
Exponential functions display the manic
energies of uncontrolled growth. By

contrast, trigonometric functions repeat
their behavior. Do they embody in their
regularity some basic rhythm of the
universe? The cycles of periodic phenomena
provide events that we can comfortably
count on. When will the moon look just as
it does at this moment? When can I count
on 13.5 hours of daylight? When will my
breathing be exactly as it is right now?
Models with trigonometric functions
embrace the periodic rhythms of our
world. Equations containing trigonometric
functions are used to answer questions
about these models.

Trigonometric Equations and Their Solutions
A trigonometric equation is an equation that contains a trigonometric expression
with a variable, such as We have seen that some trigonometric equations are
identities, such as These equations are true for every value of
the variable for which the expressions are defined. In this section, we consider
trigonometric equations that are true for only some values of the variable. The
values that satisfy such an equation are its solutions. (There are trigonometric
equations that have no solution.)

An example of a trigonometric equation is

A solution of this equation is because By contrast, is not a solution 
because 

Is the only solution of The answer is no. Because of the periodic
nature of the sine function, there are infinitely many values of for which 
Figure 5.7 shows five of the solutions, including for Notice that
the of the points where the graph of intersects the line

are the solutions of the equation sin x = 1
2 .y = 1

2

y = sin xx-coordinates
-  
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2 .p
6 ,

sin x = 1
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sin x = 1
2?p
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sin p = 0 Z 1
2 .

psin 
p
6 = 1

2 .p
6

sin x = 1
2 .

sin2 x + cos2 x = 1.
sin x.

Objectives

� Find all solutions of a
trigonometric equation.

� Solve equations with
multiple angles.

� Solve trigonometric equations
quadratic in form.

� Use factoring to separate
different functions in
trigonometric equations.

� Use identities to solve
trigonometric equations.

� Use a calculator to solve
trigonometric equations.
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Figure 5.7 The equation 

has five solutions when is restricted to

the interval c -  
3p
2

, 
7p
2
d .x

sin x = 1
2

� Find all solutions of a
trigonometric equation.

How do we represent all solutions of Because the period of the sine
function is first find all solutions in The solutions are

The sine is positive in quadrants I and II.

x= and    x=p- = .
p

6
p

6
5p
6

30, 2p2.2p,
sin x = 1

2?
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Any multiple of can be added to these values and the sine is still Thus, all
solutions of are given by

where is any integer. By choosing any two integers, such as and we
can find some solutions of Thus, four of the solutions are determined as
follows:

sin x = 1
2 .

n = 1,n = 0n

x =
p

6
+ 2np or x =

5p
6

+ 2np,

sin x = 1
2

1
2 .2p

Let n = 1.

x= +2 � 1p
p

6

=
p

6

x= +2 � 1p

+2p +2p

5p
6

x=
5p
6

= =
p

6
12p

6
13p

6
=

12p
6

17p
6

+ + .=
5p
6

Let n = 0.

x= +2 � 0p
p

6

=
p

6

x= +2 � 0p
5p
6

=
5p
6

These four solutions are shown among the five solutions in Figure 5.7.

Equations Involving a Single Trigonometric Function
To solve an equation containing a single trigonometric function:

• Isolate the function on one side of the equation.

• Solve for the variable.

Finding All Solutions of a Trigonometric Equation

Solve the equation:

Solution The equation contains a single trigonometric function,

Step 1 Isolate the function on one side of the equation. We can solve for 
by collecting terms with on the left side and constant terms on the right side.

This is the given equation.

Subtract from both sides.

Simplify.

Add 2 to both sides.

Divide both sides by and solve
for 

Step 2 Solve for the variable. We must solve for in Because

the solutions of in are

Because the period of the sine function is the solutions of the equation are
given by

where is any integer.n

x =
7p
6

+ 2np and x =
11p

6
+ 2np,

2p,

The sine is negative
in quadrant IV.

x=2p- = .-
p

6
p

6
12p

6
=

11p
6

The sine is negative
in quadrant III.

x=p+ = +
p

6
p

6
6p
6

=
7p
6

30, 2p2sin x = -  
1
2

sin 
p

6
=

1
2

,

sin x = -  
1
2

.x

sin x.
-2 sin x = -  

1
2

 -2 sin x = 1

 -2 sin x - 2 = -1

5 sin x 3 sin x - 5 sin x - 2 = 5 sin x - 5 sin x - 1

 3 sin x - 2 = 5 sin x - 1

sin x
sin x

sin x.

3 sin x - 2 = 5 sin x - 1.

EXAMPLE 1



advantage of using the identities we developed in the previous sections.

General Strategy for solving trig equations

+2kπ [0, 2π)

Unit Circle

Example 7.45

Solving a Linear Trigonometric Equation Involving the Cosine Function

Find all possible exact solutions for the equation  cos θ = 1
2.

Solution

From the unit circle, we know that cosine is positive in QI and QIV. Cosine is an x value on the unit circle, so we
want the angles on the unit circle where x is 1/2. Let's find the the angles on the unit circle.
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cos θ = 1
2

     θ = π
3, 5π

3
These are the solutions in the interval  [0, 2π]. All possible solutions are given by

π
3 ± 2kπ  and  5π

3 ± 2kπ

where  k  is an integer.

Example 7.46

Solving a Linear Equation Involving the Sine Function

Find all possible exact solutions for the equation  sin t = 1
2.

Solution

First we want to solve in one full cycle. We know sine is positive in QI and QII. Since sine is a y value we want

the angles in QI and QII whose y values are 1
2 .
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Example 1 (Continued): 
 
 Add 2nπ to the values of x 
 

 x = 
4

π
 + 2nπ  and   x = 

7

4

π
 + 2nπ 

 

Example 2:  Find all of the solutions for the equation tan x = 3 . 
 
 Solution: 
 
 Identify the quadrants for the solutions on the interval [0, π) 
 
 Note:  On this problem we are using the interval [0, π) instead of [0, 2π) because  
  tangent has a period of π. 
 
 Tangent is positive in quadrants I  
 
 Solve for the variable 
 

 x = 
3

π
  

 
 Add nπ to the value of x 
 

 x = 
3

π
 + nπ   

 
Solving trigonometric equations with a multiple angle 
 
The trigonometric equations to be solved will not always have just �x� as the angle.  There will 

be times where you will have angles such as 3x or 
2

x
.  For equations like this, you will begin by 

solving the equation for all of the possible solutions by adding 2nπ or nπ (depending on the 
trigonometric function involved) to values.  You would then substitute values in for n starting at 
0 and continuing until all of the values within the specified interval have been found. 
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Any multiple of can be added to these values and the sine is still Thus, all
solutions of are given by

where is any integer. By choosing any two integers, such as and we
can find some solutions of Thus, four of the solutions are determined as
follows:
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These four solutions are shown among the five solutions in Figure 5.7.

Equations Involving a Single Trigonometric Function
To solve an equation containing a single trigonometric function:

• Isolate the function on one side of the equation.

• Solve for the variable.

Finding All Solutions of a Trigonometric Equation

Solve the equation:

Solution The equation contains a single trigonometric function,

Step 1 Isolate the function on one side of the equation. We can solve for 
by collecting terms with on the left side and constant terms on the right side.

This is the given equation.

Subtract from both sides.

Simplify.

Add 2 to both sides.

Divide both sides by and solve
for 

Step 2 Solve for the variable. We must solve for in Because

the solutions of in are

Because the period of the sine function is the solutions of the equation are
given by

where is any integer.n

x =
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 3 sin x - 2 = 5 sin x - 1
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sin x.

3 sin x - 2 = 5 sin x - 1.

EXAMPLE 1
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14.4 Solving Trigonometric Equations 855

Solving Trigonometric
Equations

SOLVING A TRIGONOMETRIC EQUATION

In Lesson 14.3 you verified trigonometric identities. In this lesson you will solve
trigonometric equations. To see the difference, consider the following equations:

sin2 x + cos2 x = 1 Equation 1

sin x = 1 Equation 2

Equation 1 is an identity because it is true for all real values of x. Equation 2,
however, is true only for some values of x. When you find these values, you are
solving the equation.

Solving a Trigonometric Equation

Solve 2 sin x º 1 = 0.

SOLUTION

First isolate sin x on one side of the equation.

2 sin x º 1 = 0 Write original equation.

2 sin x = 1 Add 1 to each side.

sin x = �
1
2� Divide each side by 2.

One solution of sin x = �
1
2� in the interval 0 ≤ x < 2π is x = sin–1 �

1
2� = �

π
6�. Another

such solution is x = π º �
π
6� = �

5
6
π
�.

Moreover, because y = sin x is a periodic function, there are infinitely many other
solutions. You can write the general solution as

x = �
π
6� + 2nπ or x = �56

π
� + 2nπ

where n is any integer. 

✓CHECK  You can check your answer graphically. Graph y = sin x and y = �
1
2� in the

same coordinate plane and find the points where the graphs intersect.

You can see that there are infinitely many such points.

E X A M P L E  1

GOAL 1

Solve a
trigonometric equation.

