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Chapter 1

Introduction

Without any doubt, complex analysis belongs to the most important areas
of mathematics. From its beginnings, there have been several attempts to
generalize this deep theory to higher dimensions. One possibility is to study
functions of several complex variables and this field of research has already
become a classical part of mathematics. The other possibility is to deal with
functions of one hypercomplex variable. The first attempt in this direction
was of course made in dimension 4 where W. R. Hamilton discovered an ana-
logue of complex multiplication and thus the non-commutative field of real
quaternions H. In 1930s quaternionic functions of one quaternionic variable
were investigated by G. C. Moisil, N. Théodoresco and, mainly, by R. Fueter
and his school. Unfortunately, this theory was almost forgotten for many
years and it has become popular again since 1970s, see e.g. the influential
paper [104] of A. Sudbery or the books [70] and [27]. Quaternionic analysis
studies properties of solutions of the Fueter equation

D̄f = ∂x0f + i ∂x1f + j ∂x2f + k ∂x3f = 0.

Here f is an H-valued function defined in H ' R4 and a quaternion q ∈ H is
of the form q = x0 +x1i+x2j+x3k where i, j, k are the imaginary units and
(x0, x1, x2, x3) ∈ R4. At the first sight, this equation is an obvious general-
ization of the Cauchy-Riemann equation from complex analysis. The Fueter
operator D̄ factorizes the Laplacian ∆ and hence all solutions of the Fueter
equation are (componentwise) harmonic. Moreover, the Fueter equation is
conformally invariant and, as is well-known, the only conformal mappings in
this case are quaternionic Möbius transformations. Let us note that in the
group of quaternionic Möbius transformations reversible maps are classified
in [L1], see also [90]. Recall that the reversible elements of a group are those
elements that are conjugate to their own inverse. Reversibility is also studied
in other groups, see [99, 89, 66, 65].

At the same time R. Fueter started to work on his theory similar ideas
were the centre of attention in physics. Indeed, in 1928 P. Dirac factorized
the Klein-Gordon equation (see [47]) and since then the resulting equation
called now after him has belonged to the foundations of physics. Further-
more, the Fueter equation may be understood as the Euclidean version of
the (massless) Dirac equation (see [102, 103] for details). The latter equation
may be naturally defined not only in any dimension but also on certain Rie-
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mannian manifolds and the corresponding function theory thus generalizes
both complex and quaternionic analysis.

In 1970s R. Delanghe started a systematic study of solutions of the Dirac
equation in the Euclidean space Rm which take values in the Clifford algebra
C`m over Rm such that ejek + ekej = −2δjk (see [38]). Here (e1, . . . , em) is an
orthonormal basis of Rm and the Dirac equation is defined by

∂f = e1∂x1f + · · ·+ em∂xmf = 0.

We call solutions of the Dirac equation in Rm monogenic functions. On the
one hand, as we have mentioned, monogenic functions are a higher dimen-
sional analogue of holomorphic functions of one complex variable. It turns
out that most basic results from classical function theory are still valid in
this framework, including Cauchy’s theorem, Cauchy’s integral formula, Tay-
lor and Laurent series, residue theory etc. On the other hand, as the Dirac
operator ∂ factorizes the Laplacian ∆ in the sense that ∆ = −∂2 theory of
monogenic functions which is nowadays called Clifford analysis also refines
harmonic analysis. Clifford analysis is still very active area of research full of
interesting results and with a wide range of applications, see e.g. the books
[14, 43, 64, 70, 67] on this subject.

Now we give an outline of this thesis. In Chapter 2, we recall briefly
basic facts and results from Clifford analysis needed later on. As monogenic
functions are real analytic it is obviously important to understand the struc-
ture of monogenic polynomials called often spherical monogenics. Actually,
in Chapter 3, we construct orthogonal bases for spherical monogenics taking
values in a certain subspace V of C`m. When it is not necessary to specify
the subspace V we refer to V -valued monogenic functions simply as special
monogenic functions. We shall see that it is the most interesting to take
a subspace V of C`m invariant with respect to the so-called L-action or the
H-action of the Pin group Pin(m) (or the Spin group Spin(m)).

