12th lesson - Composition of functions

https://www2.karlin.mff.cuni.cz/~kuncova/en/teaching.php, kuncova@karlin.mff.cuni.cz

Exercises

Compositions

1. Let $f(x)=x^{2}$ and $g(x)=x-2$. Find
(a) $f(g(3))=1$
(b) $g(f(3))=7$
(c) $f(g(x))(x-2)^{2}$
(d) $g(f(x))=x^{2}-2$
2. Let $f(x)=4-x^{2}$ and $g(x)=\sqrt{x}$. Find
(a) $f(g(x))=4-(\sqrt{x})^{2}=4-|x|$
(b) $g(f(x))=\sqrt{4-x^{2}}$
3. Let $f(x)=3 x-8$ and $g(x)=\frac{x+8}{3}$. Find
(a) $f(g(x))=3\left(\frac{x+8}{3}\right)-8=x$
(b) $g(f(x))=\frac{(3 x-8)+8}{3}=x$
4. Express the following functions as composition:
(a) $\left(1+x^{3}\right)^{27}$ Solution: $f(g(x))$ where $f(y)=y^{27}, g(x)=1+x^{3}$
(b) $e^{-x^{2}}$ Solution: $f(g(x))$ where $f(y)=e^{y}, g(x)=-x^{2}$
(c) $-\left(e^{x}\right)^{2}$ Solution: $f(g(x))$ where $f(y)=-y^{2}, g(x)=e^{x}$
5. Find $g(f(3))$, if the f and g are at the picture:

1: http://nebula2.deanza.edu/~karl/Classes/Files/Math12/ch01.pdf

Solution: Since $f(3)=1$ and $g(1)=2$, we obtain $g(f(3))=2$.
6. The values of functions f and g can be found in the table. Find $f(g(0))$.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

Solution: Since $g(0)=2$ and $f(2)=-1$, we obtain $f(g(0))=-1$.
7. The values of functions f and g can be found in the table. Find x, if $f(g(x))=1$.

x	-2	-1	0	1	2
$f(x)$	1	0	-2	2	-1
$g(x)$	-1	1	2	0	-2

8. Look at function $h(x)$ (the pink one)
https://www.geogebra.org/calculator/zu6td6rv

Sketch
(a) $\frac{h(x)}{2}$
(b) $3 h(x)$
(c) $-2 h(x)$
(d) $h(-x)$
(e) $h(3 x)$
(f) $h(x / 2)$

9. Look at function $f(x)$ (the pink one)
https://www.geogebra.org/calculator/rcd6wsup
Sketch
(a) $f(x+1)$
(b) $f(x-1)$
(c) $f(x)+1$
(d) $f(x)-1$

10. Look at function $g(x)$ (the pink one)
https://www.geogebra.org/calculator/sa3h5jad
Sketch
(a) $|g(x)|$
(b) $g(|x|)$
(c) $-g(|x|)$
(d) $g(-|x|)$

11. Look at function $f(x)$ (the pink one)
https://www.geogebra.org/calculator/ksyvvk9z
Sketch $\frac{1}{f(x)}$

Properties

12. Let $f(x)$ and $g(x)$ be functions (with suitable domains and images).

TRUE or FALSE?
(a) Let f and g be odd. Then
i. $f+g$ is odd.

Solution: True. $(f+g)(x)=f(-x)+g(-x)=-f(x)+-g(x)=-(f+g)(x)$
ii. $f g$ is odd.

Solution: False, $f g$ is even. $(f g)(-x)=-f(x) \cdot(-(g(x)))=f(x) g(x)$
iii. $f(g)$ is odd.

Solution: True. $f(g(-x))=f(-g(x))=-f(g(x))$
(b) Let f be even, g be odd. Then
i. $f g$ is even.

Solution: False, is odd. $(f g)(-x)=f(x) \cdot(-g(x))=-(f g)(x)$
ii. $f(g)$ is even.

Solution: True. $f(g(-x))=f(-g(x))=f(g(x))$
iii. $g(f)$ is even.

Solution: True.
$g(f(-x))=g(f(x))$
iv. $g+f$ is even.

Solution: False. For example x and x^{2}.
(c) Let f and g be increasing. Then
i. $f+g$ is increasing.

Solution: True. Let $s<t$. Then $(f+g)(s)=f(s)+g(s) \leq f(t)+g(t)$.
ii. $f g$ is increasing.

Solution: False. For example x and x.
iii. $f(g)$ is increasing.

Solution: True. Let $s<t$. Then $g(s) \leq g(t)$. Hence $f(g(s)) \leq f(g(t))$.
(d) Let f be even.
i. If f is increasing on $(0, \infty)$, then f is increasing also on $(-\infty, 0)$.

Solution: False. For example x^{2}.
ii. If f is convex on $(0, \infty)$, then f is convex also on $(-\infty, 0)$.

Solution: True.
Let us use the Lemma. Since f is convex on $(0, \infty)$, then for $0<s<t<u$ we have

$$
\frac{f(t)-f(s)}{t-s} \leq \frac{f(u)-f(t)}{u-t}
$$

Because f is even, for $-u<-t<-s<0$ we then have

$$
\frac{f(-u)-f(-t)}{-u+t}=\frac{f(u)-f(t)}{-(u-t)} \leq-\frac{f(t)-f(s)}{t-s}=\frac{f(-t)-f(-s)}{-t+s}
$$