Solve real-life
trigonometric equations, 
such as an equation for the
number of hours of daylight 
in Prescott, Arizona, in
Example 6.

� To solve many types 
of real-life problems, such 
as finding the position of
the sun at sunrise in 
Ex. 58.

Why you should learn it

GOAL 2

GOAL 1

What you should learn

14.4
RE

AL LIFE

RE

AL LIFE

x

y

π
2

1

y � sin x

y � 1
2

Look Back  
For help with inverse
trigonometric functions,
see p. 792.

STUDENT HELP



Trigonometric Equations 
 
Just as we can have polynomial, rational, exponential, or logarithmic equation, for example, we 
can also have trigonometric equations that must be solved.  A trigonometric equation is one that 
contains a trigonometric function with a variable.  For example, sin x + 2 = 1 is an example of a 
trigonometric equation.  The equations can be something as simple as this or more complex like 
sin2 x � 2 cos x � 2 = 0.  The steps taken to solve the equation will depend on the form in which 
it is written and whether we are looking to find all of the solutions or just those within a specified 
interval such as [0, 2π). 
 
Solving for all solutions of a trigonometric equation 
 
Back when we were solving for theta, θ, using the inverse trigonometric function we were 
limiting the interval for θ depending on the trigonometric function.  For example, θ was limited 

to the interval of ,
2 2

π π⎡−⎢⎣ ⎦
⎤
⎥  for the inverse sine function.  However, when we are solving a 

trigonometric equation for all of the solutions we will not limit the interval and must adjust the 
values to take into account the periodic nature of the trigonometric function.  The functions sine, 
cosine, secant, and cosecant all have a period of 2π so we must add the term 2nπ to include all of 
the solutions.  Tangent and cotangent have a period of π so for these two functions the term nπ 
would be added to obtain all of the solutions. 
 

Example 1:  Find all of the solutions for the equation 2 cos x = 2 . 
 
 Solution: 
 
 Isolate the function on one side of the equation 
 

 2 cos x = 2  

  cos x = 
2

2
 

 
 Identify the quadrants for the solutions on the interval [0, 2π) 
 
 Cosine is positive in quadrants I and IV 
 
 Solve for the variable  
 

 x = 
4

π
 (quadrant I) x = 2π � 

4

π
 = 

7

4

π
 (quadrant IV) 

 



Example 1 (Continued): 
 
 Add 2nπ to the values of x 
 

 x = 
4

π
 + 2nπ  and   x = 

7

4

π
 + 2nπ 

 

Example 2:  Find all of the solutions for the equation tan x = 3 . 
 
 Solution: 
 
 Identify the quadrants for the solutions on the interval [0, π) 
 
 Note:  On this problem we are using the interval [0, π) instead of [0, 2π) because  
  tangent has a period of π. 
 
 Tangent is positive in quadrants I  
 
 Solve for the variable 
 

 x = 
3

π
  

 
 Add nπ to the value of x 
 

 x = 
3

π
 + nπ   

 
Solving trigonometric equations with a multiple angle 
 
The trigonometric equations to be solved will not always have just �x� as the angle.  There will 

be times where you will have angles such as 3x or 
2

x
.  For equations like this, you will begin by 

solving the equation for all of the possible solutions by adding 2nπ or nπ (depending on the 
trigonometric function involved) to values.  You would then substitute values in for n starting at 
0 and continuing until all of the values within the specified interval have been found. 
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10.7 Trigonometric Equations and Inequalities

In Sections 10.2, 10.3 and most recently 10.6, we solved some basic equations involving the trigono-
metric functions. Below we summarize the techniques we’ve employed thus far. Note that we use
the neutral letter ‘u’ as the argument1 of each circular function for generality.

Strategies for Solving Basic Equations Involving Trigonometric Functions

• To solve cos(u) = c or sin(u) = c for −1 ≤ c ≤ 1, first solve for u in the interval [0, 2π) and
add integer multiples of the period 2π. If c < −1 or of c > 1, there are no real solutions.

• To solve sec(u) = c or csc(u) = c for c ≤ −1 or c ≥ 1, convert to cosine or sine, respectively,
and solve as above. If −1 < c < 1, there are no real solutions.

• To solve tan(u) = c for any real number c, first solve for u in the interval
�
−π

2 ,
π
2

�
and add

integer multiples of the period π.

• To solve cot(u) = c for c �= 0, convert to tangent and solve as above. If c = 0, the solution
to cot(u) = 0 is u = π

2 + πk for integers k.

Using the above guidelines, we can comfortably solve sin(x) = 1
2 and find the solution x = π

6 +2πk
or x = 5π

6 + 2πk for integers k. How do we solve something like sin(3x) = 1
2? Since this equation

has the form sin(u) = 1
2 , we know the solutions take the form u = π

6 + 2πk or u = 5π
6 + 2πk for

integers k. Since the argument of sine here is 3x, we have 3x = π
6 + 2πk or 3x = 5π

6 + 2πk for
integers k. To solve for x, we divide both sides2 of these equations by 3, and obtain x = π

18 + 2π
3 k

or x = 5π
18 + 2π

3 k for integers k. This is the technique employed in the example below.

Example 10.7.1. Solve the following equations and check your answers analytically. List the
solutions which lie in the interval [0, 2π) and verify them using a graphing utility.

1. cos(2x) = −
√
3
2

2. csc
�
1
3x− π

�
=

√
2 3. cot (3x) = 0

4. sec2(x) = 4 5. tan
�
x
2

�
= −3 6. sin(2x) = 0.87

Solution.

1. The solutions to cos(u) = −
√
3
2 are u = 5π

6 + 2πk or u = 7π
6 + 2πk for integers k. Since

the argument of cosine here is 2x, this means 2x = 5π
6 + 2πk or 2x = 7π

6 + 2πk for integers
k. Solving for x gives x = 5π

12 + πk or x = 7π
12 + πk for integers k. To check these answers

analytically, we substitute them into the original equation. For any integer k we have

cos
�
2
�
5π
12 + πk

��
= cos

�
5π
6 + 2πk

�

= cos
�
5π
6

�
(the period of cosine is 2π)

= −
√
3
2

1See the comments at the beginning of Section 10.5 for a review of this concept.
2Don’t forget to divide the 2πk by 3 as well!
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Similarly, we find cos
�
2
�
7π
12 + πk

��
= cos

�
7π
6 + 2πk

�
= cos

�
7π
6

�
= −

√
3
2 . To determine

which of our solutions lie in [0, 2π), we substitute integer values for k. The solutions we
keep come from the values of k = 0 and k = 1 and are x = 5π

12 ,
7π
12 ,

17π
12 and 19π

12 . Using a

calculator, we graph y = cos(2x) and y = −
√
3
2 over [0, 2π) and examine where these two

graphs intersect. We see that the x-coordinates of the intersection points correspond to the
decimal representations of our exact answers.

2. Since this equation has the form csc(u) =
√
2, we rewrite this as sin(u) =

√
2
2 and find

u = π
4 +2πk or u = 3π

4 +2πk for integers k. Since the argument of cosecant here is
�
1
3x− π

�
,

1

3
x− π =

π

4
+ 2πk or

1

3
x− π =

3π

4
+ 2πk

To solve 1
3x− π = π

4 + 2πk, we first add π to both sides

1

3
x =

π

4
+ 2πk + π

A common error is to treat the ‘2πk’ and ‘π’ terms as ‘like’ terms and try to combine them
when they are not.3 We can, however, combine the ‘π’ and ‘π4 ’ terms to get

1

3
x =

5π

4
+ 2πk

We now finish by multiplying both sides by 3 to get

x = 3

�
5π

4
+ 2πk

�
=

15π

4
+ 6πk

Solving the other equation, 1
3x − π = 3π

4 + 2πk produces x = 21π
4 + 6πk for integers k. To

check the first family of answers, we substitute, combine line terms, and simplify.

csc
�
1
3

�
15π
4 + 6πk

�
− π

�
= csc

�
5π
4 + 2πk − π

�

= csc
�
π
4 + 2πk

�

= csc
�
π
4

�
(the period of cosecant is 2π)

=
√
2

The family x = 21π
4 + 6πk checks similarly. Despite having infinitely many solutions, we find

that none of them lie in [0, 2π). To verify this graphically, we use a reciprocal identity to
rewrite the cosecant as a sine and we find that y = 1

sin( 1
3
x−π)

and y =
√
2 do not intersect at

all over the interval [0, 2π).

3Do you see why?



10.7 Trigonometric Equations and Inequalities 859

y = cos(2x) and y = −
√

3
2

y = 1
sin( 1

3
x−π)

and y =
√
2

3. Since cot(3x) = 0 has the form cot(u) = 0, we know u = π
2 +πk, so, in this case, 3x = π

2 +πk
for integers k. Solving for x yields x = π

6 + π
3k. Checking our answers, we get

cot
�
3
�
π
6 + π

3k
��

= cot
�
π
2 + πk

�

= cot
�
π
2

�
(the period of cotangent is π)

= 0

As k runs through the integers, we obtain six answers, corresponding to k = 0 through k = 5,
which lie in [0, 2π): x = π

6 ,
π
2 ,

5π
6 , 7π

6 , 3π
2 and 11π

6 . To confirm these graphically, we must be
careful. On many calculators, there is no function button for cotangent. We choose4 to use
the quotient identity cot(3x) = cos(3x)

sin(3x) . Graphing y = cos(3x)
sin(3x) and y = 0 (the x-axis), we see

that the x-coordinates of the intersection points approximately match our solutions.