It is well-known (see e.g. [43]) that, under the L-action, the spaces of
homogeneous spinor valued spherical monogenics form irreducible modules
and play a role of building blocks in this case (see Section 2.1.1). When,
in the even dimensional case m = 2n, the symmetry is given by the L-
action restricted to the unitary group U(n) (realized as a certain subgroup
of Spin(m)), the same role is played by homogeneous Hermitian monogenic
polynomials studied in Hermitian Clifford analysis (see Section 2.1.3). Hermi-
tian Clifford analysis has recently become a well-established field of research,
see the books [96, 37] and the papers [97, 48, 49, 50, 12, 13, 24, 19, 18, 25,
101, 16, 15, 20, L10]. Let us mention that holomorphic functions of several
complex variables are a special case of Hermitian monogenic functions.

Under the H-action, important examples of modules are given by the
spaces of homogeneous solutions of generalized Moisil-Théodoresco systems.
To be more explicit, let S ⊂ {0, 1, . . . ,m} be given and put

C`Sm =
⊕

s∈S
C`sm,

where C`sm is the space of s-vectors in C`m. Then the so-called generalized
Moisil-Théodoresco system introduced by R. Delanghe is defined as the Dirac
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equation ∂f = 0 for C`Sm-valued functions f . In recent years, there has been a
growing interest in the study and better understanding of these systems (see
[6, 42, 41, 44, 45, L8, 46, L9, 94, 95]). In this case, the spaces of homogeneous
s-vector valued spherical monogenics form irreducible modules and play a role
of building blocks, see [44, 45, L8, 46]. Let us note that, for s-vector valued
functions f , the Dirac equation ∂f = 0 is equivalent to the Hodge-de Rham
system of equations. For 1-vector valued functions, we get the Riesz system,
which has been carefully studied (see [35, 40, 28, 29, 80, 108, 88, 69]). See
Section 2.1.2 for details.

In Chapter 3, we construct complete orthogonal Appell systems for the
most important cases of special monogenic functions. Let us explain what it
means in the case of holomorphic functions. As is well-known, we can expand
a given holomorphic function f on the unit disc B2 into its Taylor series

f(z) =
∞∑

k=0

f (k)(0)

k!
zk.

The coefficients of this Taylor series may be expressed directly by the complex
derivatives of the function f at the origin due to the fact that (zk)′ = kzk−1.
In general, we say that basis elements possess the Appell property or form
the Appell system if their derivatives are equal to a multiple of another basis
element. Moreover, the powers zk form an orthogonal basis for holomorphic
functions in L2(B2), the space of square-integrable functions on B2. In what
follows, we suggest a proper analogue of the powers zk for several cases of
special monogenic functions. Actually, we show that the so-called Gelfand-
Tsetlin bases form complete orthogonal Appell systems in these cases. The
notion of the Gelfand-Tsetlin basis comes from representation theory. It is
known that even any irreducible finite dimensional module over a classical
simple Lie group has its Gelfand-Tsetlin basis (see Section 3.1.1 for details).

Already R. Fueter came with the idea to use certain homogeneous mono-
genic polynomials as a generalization of the complex powers zk and studied
the corresponding Taylor series expansions, namely, series expansions into
the so-called Fueter polynomials (see [53] and also [14, 83]). But the Fueter
polynomials are not orthogonal with respect to the L2-inner product, which is
not convenient for numerical calculations. First Appell systems of paravector-
valued monogenic polynomials were constructed by H. Malonek et. al. (see
[82], [51], [52]). These systems were orthogonal but not complete with re-
spect to the L2-inner product. Moreover, Appell systems are discussed also
in [4, 91, 92, 71, 98]. Let us note that the Appell property is connected
with the so-called hypercomplex derivative (see [83, 86, 68]). Actually, for
monogenic functions, the hypercomplex derivative coincides with the partial
derivative with respect to one (the last) variable. In [34], I. Cação and H.
Malonek succeeded in constructing an orthogonal Appell basis for the solu-
tions of the Riesz system in dimension 3. For the Riesz system, R. Delanghe
considered similar questions, see [40] and also [108], [88]. Later on S. Bock
and K. Gürlebeck described orthogonal Appell bases for quaternion valued
monogenic functions in R3 and R4 (see [10], [9], [7], [8]). In [L5], it is observed
that the complete orthogonal Appell system in R3 constructed in [10] can be
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considered as a Gelfand-Tsetlin basis. In [L6], the Gelfand-Tsetlin bases for
spherical monogenics in dimension 3 are obtained in yet another way.

