercise 4.9.4

(75°F ) 2 185°F .

3.5 7

=
y0

2
y0e

−kt

=
1

2
e−kt

−ln2 =−kt

t =
ln2

k

Definition: Half-Life

Half-life = .
ln2

k
(4.9.31)

Example : Radiocarbon Dating4.9.5
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the new nonradioactive nitrogen-14. If we have 100 g carbon-14 today, how much is left in 50 years? If an artifact that
originally contained 100 g of carbon now contains 10 g of carbon, how old is it? Round the answer to the nearest hundred
years.

Solution

We have

So, the model says

In  years, we have

.

Therefore, in  years,  g of carbon-14 remains.

To determine the age of the artifact, we must solve

The artifact is about  years old.

If we have 100 g of carbon-14 , how much is left after. years? If an artifact that originally contained 100 g of carbon now
contains 20 g of carbon, how old is it? Round the answer to the nearest hundred years.

Suppose the rate of growth of bacteria in a Petri dish is given by , where t is given in hours and  is given in
thousands of bacteria per hour. If a culture starts with 10,000 bacteria, find a function  that gives the number of
bacteria in the Petri dish at any time t. How many bacteria are in the dish after 2 hours?

Solution

We have

Then, at  we have  so  and we get

At time , we have

5730 =
ln2

k
(4.9.32)

k= .
ln2

5730
(4.9.33)

y = 100 .e−(ln 2/5730)t (4.9.34)

50

y = 100 ≈ 99.40e−(ln 2/5730)(50)

50 99.40

10
1

10
t

= 100e−(ln 2/5730)t

= e−(ln 2/5730)t

≈ 19035.

(4.9.35)

(4.9.36)

(4.9.37)

19, 000

Exercise : Carbon-14 Decay4.9.5

Example : Growth of Bacteria in a Culture4.9.2

q(t) = 3t q(t)

Q(t)

Q(t) = ∫ dt = +C.3t
3t

ln3
(4.9.38)

t = 0 Q(0) = 10 = +C,
1

ln3
C ≈ 9.090

Q(t) = +9.090.
3t

ln3
(4.9.39)

t = 2

Q(2) = +9.090
32

ln3
(4.9.40)

= 17.282. (4.9.41)