4. The complication in solving an equation like sec2(x) = 4 comes not from the argument of
secant, which is just x, but rather, the fact the secant is being squared. To get this equation
to look like one of the forms listed on page 857, we extract square roots to get sec(x) = ±2.
Converting to cosines, we have cos(x) = ±1

2 . For cos(x) = 1
2 , we get x = π

3 + 2πk or
x = 5π

3 + 2πk for integers k. For cos(x) = −1
2 , we get x = 2π

3 + 2πk or x = 4π
3 + 2πk for

integers k. If we take a step back and think of these families of solutions geometrically, we
see we are finding the measures of all angles with a reference angle of π

3 . As a result, these
solutions can be combined and we may write our solutions as x = π

3 + πk and x = 2π
3 + πk

for integers k. To check the first family of solutions, we note that, depending on the integer
k, sec

�
π
3 + πk

�
doesn’t always equal sec

�
π
3

�
. However, it is true that for all integers k,

sec
�
π
3 + πk

�
= ± sec

�
π
3

�
= ±2. (Can you show this?) As a result,

sec2
�
π
3 + πk

�
=

�
± sec

�
π
3

��2

= (±2)2

= 4

The same holds for the family x = 2π
3 + πk. The solutions which lie in [0, 2π) come from

the values k = 0 and k = 1, namely x = π
3 ,

2π
3 , 4π

3 and 5π
3 . To confirm graphically, we use

4The reader is encouraged to see what happens if we had chosen the reciprocal identity cot(3x) = 1
tan(3x)

instead.
The graph on the calculator appears identical, but what happens when you try to find the intersection points?
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a reciprocal identity to rewrite the secant as cosine. The x-coordinates of the intersection
points of y = 1

(cos(x))2
and y = 4 verify our answers.

y = cos(3x)
sin(3x) and y = 0 y = 1

cos2(x)
and y = 4

5. The equation tan
�
x
2

�
= −3 has the form tan(u) = −3, whose solution is u = arctan(−3)+πk.

Hence, x
2 = arctan(−3) + πk, so x = 2arctan(−3) + 2πk for integers k. To check, we note

tan
�
2 arctan(−3)+2πk

2

�
= tan (arctan(−3) + πk)

= tan (arctan(−3)) (the period of tangent is π)

= −3 (See Theorem 10.27)

To determine which of our answers lie in the interval [0, 2π), we first need to get an idea of
the value of 2 arctan(−3). While we could easily find an approximation using a calculator,5

we proceed analytically. Since −3 < 0, it follows that −π
2 < arctan(−3) < 0. Multiplying

through by 2 gives −π < 2 arctan(−3) < 0. We are now in a position to argue which of the
solutions x = 2arctan(−3) + 2πk lie in [0, 2π). For k = 0, we get x = 2arctan(−3) < 0,
so we discard this answer and all answers x = 2arctan(−3) + 2πk where k < 0. Next, we
turn our attention to k = 1 and get x = 2arctan(−3) + 2π. Starting with the inequality
−π < 2 arctan(−3) < 0, we add 2π and get π < 2 arctan(−3) + 2π < 2π. This means
x = 2arctan(−3)+2π lies in [0, 2π). Advancing k to 2 produces x = 2arctan(−3)+4π. Once
again, we get from −π < 2 arctan(−3) < 0 that 3π < 2 arctan(−3) + 4π < 4π. Since this is
outside the interval [0, 2π), we discard x = 2arctan(−3) + 4π and all solutions of the form
x = 2arctan(−3) + 2πk for k > 2. Graphically, we see y = tan

�
x
2

�
and y = −3 intersect only

once on [0, 2π) at x = 2arctan(−3) + 2π ≈ 3.7851.

6. To solve sin(2x) = 0.87, we first note that it has the form sin(u) = 0.87, which has the family
of solutions u = arcsin(0.87) + 2πk or u = π − arcsin(0.87) + 2πk for integers k. Since the
argument of sine here is 2x, we get 2x = arcsin(0.87) + 2πk or 2x = π − arcsin(0.87) + 2πk
which gives x = 1

2 arcsin(0.87) + πk or x = π
2 − 1

2 arcsin(0.87) + πk for integers k. To check,

5Your instructor will let you know if you should abandon the analytic route at this point and use your calculator.
But seriously, what fun would that be?



7.29 Find all solutions for  tan x = 3.

Example 7.51

Identify all Solutions to the Equation Involving Tangent

Identify all exact solutions to the equation  2(tan x + 3) = 5 + tan x, 0 ≤ x < 2π.

Solution

We can solve this equation using only algebra. Isolate the expression  tan x  on the left side of the equals sign.

2(tanx) + 2(3) = 5 + tanx
2tan x + 6 = 5 + tan x

2tanx − tanx = 5 − 6

tanx = − 1

There are two angles on the unit circle that have a tangent value of  −1 : x = 3π
4   and  x = 7π

4 .

Example 7.52

Solve 2cos(4θ) + 1 = 0 EXACTLY

a) give all solutions
b) Give all solutions in [0,  2π)

Isolate the trig function

Get cos(4θ) by itself

2cos(4θ) = − 1
cos(4θ) = − 1

2

Ask "What quadrant is the angle in"?

Cosine is negative in QII and QIII

Now find the angles on the unit circle where x is -1/2:
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Find angles in one cycle where your trig function has the given value

Cosine is −1
2 at the angle 2π

3 and at 4π
3

Set our angle to each of these + k*period

4θ = 2π
3 + 2kπ            or            4θ = 4π

3 + 2kπ

Solve for θ

 4θ
4 =

2π
3
4 + 2kπ

4                or               4θ
4 =

4π
3
4 + 2kπ

4

θ = π
6 + kπ

2                         or              θ = π
3 + kπ

2

a) General Solution

θ = π
6 + kπ

2                         or              θ = π
3 + kπ

2
or in set notation
⎧
⎩
⎨π
6 + kπ

2 ,  π
3 + kπ

2
⎫
⎭
⎬

b) Solution in [0,  2π)

To find the solution in a specific interval, we make a table and keep only the values in that interval.
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Solving a Trigonometric Equation in an Interval

Solve 4 tan2 x º 1 = 0 in the interval 0 ≤ x < 2π.

SOLUTION

4 tan2 x º 1 = 0 Write original equation.

4 tan2 x = 1 Add 1 to each side.

tan2 x = �
1
4� Divide each side by 4.

tan x = ±�
1
2� Take square roots of each side.

Use a calculator to find values of x for 

which tan x = ±�
1
2�, as shown at the right.

The general solution of the equation is

x ≈ 0.464 + nπ

or

x ≈ º0.464 + nπ

where n is any integer. The solutions that are in the interval 0 ≤ x < 2π are:

x ≈ 0.464 x ≈ 0.464 + π ≈ 3.61

x ≈ º0.464 + π ≈ 2.628 x ≈ º0.464 + 2π ≈ 5.82

✓CHECK  Check these solutions by substituting them back into the original
equation. 

Factoring to Solve a Trigonometric Equation

Solve sin2 x cos x = 4 cos x.

SOLUTION

sin2 x cos x = 4 cos x Write original equation.

sin2 x cos x º 4 cos x = 0 Subtract 4 cos x from each side.

cos x (sin2 x º 4) = 0 Factor out cos x.

cos x (sin x + 2)(sin x º 2) = 0 Factor difference of squares.

Set each factor equal to 0 and solve for x, if possible.

cos x = 0 sin x + 2 = 0 sin x º 2 = 0

x = �
π
2� or x = �

3
2
π
� sin x = º2 sin x = 2

Because neither sin x = º2 nor sin x = 2 has a solution, the only solutions in the

interval 0 ≤ x < 2π are x = �
π
2� and x = �

3
2
π
�.

� The general solution is x = �
π
2� + 2nπ or x = �

3
2
π
� + 2nπ where n is any integer.

E X A M P L E  3

E X A M P L E  2

tan-1 (.5)
       .463647609
tan-1 (-.5)
      -.463647609

STUDENT HELP

Study Tip
Remember not to divide
both sides of an equation
by a variable expression,
such as cos x.

STUDENT HELP

Study Tip
Note that to find the
general solution of a
trigonometric equation,
you must add multiples
of the period to the
solutions in one cycle.
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Each of the problems in Example 10.7.1 featured one trigonometric function. If an equation involves
two different trigonometric functions or if the equation contains the same trigonometric function
but with different arguments, we will need to use identities and Algebra to reduce the equation to
the same form as those given on page 857.