The first construction of orthogonal bases for Clifford algebra valued
monogenic functions even in any dimension was given by F. Sommen, see
[100, 43]. Moreover, in dimension 3, explicit constructions using the stan-
dard bases of spherical harmonics were done also by I. Cação [28], S. Bock
and K. Gürlebeck and H. Malonek (see [30], [32], [31]). In [43, pp. 254-264],
orthogonal bases for monogenic functions in Rp+q are constructed when these
orthogonal bases are known in Rp and Rq. The construction is based on solv-
ing a Vekua-type system of partial differential equations. In [105, L7], these
bases are interpreted as Spin(p)×Spin(q)-invariant orthogonal bases and are
obtained using extremal projections. It turns out that the Gelfand-Tsetlin
bases correspond to the case when p = 1.

In Chapter 3, we show that Gelfand-Tsetlin bases form complete orthog-
onal Appell systems for spherical harmonics and for Clifford algebra valued,
spinor valued, s-vector valued and Hermitian monogenic polynomials. In
each of these cases, we describe the Gelfand-Tsetlin construction of orthog-
onal bases. According to Section 3.1.1, it is clear that the construction is
based on the branching of the corresponding homogeneous polynomials. For
example, the branching for spherical harmonics in Rm is nothing else than
their decomposition into spherical harmonics in Rm−1 multiplied by certain
embedding factors and, analogously, for other cases. The branching and
thus the Gelfand-Tsetlin basis may be obtained by the Cauchy-Kovalevskaya
method (see [43, Theorem 2.2.3, p. 315], [L5], [L9] and [L10, 20, 21, 22, 23] for
Clifford algebra valued, spinor valued, s-vector valued and Hermitian mono-
genic polynomials, respectively). Except for the hermitian case, we determine
the embedding factors in the branching quite explicitly and study the corre-
sponding Taylor series expansions. In the hermitian case, we are able so far
to describe only an inductive algorithm for a construction of Gelfand-Tsetlin
bases and to obtain explicit formulas for basis elements just in complex di-
mension 2, see [L10]. Let us note that, in Section 3.4, we give an alternative
proof of the branching for Hodge-de Rham systems. Moreover, it is worth
mentioning that, according to [L5], elements of the Gelfand-Tsetlin bases for
spinor valued spherical monogenics in dimension 3 possess the Appell prop-
erty even with respect to all variables, see Section 3.3.1. An analogous result
holds for Hodge-de Rham systems in dimension 3 (see Section 3.4.1) and for
Hermitian monogenics in complex dimension 2 (see [L10]). This might be
a great advantage for numerical calculations.

In Chapter 4, we review results about finely monogenic functions ob-
tained in a series of the papers [74, L2, L4, 75, L3, 76]. Finely monogenic
functions are a generalization of B. Fuglede’s finely holomorphic functions to
higher dimensions in the context of Clifford analysis. Another possibility is
to extend finely holomorphic functions to several complex variables, see [60]
and cf. [59]. In Section 4.1, we recall briefly the theory of finely holomorphic
functions which has been developed by B. Fuglede, A. Debiard, B. Gaveau,
T. J. Lyons and A. G. O’Farrell since 1970s. These functions are an extension
of holomorphic functions to plane domains open in a topology finer than the
Euclidean one, namely, the fine topology from potential theory. This idea
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goes back to É. Borel who tried to extend holomorphic functions to more
general domains (no longer open) in such a way that the unique continuation
property was preserved, see [11]. But his domains were rather special and
his theory never became too popular. On the other hand, it gave inspiration
to the creation of the important theory of quasi-analytic classes (on the real
line) by Denjoy, Carleman and Mandelbrojt.

In Section 4.2, we define finely monogenic functions. Moreover, we gen-
eralize several equivalent characterizations of finely holomorphic functions to
higher dimensions and we are interested in relations between the obtained
conditions. In Section 4.3, we recall some results on fine differentiability. In
particular, we know that functions in Rm which have zero fine differential on
a fine domain must be constant and that finely continuously differentiable
functions are finely locally extendable to usual continuously differentiable
functions. It is quite surprising that these results have been obtained quite
recently, see [L3] for the case of dimensionm = 2 and [62] for the general case.
Let us mention that, in [L4], the results in any dimension were also obtained
but under a mild additional assumption. Finally, in Theorem 21, we show
that, for finely continuously differentiable functions, all the conditions of Sec-
tion 4.2 are equivalent to each other. It is known that finely holomorphic
functions are infinitely fine differentiable and have the unique continuation
property. It would be interesting to clear up to what extent these properties
remain true for finely monogenic functions in any dimension.

The papers [L1] – [L10] are reprinted in the rest of this thesis.
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of Mathematics and Physics of Charles University in Prague for their support
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Brackx, H. de Schepper, P. Van Lancker and K. Gürlebeck. In this regard,
I feel very much indebted to V. Souček who has helped me to discover the
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thank my wife Hedvika and dedicate this thesis to her.
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Chapter 2

Preliminaries of hypercomplex
analysis

In this chapter, we recall some basic concepts and facts from hypercomplex
analysis needed later on.

2.1 Clifford analysis

For an account of Clifford analysis, we refer to the books [14, 43, 64, 70, 67].

The Clifford algebras R0,m and Cm. Let (e1, . . . , em) be an orthonormal
basis of the Euclidean space Rm. Let R0,m stand for the real Clifford algebra
constructed over Rm such that

ejek + ekej = −2δjk , j, k = 1, . . . ,m. (2.1)

As a basis for R0,m, one takes, for any set A = {j1, . . . , jh} ⊂ {1, . . . ,m},
the element eA = ej1 . . . ejh , with 1 ≤ j1 < j2 < · · · < jh ≤ m, together with
e∅ = 1, the identity element. The Euclidean space Rm is embedded in R0,m

by identifying (x1, . . . , xm) with the Clifford vector x =
∑m

j=1 ej xj, for which
it holds that x2 = −|x|2. The corresponding complex Clifford algebra Cm is
defined as Cm = R0,m ⊗R C. Any Clifford number a in R0,m (resp. Cm) may
thus be written as

a =
∑

A

eAaA, aA ∈ R (resp. aA ∈ C).

In what follows, we denote by C`m either the Clifford algebra R0,m or Cm.
Moreover, for s = 0, . . . ,m, a Clifford number a ∈ C`m is called an s-vector
if a =

∑
|A|=s eAaA. Here |A| is the number of elements of a set A. For each

a ∈ C`m, we have that a =
∑m

s=0[a]s for some uniquely determined s-vectors
[a]s. We call [a]s the s-vector part of a. For each a ∈ C`m, define

|a| =
(∑

A

|aA|2
)1/2

and ā =
∑

A

ēAāA
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where, for A = {j1, . . . , jh}, we put ēA = (−1)hejh . . . ej1 and āA is the
complex conjugate to aA. In particular, for a, b ∈ C`m, we have that [āb]0 =∑

A āAbA and |a|2 = [āa]0.
It is easy to see that R0,1 ' C and R0,2 ' H where H is the algebra of

real quaternions with the imaginary units i = e1, j = e2 and k = e1e2.

Monogenic functions. A function f defined and continuously differen-
tiable in an open region Ω of Rm and taking values in the Clifford algebra
C`m is called left monogenic in Ω if it satisfies the Dirac equation ∂f = 0 in
Ω. Here the Dirac operator ∂ is defined as

∂ = e1∂x1 + · · ·+ em∂xm (2.2)

and ∂f = e1∂x1f + · · ·+ em∂xmf . Due to non-commutativity of the Clifford
multiplication, we study also right monogenic functions, that is, solutions of
the equation f∂ = (∂x1f) e1 + · · · + (∂xmf) em = 0. In what follows, mono-
genic always means left monogenic unless otherwise stated. Obviously, the
Dirac operator ∂ factorizes the Laplacian ∆ = ∂2

x1
+· · ·+∂2

xm
in the sense that

∆ = −∂2. As a consequence, each monogenic function f is (componentwise)
harmonic, namely, it satisfies the Laplace equation ∆f = 0.

It turns out to be interesting to study special monogenic functions, that is,
monogenic functions taking values in a given subspace V of C`m. We shall see
below that it is the most interesting to take a subspace V of C`m invariant in
a certain sense. For a general subspace V of C`m, denote byMk(Rm, V ) the
space of k-homogeneous monogenic polynomials P : Rm → V . These spaces
are at least locally basic building blocks for V -valued monogenic functions.
To illustrate this fact, let Bm be the unit ball in Rm and let L2(Bm, C`m)
be the space of square-integrable functions f : Bm → C`m, endowed with
a C`m-valued inner product, resp. a (scalar) norm, by

(f, g)C`m =

∫

Bm

f̄ g dλm, resp. ‖f‖ =

(∫

Bm

[f̄ g]0 dλ
m

) 1
2

. (2.3)