Example 10.7.2. Solve the following equations and list the solutions which lie in the interval
[0, 2π). Verify your solutions on [0, 2π) graphically.

1. 3 sin3(x) = sin2(x) 2. sec2(x) = tan(x) + 3

3. cos(2x) = 3 cos(x)− 2 4. cos(3x) = 2− cos(x)

5. cos(3x) = cos(5x) 6. sin(2x) =
√
3 cos(x)

7. sin(x) cos
�
x
2

�
+ cos(x) sin

�
x
2

�
= 1 8. cos(x)−

√
3 sin(x) = 2

Solution.

1. We resist the temptation to divide both sides of 3 sin3(x) = sin2(x) by sin2(x) (What goes
wrong if you do?) and instead gather all of the terms to one side of the equation and factor.

3 sin3(x) = sin2(x)
3 sin3(x)− sin2(x) = 0

sin2(x)(3 sin(x)− 1) = 0 Factor out sin2(x) from both terms.

We get sin2(x) = 0 or 3 sin(x) − 1 = 0. Solving for sin(x), we find sin(x) = 0 or sin(x) = 1
3 .

The solution to the first equation is x = πk, with x = 0 and x = π being the two solutions
which lie in [0, 2π). To solve sin(x) = 1

3 , we use the arcsine function to get x = arcsin
�
1
3

�
+2πk

or x = π− arcsin
�
1
3

�
+ 2πk for integers k. We find the two solutions here which lie in [0, 2π)

to be x = arcsin
�
1
3

�
and x = π− arcsin

�
1
3

�
. To check graphically, we plot y = 3(sin(x))3 and

y = (sin(x))2 and find the x-coordinates of the intersection points of these two curves. Some
extra zooming is required near x = 0 and x = π to verify that these two curves do in fact
intersect four times.6

2. Analysis of sec2(x) = tan(x) + 3 reveals two different trigonometric functions, so an identity
is in order. Since sec2(x) = 1 + tan2(x), we get

sec2(x) = tan(x) + 3
1 + tan2(x) = tan(x) + 3 (Since sec2(x) = 1 + tan2(x).)

tan2(x)− tan(x)− 2 = 0
u2 − u− 2 = 0 Let u = tan(x).

(u+ 1)(u− 2) = 0

6Note that we are not counting the point (2π, 0) in our solution set since x = 2π is not in the interval [0, 2π). In
the forthcoming solutions, remember that while x = 2π may be a solution to the equation, it isn’t counted among
the solutions in [0, 2π).
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This gives u = −1 or u = 2. Since u = tan(x), we have tan(x) = −1 or tan(x) = 2. From
tan(x) = −1, we get x = −π

4 + πk for integers k. To solve tan(x) = 2, we employ the
arctangent function and get x = arctan(2)+πk for integers k. From the first set of solutions,
we get x = 3π

4 and x = 5π
4 as our answers which lie in [0, 2π). Using the same sort of argument

we saw in Example 10.7.1, we get x = arctan(2) and x = π + arctan(2) as answers from our
second set of solutions which lie in [0, 2π). Using a reciprocal identity, we rewrite the secant
as a cosine and graph y = 1

(cos(x))2
and y = tan(x)+3 to find the x-values of the points where

they intersect.

y = 3(sin(x))3 and y = (sin(x))2 y = 1
(cos(x))2

and y = tan(x) + 3

3. In the equation cos(2x) = 3 cos(x)− 2, we have the same circular function, namely cosine, on
both sides but the arguments differ. Using the identity cos(2x) = 2 cos2(x) − 1, we obtain a
‘quadratic in disguise’ and proceed as we have done in the past.

cos(2x) = 3 cos(x)− 2
2 cos2(x)− 1 = 3 cos(x)− 2 (Since cos(2x) = 2 cos2(x)− 1.)

2 cos2(x)− 3 cos(x) + 1 = 0
2u2 − 3u+ 1 = 0 Let u = cos(x).

(2u− 1)(u− 1) = 0

This gives u = 1
2 or u = 1. Since u = cos(x), we get cos(x) = 1

2 or cos(x) = 1. Solving
cos(x) = 1

2 , we get x = π
3 + 2πk or x = 5π

3 + 2πk for integers k. From cos(x) = 1, we get
x = 2πk for integers k. The answers which lie in [0, 2π) are x = 0, π

3 , and
5π
3 . Graphing

y = cos(2x) and y = 3 cos(x)− 2, we find, after a little extra effort, that the curves intersect
in three places on [0, 2π), and the x-coordinates of these points confirm our results.

4. To solve cos(3x) = 2− cos(x), we use the same technique as in the previous problem. From
Example 10.4.3, number 4, we know that cos(3x) = 4 cos3(x)− 3 cos(x). This transforms the
equation into a polynomial in terms of cos(x).

cos(3x) = 2− cos(x)
4 cos3(x)− 3 cos(x) = 2− cos(x)

2 cos3(x)− 2 cos(x)− 2 = 0
4u3 − 2u− 2 = 0 Let u = cos(x).
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To solve 4u3 − 2u − 2 = 0, we need the techniques in Chapter 3 to factor 4u3 − 2u − 2 into
(u−1)

�
4u2 + 4u+ 2

�
. We get either u−1 = 0 or 4u2+2u+2 = 0, and since the discriminant

of the latter is negative, the only real solution to 4u3− 2u− 2 = 0 is u = 1. Since u = cos(x),
we get cos(x) = 1, so x = 2πk for integers k. The only solution which lies in [0, 2π) is x = 0.
Graphing y = cos(3x) and y = 2− cos(x) on the same set of axes over [0, 2π) shows that the
graphs intersect at what appears to be (0, 1), as required.

y = cos(2x) and y = 3 cos(x) − 2 y = cos(3x) and y = 2 − cos(x)

5. While we could approach cos(3x) = cos(5x) in the same manner as we did the previous two
problems, we choose instead to showcase the utility of the Sum to Product Identities. From
cos(3x) = cos(5x), we get cos(5x) − cos(3x) = 0, and it is the presence of 0 on the right
hand side that indicates a switch to a product would be a good move.7 Using Theorem 10.21,
we have that cos(5x) − cos(3x) = −2 sin

�
5x+3x

2

�
sin

�
5x−3x

2

�
= −2 sin(4x) sin(x). Hence,

the equation cos(5x) = cos(3x) is equivalent to −2 sin(4x) sin(x) = 0. From this, we get
sin(4x) = 0 or sin(x) = 0. Solving sin(4x) = 0 gives x = π

4k for integers k, and the solution
to sin(x) = 0 is x = πk for integers k. The second set of solutions is contained in the first set
of solutions,8 so our final solution to cos(5x) = cos(3x) is x = π

4k for integers k. There are
eight of these answers which lie in [0, 2π): x = 0, π

4 ,
π
2 ,

3π
4 , π, 5π

4 , 3π
2 and 7π

4 . Our plot of the
graphs of y = cos(3x) and y = cos(5x) below (after some careful zooming) bears this out.

6. In examining the equation sin(2x) =
√
3 cos(x), not only do we have different circular func-

tions involved, namely sine and cosine, we also have different arguments to contend with,
namely 2x and x. Using the identity sin(2x) = 2 sin(x) cos(x) makes all of the arguments the
same and we proceed as we would solving any nonlinear equation – gather all of the nonzero
terms on one side of the equation and factor.

sin(2x) =
√
3 cos(x)

2 sin(x) cos(x) =
√
3 cos(x) (Since sin(2x) = 2 sin(x) cos(x).)

2 sin(x) cos(x)−
√
3 cos(x) = 0

cos(x)(2 sin(x)−
√
3) = 0

from which we get cos(x) = 0 or sin(x) =
√
3
2 . From cos(x) = 0, we obtain x = π

2 + πk for

integers k. From sin(x) =
√
3
2 , we get x = π

3 +2πk or x = 2π
3 +2πk for integers k. The answers

7As always, experience is the greatest teacher here!
8As always, when in doubt, write it out!
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which lie in [0, 2π) are x = π
2 ,

3π
2 , π

3 and 2π
3 . We graph y = sin(2x) and y =

√
3 cos(x) and,

after some careful zooming, verify our answers.

y = cos(3x) and y = cos(5x) y = sin(2x) and y =
√
3 cos(x)

7. Unlike the previous problem, there seems to be no quick way to get the circular functions or
their arguments to match in the equation sin(x) cos

�
x
2

�
+ cos(x) sin

�
x
2

�
= 1. If we stare at

it long enough, however, we realize that the left hand side is the expanded form of the sum
formula for sin

�
x+ x

2

�
. Hence, our original equation is equivalent to sin

�
3
2x

�
= 1. Solving,

we find x = π
3 + 4π

3 k for integers k. Two of these solutions lie in [0, 2π): x = π
3 and x = 5π

3 .
Graphing y = sin(x) cos

�
x
2

�
+ cos(x) sin

�
x
2

�
and y = 1 validates our solutions.

8. With the absence of double angles or squares, there doesn’t seem to be much we can do.
However, since the arguments of the cosine and sine are the same, we can rewrite the left
hand side of this equation as a sinusoid.9 To fit f(x) = cos(x) −

√
3 sin(x) to the form

A sin(ωt+ φ) + B, we use what we learned in Example 10.5.3 and find A = 2, B = 0, ω = 1
and φ = 5π

6 . Hence, we can rewrite the equation cos(x)−
√
3 sin(x) = 2 as 2 sin

�
x+ 5π

6

�
= 2,

or sin
�
x+ 5π

6

�
= 1. Solving the latter, we get x = −π

3 + 2πk for integers k. Only one of
these solutions, x = 5π

3 , which corresponds to k = 1, lies in [0, 2π). Geometrically, we see

that y = cos(x)−
√
3 sin(x) and y = 2 intersect just once, supporting our answer.

y = sin(x) cos
�
x
2

�
+ cos(x) sin

�
x
2

�
and y = 1 y = cos(x)−

√
3 sin(x) and y = 2

We repeat here the advice given when solving systems of nonlinear equations in section 8.7 – when
it comes to solving equations involving the trigonometric functions, it helps to just try something.

9We are essentially ‘undoing’ the sum / difference formula for cosine or sine, depending on which form we use, so
this problem is actually closely related to the previous one!



Trigonometric equations in quadratic form 
 
The trigonometric equations can also be written in the quadratic form of au2 + bu + c = 0 where u 
is a trigonometric function.  The methods that can be used to solve these equations are the same 
as those used when solving quadratic equations � factoring, square root property, completing the 
square, and the quadratic formula.  The method that you use will depend on the values of a, b, 
and c.  If the equation can be factored then this would be your first option. 
 
Example 5:  Solve the following trigonometric equation in quadratic form on the interval  
[0, 2π). 
 
 cos2 x � 2 cos x = 3 
 
 Solution: 
 
 Group all terms on the left side so that it is equal to 0 
 
 cos2 x � 2 cos x � 3 = 0 
 
 Let u represent the trigonometric function cos x 
 
 u = cos x 
 
 (cos x)2 � 2 cos x � 3 = 0 
 u2 � 2u � 3 = 0 
 
 Factor the quadratic equation 
 
 (u + 1)(u � 3) = 0 
 
 Solve for u 
 
 u + 1 = 0  or  u � 3 = 0 
 u = -1  or  u = 3 
 
 Substitute the cosine function back in for u 
 
 cos x = -1  or  cos x = 3 
 
 cos x cannot be greater than 1 so cos x = 3 has no solutions 
 
 Solve for x 
 
 x = π 
 
 



Example 6:  Solve the following trigonometric equation in quadratic form on the interval  
[0, 2π). 
 
 tan2 x � 2 = 3 tan x 
 
 Solution: 
 
 Group all terms on the left side so that it is equal to 0 
 
 tan2 x � 3 tan x � 2 = 0 
 
 Let u represent the trigonometric function tan x 
 
 u = tan x 
 
 (tan x)2 � 3 tan x � 2 = 0 
 u2 � 3u � 2 = 0 
 
 Factor the quadratic equation 
 
 The equation cannot be factored so the quadratic formula must be used 
 
 Solve for u 
 
 a = 1, b = -3, and c = -2 
 

 u = 
2( 3) ( 3) 4(1)( 2)

2(1)

− − ± − − −
   

 u = 
3 9

2

± +8
 

 u = 
3 17

2

±
 

 u = 
3 17

2

−
  or  u = 

3 17

2

+
 

 
 Substitute the tangent function back in for u 
 

 tan x = 
3 17

2

−
  or  tan x = 

3 17

2

+
 

 tan x ≈ -0.5616  or  tan x ≈ 3.5616 
 



Example 6 (Continued): 
 
 Solve for the reference angle θ 
 
 θ ≈ tan-1 (0.5616)  or  θ ≈ tan-1 (3.5616) 
 θ ≈ 0.5117 or θ ≈ 1.2971 
 
 Solve for the values of x within the interval [0, 2π) 
 
 tan x ≈ -0.5616 
 
 tan x is negative in quadrants II and IV 
 
 x ≈ π � 0.5117 or  x ≈ 2π � 0.5117 
 x ≈ 2.6299 or  x ≈ 5.7715 
  
 tan x ≈ 3.5616 
 
 tan x is positive in quadrants I and III 
 
 x ≈ 1.2971 or  x ≈ π + 1.2971 
    x ≈ 4.4387 
 
 The solutions to the equation (rounded to four decimal places) are 1.2971, 2.6299,  
 4.4387, and 5.7715. 
 
Using identities to solve trigonometric equations 
 
There could also be equations where two or more trigonometric functions are contained within 
the equation.  If the functions can be separated by factoring the equation then you can solve the 
equation using the factoring method.  However, if it is not possible to factor the equation then 
you must use the different trigonometric identities to rewrite the function in a single 
trigonometric function or in a form that can be solved by factoring. 
 
Example 7:  Use trigonometric identities to solve the following equation on the interval [0, 2π). 
 
 2 sin2 x + cos x = 1 
 
 Solution: 
 
 Use the Pythagorean identity sin2 x = 1 � cos2 x to replace sin2 x in the equation 
 
 2 sin2 x + cos x = 1 
 2 (1 � cos2 x) + cos x = 1 
 2 � 2 cos2 x + cos x = 1 
 



Example 7 (Continued): 
 
 Group all terms on the left side so that it is equal to 0 
 
 2 � 2 cos2 x + cos x � 1 = 0 
 �2 cos2 x + cos x + 1 = 0 
 
 Multiply the equation by �1 to make the leading coefficient positive 
 
 �1(�2 cos2 x + cos x + 1 = 0) 
 2 cos2 x � cos x � 1 = 0 
 
 Let u represent the trigonometric function cos x 
 
 u = cos x 
 
 2 (cos x)2 � cos x � 1 = 0 
 2u2 � u � 1 = 0 
 
 Factor the quadratic equation 
 
 (2u + 1)(u � 1) = 0 
 
 Solve for u 
 
 2u + 1 = 0  or  u � 1 = 0 
 2u = -1  or  u = 1 
 u = - ½   
 
 Substitute the cosine function back in for u 
 
 cos x = - ½  or  cos x = 1 
 
 Identify the quadrants for the solutions on the interval [0, 2π) 
 
 Cosine is negative in quadrants II and III  and is 1 at 0 
 



Example 7 (Continued): 
 
 Solve for x 
 
 cos x = - ½    
 

  Cosine is equal to 
1

2
 at 

3

π
 so the angles in quadrants II and III are 

 

  π  - 
3

π
 = 

2

3

π
 (quadrant II) and π  + 

3

π
 = 

4

3

π
 (quadrant III) 

 

 x  = 
2

3

π
  and  x  = 

4

3

π
 

 
 cos x = 1 
 
 x = 0 
 
 Add 2nπ to the angle and solve for x 
 

  x  = 
2

3

π
 + 2nπ  x  = 

4

3

π
 + 2nπ  x = 0 + 2nπ 

 
 Now substitute values in for n starting with 0 until the angle is outside of the interval  
 [0, 2π) 
 
 n = 0 
 

  x  = 
2

3

π
 + 2(0)π  x  = 

4

3

π
 + 2(0)π  x = 0 + 2(0)π 

  x  = 
2

3

π
   x  = 

4

3

π
   x = 0  

 
 n = 1 
 

  x  = 
2

3

π
 + 2(1)π  x  = 

4

3

π
 + 2(1)π  x = 0 + 2(1)π 

   
 When n = 1 we will be adding 2π to the angles which will put them outside of the  
 interval [0, 2π).   
 

 So the solutions for the equation are 0, 
2

3

π
, and 

4

3

π
. 



7.26 Solve exactly the following linear equation on the interval  [0, 2π) :  2 sin x + 1 = 0.

Solving Equations Involving a Single Trigonometric Function
When we are given equations that involve only one of the six trigonometric functions, their solutions involve using algebraic
techniques and the unit circle (see m49395 (https://legacy.cnx.org/content/m49395/latest/#Figure_07_02_008)
). We need to make several considerations when the equation involves trigonometric functions other than sine and cosine.
Problems involving the reciprocals of the primary trigonometric functions need to be viewed from an algebraic perspective.
In other words, we will write the reciprocal function, and solve for the angles using the function. Also, an equation involving
the tangent function is slightly different from one containing a sine or cosine function. First, as we know, the period of
tangent is π, not 2π. Further, the domain of tangent is all real numbers with the exception of odd integer multiples of  π2,

unless, of course, a problem places its own restrictions on the domain.

Example 7.48 Solving a Problem Involving a Single Trigonometric Function

Solve the problem exactly:  2 sin2 θ − 1 = 0, 0 ≤ θ < 2π.

Solution

As this problem is not easily factored, we will solve using the square root property. First, we use algebra to isolate
 sinθ. Then we will find the angles.

Isolate sin θ
(7.41)2 sin2 θ − 1 = 0

      2 sin2 θ = 1
        sin2 θ = 1

2
      sin2 θ = ± 1

2
          sin θ = ± 1

2
= ± 2

2

We know sine is a y value, so let us find the angles on the unit circle where the y value is ± 2
2
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Thus our solution in [0, 2π) is θ = π
4, 3π

4 , 5π
4 , 7π

4
Watch Out!

Remember to include the ± when taking square roots!

Solve 4 cos2 θ − 3 = 0 algebraically. in [0, 2π) . Give exact answers.

Example 7.49

Solve cscθ = − 2 exactly in [0,  4π)

Solution

We want all values of θ for which cscθ = − 2 over the interval [0,  4π)

cscθ = − 2
1

sinθ = − 2    (convert to sines)
sinθ = − 1

2     (solve  f or sinθ)

We need to find the angles on the unit circle where y is −1
2 . We know y is negative in QIII and QIV. From the

unit circle.

Our angles in one cycle are

θ = 7π
6    or   θ = 11π

6

We want all angles in a larger interval, so ake a table to find angles in [0, 4π)

926 Chapter 7 | Trigonometric Identities and Equation
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k
7π
6 + 2kπ 11π

6 + 2kπ

0
7π
6

11π
6

1
7π
6 + 2π = 19π

6
11π

6 + 2π = 23π
6

2
7π
6 + 2 ⋅ 2π > 4π 11π

6 + 2 ⋅ 2π > 4π

Table 7.8 Table of values between 0 and 4π

Final answer in [0, 4π)
⎧
⎩
⎨7π

6 , 11π
6 , 19π

6 , 23π
6

⎫
⎭
⎬

Analysis

As  sin θ = − 1
2, notice that all four solutions are in the third and fourth quadrants.

Solve secθ = − 2 exactly in [0, 4π)

Example 7.50

Solving an Equation Involving Tangent

Solve the equation exactly:  tan⎛
⎝θ − π

2
⎞
⎠ = 1, 0 ≤ θ < 2π.

Solution

We want to find the angles where tangent is 1. Recall that the tangent function has a period of  π. On the interval

 [0, π), and at the angle of  π4, the tangent has a value of 1. However, the angle we want is  ⎛⎝θ − π
2

⎞
⎠. Thus, if

 tan⎛
⎝π
4

⎞
⎠ = 1, then

θ − π
2 = π

4 ± kπ

                             θ = 3π
4 ± kπ

Over the interval  [0, 2π),  we have two solutions:

3π
4   and 3π

4 + π = 7π
4
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Solution The period of the sine function is In the interval there are two

values at which the sine function is One of these values is The sine is positive

in quadrant II; thus, the other value is or This means that 

or  Because the period is all the solutions of are given by

is any integer.

Multiply both sides by 2 and solve for 

We see that or If we obtain from the

first equation and from the second equation. If we let we are adding

or to and These values of exceed Thus, in the interval

the only solutions of are and 

Check Point 3 Solve the equation:

Trigonometric Equations Quadratic in Form
Some trigonometric equations are in the form of a quadratic equation

where is a trigonometric function and Here are two
examples of trigonometric equations that are quadratic in form:

To solve this kind of equation, try using factoring. If the trigonometric expression does
not factor,use another method,such as the quadratic formula or the square root property.

Solving a Trigonometric Equation Quadratic in Form

Solve the equation:

Solution The given equation is in quadratic form with
Let us attempt to solve the equation by factoring.

This is the given equation.

Factor: Notice that 
factors as 

Set each factor equal to 

Solve for cos 

Solve each equation for 
O … x 6 2p.

x, x = p

 cos x = 1
2

x. 2 cos x = 1   cos x = -1

0. 2 cos x - 1 = 0 or  cos x + 1 = 0

12u - 121u + 12.2u2 + u - 1 12 cos x - 121cos x + 12 = 0

  2 cos2 x + cos x - 1 = 0

u = cos x.
2u2 + u - 1 = 0

2 cos2 x + cos x - 1 = 0, 0 … x 6 2p.

EXAMPLE 4

2 sin2 x-3 sin x+1=0.

The form of this equation is
2u2 − 3u + 1 = 0 with u = sin x.

2 cos2 x+cos x-1=0

The form of this equation is
2u2 + u − 1 = 0 with u = cos x.

a Z 0.uau2 + bu + c = 0,

sin 
x

3
=

1
2

, 0 … x 6 2p.

4p
3

.
2p
3

sin 
x

2
=
23
2

30, 2p2, 2p.x
4p
3

.
2p
3

4p,4 # 1 # p,

n = 1,x =
4p
3

x =
2p
3

n = 0,x =
4p
3

+ 4np.x =
2p
3

+ 4np

x. x =
2p
3

+ 4np   x =
4p
3

+ 4np.

n 
x

2
=
p

3
+ 2np or  

x

2
=

2p
3

+ 2np

sin 
x

2
=
23
2

2p,
x

2
=

2p
3

.

x

2
=
p

3
2p
3

.p -
p

3
,

p

3
.

23
2

.

30, 2p2,2p.

The cosine is positive
in quadrants I and IV.

x= x=2p-
p

3
p

3
=

5p
3

Technology
Graphic Connections

The graph of

is shown in a

viewing rectangle. The 

verify the three solutions of

in 

y = 2 cos2 x + cos x − 1

x = p x = 5p
3x = p3

30, 2p2.2 cos2 x + cos x - 1 = 0

p

3
, p, and 

5p
3

,

x-intercepts,

c0, 2p, 
p

2
d  by 3-3, 3, 14

y = 2 cos2 x + cos x - 1

� Solve trigonometric equations
quadratic in form.

The solutions in the interval are  and 
5p
3

.
p

3
, p,30, 2p,2
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Using Factoring to Separate Different Functions

Solve the equation:

Solution Move all terms to one side and obtain zero on the other side.

This is the given equation.

Subtract from both sides.

We now have which contains both tangent and sine
functions. Use factoring to separate the two functions.

Factor out from the two
terms on the left side.

Set each factor equal to 0.

Solve for 

The solutions in the interval are 0 and 

Check Point 6 Solve the equation:

Using Identities to Solve Trigonometric Equations
Some trigonometric equations contain more than one function on the same side and
these functions cannot be separated by factoring. For example, consider the equation

How can we obtain an equivalent equation that has only one trigonometric
function? We use the identity and substitute for

This forms the basis of our next example.

Using an Identity to Solve a Trigonometric Equation

Solve the equation:

Solution

This is the given equation.

Use the distributive property.

2 sin2 x-3 sin x-2=0

–2 sin2 x+3 sin x+2=0
It’s easier to factor

with a positive
leading coefficient.

 2 - 2 sin2 x + 3 sin x = 0

cos2 x = 1 - sin2 x 211 - sin2 x2 + 3 sin x = 0

 2 cos2 x + 3 sin x = 0

2 cos2 x + 3 sin x = 0,  0 … x 6 2p.

EXAMPLE 7

cos2 x.
1 - sin2 xsin2 x + cos2 x = 1

2 cos2 x + 3 sin x = 0.

sin x tan x = sin x, 0 … x 6 2p.

p.30, 2p2
This equation has

no solution because
sin x cannot be
greater than 1 or

less than −1.

sin x=—�3

x. x = 0 x = p   sin2 x = 3

 tan x = 0 or  sin2 x - 3 = 0

tan x  tan x1sin2 x - 32 = 0

tan x sin2 x - 3 tan x = 0,

3 tan x tan x sin2 x - 3 tan x = 0

 tan x sin2 x = 3 tan x

tan x sin2 x = 3 tan x, 0 … x 6 2p.

EXAMPLE 6Study Tip
In solving

do not begin by dividing both sides by
Division by zero is undefined. If

you divide by you lose the two
solutions for which namely
0 and p.

tan x = 0,
tan x,

tan x.

tan x sin2 x = 3 tan x,

Write the equation in descending
powers of 

Multiply both sides by The
equation is in quadratic form

with u = sin x.2u2 - 3u - 2 = 0

- 1.

sin x.

 2 sin x + 1 = 0 or  sin x - 2 = 0

 12 sin x + 121sin x - 22 = 0 Factor. Notice that 
factors as 12u + 121u - 22.2u2 - 3u - 2

Set each factor equal to 0.

� Use identities to solve
trigonometric equations.
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 2 sin x = -1 Solve

for sin x.
2 sin x + 1 = 0 and sin x - 2 = 0

This equation has
no solution because

sin x cannot be
greater than 1.

sin x=2

x=p+ =
p

6
7p
6

x=2p- =
p

6
11p

6

sin . The sine is negative=p6
1
2

in quadrants III and IV.

 sin x = -  
1
2

 

Set each factor equal to 0.

Solve for 

Solve each equation for
x, 0 … x 6 2p.

sin x.

Solve for x.

The solutions of in the interval are and 

Check Point 7 Solve the equation:

Using an Identity to Solve a Trigonometric Equation

Solve the equation:

Solution The given equation contains a cosine function and a sine function. The
cosine is a function of and the sine is a function of We want one trigonometric
function of the same angle. This can be accomplished by using the double-angle
identity to obtain an equivalent equation involving only.

This is the given equation.

Combine like terms.

Multiply both sides by The
equation is in quadratic form

with 

Factor. Notice that 
factors as 

The sine is positive
in quadrants I and II.

x= x=p-
p

6
x=

p

2
p

6
=

5p
6

sin x = 1
2                    sin x = 1

2 sin x - 1 = 0 or sin x - 1 = 0

12u - 121u - 12.2u2 - 3u + 112 sin x - 121sin x - 12 = 0

u = sin x.2u2 - 3u + 1 = O

- 1. 2 sin2 x - 3 sin x + 1 = 0

 -2 sin2 x + 3 sin x - 1 = 0

cos 2x = 1 - 2 sin2 x 1 - 2 sin2 x + 3 sin x - 2 = 0

 cos 2x + 3 sin x - 2 = 0

sin xcos 2x = 1 - 2 sin2 x

x.2x

cos 2x + 3 sin x - 2 = 0,  0 … x 6 2p.

EXAMPLE 8

2 sin2 x - 3 cos x = 0, 0 … x 6 2p.

11p
6

.
7p
6

30, 2p22 cos2 x + 3 sin x = 0

The solutions in the interval are and 

Check Point 8 Solve the equation:

Sometimes it is necessary to do something to both sides of a trigonometric
equation before using an identity. For example, consider the equation

This equation contains both a sine and a cosine function. How can we obtain a
single function? Multiply both sides by 2. In this way, we can use the double-
angle identity and obtain a single function, on the
left side.

sin 2x,sin 2x = 2 sin x cos x

sin x cos x = 1
2 .

cos 2x + sin x = 0, 0 … x 6 2p.

5p
6

.
p

6
, 
p

2
,30, 2p2
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Next, we focus on solving inequalities involving the trigonometric functions. Since these functions
are continuous on their domains, we may use the sign diagram technique we’ve used in the past to
solve the inequalities.10

Example 10.7.3. Solve the following inequalities on [0, 2π). Express your answers using interval
notation and verify your answers graphically.

1. 2 sin(x) ≤ 1 2. sin(2x) > cos(x) 3. tan(x) ≥ 3

Solution.

1. We begin solving 2 sin(x) ≤ 1 by collecting all of the terms on one side of the equation and
zero on the other to get 2 sin(x)− 1 ≤ 0. Next, we let f(x) = 2 sin(x)− 1 and note that our
original inequality is equivalent to solving f(x) ≤ 0. We now look to see where, if ever, f is
undefined and where f(x) = 0. Since the domain of f is all real numbers, we can immediately
set about finding the zeros of f . Solving f(x) = 0, we have 2 sin(x) − 1 = 0 or sin(x) = 1

2 .
The solutions here are x = π

6 +2πk and x = 5π
6 +2πk for integers k. Since we are restricting

our attention to [0, 2π), only x = π
6 and x = 5π

6 are of concern to us. Next, we choose test
values in [0, 2π) other than the zeros and determine if f is positive or negative there. For
x = 0 we have f(0) = −1, for x = π

2 we get f
�
π
2

�
= 1 and for x = π we get f(π) = −1.

Since our original inequality is equivalent to f(x) ≤ 0, we are looking for where the function
is negative (−) or 0, and we get the intervals

�
0, π6

�
∪
�
5π
6 , 2π

�
. We can confirm our answer

graphically by seeing where the graph of y = 2 sin(x) crosses or is below the graph of y = 1.

0

(−)

π
6

0 (+)

5π
6

0 (−)

2π

y = 2 sin(x) and y = 1

2. We first rewrite sin(2x) > cos(x) as sin(2x) − cos(x) > 0 and let f(x) = sin(2x) − cos(x).
Our original inequality is thus equivalent to f(x) > 0. The domain of f is all real numbers,
so we can advance to finding the zeros of f . Setting f(x) = 0 yields sin(2x) − cos(x) = 0,
which, by way of the double angle identity for sine, becomes 2 sin(x) cos(x) − cos(x) = 0 or
cos(x)(2 sin(x)−1) = 0. From cos(x) = 0, we get x = π

2+πk for integers k of which only x = π
2

and x = 3π
2 lie in [0, 2π). For 2 sin(x)− 1 = 0, we get sin(x) = 1

2 which gives x = π
6 + 2πk or

x = 5π
6 + 2πk for integers k. Of those, only x = π

6 and x = 5π
6 lie in [0, 2π). Next, we choose

10See page 214, Example 3.1.5, page 321, page 399, Example 6.3.2 and Example 6.4.2 for discussion of this technique.
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our test values. For x = 0 we find f(0) = −1; when x = π
4 we get f

�
π
4

�
= 1 −

√
2
2 = 2−

√
2

2 ;

for x = 3π
4 we get f

�
3π
4

�
= −1 +

√
2
2 =

√
2−2
2 ; when x = π we have f(π) = 1, and lastly, for

x = 7π
4 we get f

�
7π
4

�
= −1 −

√
2
2 = −2−

√
2

2 . We see f(x) > 0 on
�
π
6 ,

π
2

�
∪
�
5π
6 , 3π2

�
, so this is

our answer. We can use the calculator to check that the graph of y = sin(2x) is indeed above
the graph of y = cos(x) on those intervals.

0

(−)

π
6

0 (+)

π
2

0 (−)

5π
6

0 (+)

3π
2

0 (−)

2π

y = sin(2x) and y = cos(x)

3. Proceeding as in the last two problems, we rewrite tan(x) ≥ 3 as tan(x) − 3 ≥ 0 and let
f(x) = tan(x) − 3. We note that on [0, 2π), f is undefined at x = π

2 and 3π
2 , so those

values will need the usual disclaimer on the sign diagram.11 Moving along to zeros, solving
f(x) = tan(x) − 3 = 0 requires the arctangent function. We find x = arctan(3) + πk for
integers k and of these, only x = arctan(3) and x = arctan(3) + π lie in [0, 2π). Since
3 > 0, we know 0 < arctan(3) < π

2 which allows us to position these zeros correctly on the
sign diagram. To choose test values, we begin with x = 0 and find f(0) = −3. Finding a
convenient test value in the interval

�
arctan(3), π2

�
is a bit more challenging. Keep in mind

that the arctangent function is increasing and is bounded above by π
2 . This means that

the number x = arctan(117) is guaranteed12 to lie between arctan(3) and π
2 . We see that

f(arctan(117)) = tan(arctan(117)) − 3 = 114. For our next test value, we take x = π and
find f(π) = −3. To find our next test value, we note that since arctan(3) < arctan(117) < π

2 ,
it follows13 that arctan(3) + π < arctan(117) + π < 3π

2 . Evaluating f at x = arctan(117) + π
yields f(arctan(117) + π) = tan(arctan(117) + π) − 3 = tan(arctan(117)) − 3 = 114. We
choose our last test value to be x = 7π

4 and find f
�
7π
4

�
= −4. Since we want f(x) ≥ 0, we

see that our answer is
�
arctan(3), π2

�
∪
�
arctan(3) + π, 3π2

�
. Using the graphs of y = tan(x)

and y = 3, we see when the graph of the former is above (or meets) the graph of the latter.

11See page 321 for a discussion of the non-standard character known as the interrobang.
12We could have chosen any value arctan(t) where t > 3.
13. . . by adding π through the inequality . . .
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0

(−)

arctan(3)

0 (+)

π
2

‽ (−)

(arctan(3) + π)

0 (+)

3π
2

‽ (−)

2π

y = tan(x) and y = 3

We close this section with an example that puts solving equations and inequalities to good use –
finding domains of functions.

Example 10.7.4. Express the domain of the following functions using extended interval notation.14

1. f(x) = csc
�
2x+ π

3

�
2. f(x) =

sin(x)

2 cos(x)− 1
3. f(x) =

�
1− cot(x)

Solution.

1. To find the domain of f(x) = csc
�
2x+ π

3

�
, we rewrite f in terms of sine as f(x) = 1

sin(2x+π
3 )
.

Since the sine function is defined everywhere, our only concern comes from zeros in the denom-
inator. Solving sin

�
2x+ π

3

�
= 0, we get x = −π

6 + π
2k for integers k. In set-builder notation,

our domain is
�
x : x �= −π

6 + π
2k for integers k

�
. To help visualize the domain, we follow the

old mantra ‘When in doubt, write it out!’ We get
�
x : x �= −π

6 ,
2π
6 ,−4π

6 , 5π6 ,−7π
6 , 8π6 , . . .

�
,

where we have kept the denominators 6 throughout to help see the pattern. Graphing the
situation on a numberline, we have

− 7π
6 − 4π

6
−π

6
2π
6

5π
6

8π
6

Proceeding as we did on page 756 in Section 10.3.1, we let xk denote the kth number excluded
from the domain and we have xk = −π

6 + π
2k = (3k−1)π

6 for integers k. The intervals which

comprise the domain are of the form (xk, xk + 1) =
�
(3k−1)π

6 , (3k+2)π
6

�
as k runs through the

integers. Using extended interval notation, we have that the domain is

∞�

k=−∞

�
(3k − 1)π

6
,
(3k + 2)π

6

�

We can check our answer by substituting in values of k to see that it matches our diagram.

14See page 756 for details about this notation.
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tanx ≥ −
√

3

���� ������� ��� ���� �������� ���� �� �� �������� ������������� �� ���� ���� �� ���������� ����� ���
������ �������� �� ����������� ������������� ������������� ��������� �� ���� ����� �� �

tanx = −
√

3
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���� ��� ����� �������

������ ����� ������� �������� �� �������� �� ������ ��� ������ ������� �

⇒ x = π − θ = π − π

3
=

2π

3

⇒ x = 2π − θ = 2π − π

3
=

5π

3
����� ������ ����� �� ������� ���� π� ������ ���������� �������� ����� �� �

⇒ y =
5π

3
− 2π = −π

3
������� ��������� �������� �� ��� � ���������� �������� ������� �π�� ��� �π��� ������� ������ ���
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√
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����� ����� �������� ���������� ���������� �� �

−π

3
≤ x <

π

2
�� �� ���� ����� ���� ��� �������� �� ���� �������� �� �������� ���� � ������ �� π� ����� �� ������ ��
������� ��������� ������ �������� �� ����� ���������� �� �

nπ − π

3
≤ x < nπ +

π

2
; n ∈ Z

������ ��������

������� ����

������� � ����� ������������� ���������� ����� �� �

sinx ≥ 1
2

�������� � ��� �������� �� ��� ������������� ����� �������� �� �������� �� �

sinx =
1
2

= sin
π

6

⇒ x =
π

6
��� ���� �������� �� �������� �� ���� ��� ������ �������� ������ ������ ����� ������� ��� ���
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⇒ x = π − θ = π − π

6
=

5π

6
���� ������ ��� ���� ���� �π�� ����� �� �� ��� ���� �� ������� ����� ���� ���������� ��������
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��� ����� ��������� �� ���� ���� ��� ����� �� ��� ������

������������� ����������

������ ����� ��������� ���������� ����������

π

6
≤ x ≤ 5π

6
��� ����������� �� ���� �������� �� ��π�� ������ �� ��� ���π� �� ������ ���� �� ��� ���� ��������
�

2nπ +
π

6
≤ x ≤ 2nπ +

5π

6
, n ∈ Z
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sinx > cosx
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sinx > cosx
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���

⇒ sinx− cosx > 0

⇒ sinxcos
π

4
− cosxsin

π

4
> 0

⇒ sin
�
x− π

4

�
> 0

��� y = x− π/4� �����

siny > 0

����� �� ��� ���� ������� ������ ������� �� ������� ������������� ���� ����������� ��� ��������
�� ��� ������������� �������� �� �������� �� �

⇒ siny = 0 = sin0

⇒ y = 0

��� ������ ����� ������� ��� ��� ��π� �� �π�� ��� ���� ��������� ���������� �� �

0 < y < π

��� ����������� �� ���� �������� �� ��π�� ������ �� ��� ���π� �� ������ ���� �� ��� ���� ��������
�

2nπ < y < 2nπ + π, n ∈ Z

��� ������������ ��� y = x− π/4� �� ���� �

2nπ < x− π

4
< 2nπ + π, n ∈ Z

⇒ 2nπ +
π

4
< x < 2nπ +

5π

4
, n ∈ Z

������� ����

������� � �� ������ �� � ��������� ������� �� ������ ���� ��� ��� ������ �� ��� ��������
����� �� �

f (2sinx− 1)

�������� � ��� ������ �� ��� �������� �� ����� ����� �� ���� �� ��� ��� ������ ����
�������� ������� �� ��� �������� �� � ������������� ����������� ��� ����� ������ �� �

0 ≤ x ≤ 1

�������� �������� �� ��� ��������� ��� ������ ������� �

0 ≤ 2sinx− 1 ≤ 1 ⇒ 1 ≤ 2sinx ≤ 2 ⇒ 1/2 ≤ sinx ≤ 1

�������� ��� ����� �� ���� �� ������� �� ����� ���� ��� ����� �������� �� ���������� �� �
������������� ���������� ����� �� �

⇒ sinx ≥ 1
2

��������� ��� ���� �� ���������� ��������������������������������������
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our test values. For x = 0 we find f(0) = −1; when x = π
4 we get f

�
π
4

�
= 1 −

√
2
2 = 2−

√
2

2 ;

for x = 3π
4 we get f

�
3π
4

�
= −1 +

√
2
2 =

√
2−2
2 ; when x = π we have f(π) = 1, and lastly, for

x = 7π
4 we get f

�
7π
4

�
= −1 −

√
2
2 = −2−

√
2

2 . We see f(x) > 0 on
�
π
6 ,

π
2

�
∪
�
5π
6 , 3π2

�
, so this is

our answer. We can use the calculator to check that the graph of y = sin(2x) is indeed above
the graph of y = cos(x) on those intervals.

0

(−)

π
6

0 (+)

π
2

0 (−)

5π
6

0 (+)

3π
2

0 (−)

2π

y = sin(2x) and y = cos(x)

3. Proceeding as in the last two problems, we rewrite tan(x) ≥ 3 as tan(x) − 3 ≥ 0 and let
f(x) = tan(x) − 3. We note that on [0, 2π), f is undefined at x = π

2 and 3π
2 , so those

values will need the usual disclaimer on the sign diagram.11 Moving along to zeros, solving
f(x) = tan(x) − 3 = 0 requires the arctangent function. We find x = arctan(3) + πk for
integers k and of these, only x = arctan(3) and x = arctan(3) + π lie in [0, 2π). Since
3 > 0, we know 0 < arctan(3) < π

2 which allows us to position these zeros correctly on the
sign diagram. To choose test values, we begin with x = 0 and find f(0) = −3. Finding a
convenient test value in the interval

�
arctan(3), π2

�
is a bit more challenging. Keep in mind

that the arctangent function is increasing and is bounded above by π
2 . This means that

the number x = arctan(117) is guaranteed12 to lie between arctan(3) and π
2 . We see that

f(arctan(117)) = tan(arctan(117)) − 3 = 114. For our next test value, we take x = π and
find f(π) = −3. To find our next test value, we note that since arctan(3) < arctan(117) < π

2 ,
it follows13 that arctan(3) + π < arctan(117) + π < 3π

2 . Evaluating f at x = arctan(117) + π
yields f(arctan(117) + π) = tan(arctan(117) + π) − 3 = tan(arctan(117)) − 3 = 114. We
choose our last test value to be x = 7π

4 and find f
�
7π
4

�
= −4. Since we want f(x) ≥ 0, we

see that our answer is
�
arctan(3), π2

�
∪
�
arctan(3) + π, 3π2

�
. Using the graphs of y = tan(x)

and y = 3, we see when the graph of the former is above (or meets) the graph of the latter.

11See page 321 for a discussion of the non-standard character known as the interrobang.
12We could have chosen any value arctan(t) where t > 3.
13. . . by adding π through the inequality . . .





You can also use graphing calculators to directly solve the trig inequality R(x) < 0 (or > 0). This 
method,  if allowed,  is  fast, accurate and convenient. To know how  to proceed,  read  the  last 
chapter of the book mentioned above (Amazon ebook 2010). 
 
EXAMPLES ON SOLVING TRIG INEQUALITIES 
 
Example 13. Solve:   (2cos x – 1)/(2cos x – 1) < 0    (0 < x < 2Pi) 
 
Solution.  
 
Step 1: The function F(x) = f(x)/g(x) = (2cos x + 1)/(2cos x – 1) < 0 is undefined when x = 2Pi/3 
and x = 4Pi/3. 
 
Step 2. Common period 2Pi.  
 
Step 3. Solve f(x) = 2cos x – 1 =  0   cos x = ½  x = Pi/3 ; x = 5Pi/3 
 
  Solve g(x) = 2cos x + 1 = 0  cos x = 1/2  x = 2Pi/3 ; x = 4Pi/3 
 
Step 4. Solve F(x) < 0, algebraically, by setting up the sign chart (sign table) 
 
x  I  0  Pi/3    2Pi/3    4Pi/3    5Pi/3    2Pi 

f(x)   I  +    0                    0    + 
 
g(x)  I  +     +    0        0    +      + 
 
F(x)  I         No    I  Yes    II  No    II   Yes    I   No 
 
Answer or solution set: (Pi/3 , 2Pi/3) ; (4Pi/3 , 5Pi/3). 
 
Example 14. Solve:  tan x + cot x < 4    (0 < x < Pi) 
 
Solution.  
 
Step 1. Transform the inequality into standard form; 
 
  sin x/cos x + cos x/sin x + 4 = 2/sin 2x + 4 < 0 
  
  F(x) = 2(2sin 2x + 1)/sin 2x < 0   undefined when x = kPi/2 and x = kPi 
 
Step 2. The  common period of F(x) is Pi since the period of sin 2x is Pi. 
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