Here λm is the Lebesgue measure in Rm. Moreover, let L2(Bm, V ) ∩ Ker ∂
be the space of L2-integrable monogenic functions f : Bm → V . The space
L2(Bm, C`m) ∩ Ker ∂ is understood as a right C`m-linear Hilbert space. For
a general subspace V of C`m, the space L2(Bm, V ) ∩ Ker ∂ forms at least
a (real or complex) Hilbert space with respect to the scalar inner product
defined by

(f, g) = [(f, g)C`m ]0. (2.4)

As is well-known, the orthogonal direct sum

∞⊕

k=0

Mk(Rm, V )

is dense in the space L2(Bm, V ) ∩ Ker ∂. Hence to construct an orthogonal
basis for the space L2(Bm, V )∩Ker ∂ it is sufficient to find orthogonal bases
in all finite dimensional subspaces Mk(Rm, V ). In particular, in Section
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3.2, we construct an orthogonal basis for the right C`m-linear Hilbert space
L2(Bm, C`m) ∩Ker ∂.

On the space Mk(Rm, V ), we also use another inner products, namely,
the L2-inner product on the unit sphere Sm in Rm and the Fischer inner
product defined, respectively, by

(P,Q)Sm =

∫

Sm

[P̄Q]0 dσ
m and (P,Q)F = [(P (∂x1 , . . . , ∂xm)Q)(x)|x=0]0.

(2.5)
Here dσm is the elementary surface element on Sm. It is well-known that, on
the spaceMk(Rm, V ), the inner products (·, ·), (·, ·)Sm and (·, ·)F are all the
same up to a multiple.

Subgroups of C`m and their representations. As is well-known, in-
side the Clifford algebra C`m we can realize the Pin group Pin(m) as the
set of finite products of unit vectors of Rm endowed with the Cliffford mul-
tiplication. Moreover, the Spin group Spin(m) is the subgroup of Pin(m)
consisting of finite products of even number of unit vectors of Rm. The
group Pin(m) (resp. Spin(m)) is a double cover of the orthogonal group
O(m) (resp. SO(m)). For C`m-valued functions f(x), there are two natural
actions of the group Pin(m), namely, the so-called L-action, given by

[L(r)(f)](x) = r f(r−1x r), r ∈ Pin(m) and x ∈ Rm, (2.6)

and the H-action, given by

[H(r)(f)](x) = r f(r−1x r) r−1, r ∈ Pin(m) and x ∈ Rm. (2.7)

Now we recall basic notions from representation theory needed later on.
LetG be a compact Lie group and let V be a real or complex finite-dimensional
vector space. Then a representation of G is a pair (V , τ) such that τ is a ho-
momorphism from G into the group Aut(V) of invertible linear transforma-
tions on V . In addition, we assume that the action τ of the group G on V is
continuous. For g ∈ G and v ∈ V , we often write shortly gv instead of τ(g)v
and we consider the representation (V , τ) as a (left) G-module.

Let V be a G-module. A subspace U of V is called a submodule of V
if it is G-invariant in the sense that gu ∈ U for each g ∈ G and u ∈ U .
The module V is said to be irreducible if it contains no submodules than
{0} and V . Moreover, let V ′ be a second G-module. Then a linear mapping
T : V → V ′ is called equivariant if T (gv) = g(Tv) for each g ∈ G and v ∈ V .
The G-modules V and V ′ are said to be equivalent if there is an equivariant
isomorphism of V onto V ′. The following simple but very useful result is
known as Schur’s lemma.

Lemma 1. Let V and V ′ be irreducible finite-dimensional G-modules.

(i) Then every equivariant mapping T : V → V ′ is either 0 or an isomor-
phism.

(ii) If V is a complex module and T : V → V is an equivariant mapping,
then there is a complex number λ such that Tv = λv, v ∈ V.
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Furthermore, it is well-known that, on a given G-module V , there exists
a G-invariant inner product (·, ·)G in the sense that (gu, gv)G = (u, v) for
each g ∈ G and u, v ∈ V . In addition, the module V can be always written
as the direct sum of irreducible submodules which is orthogonal with respect
to the inner product (·, ·)G.

It is known that all possible irreducible Spin(m)-representations can be
realized by means of monogenic and harmonic polynomials of several vector
variables, see [106]. In what follows, we deal with some explicit examples
of spin modules of monogenic functions of one vector variable. Namely, we
study G-modulesMk(Rm, V ) when the group G is Spin(m), Pin(m) or the
unitary group U(n) (realized as a subgroup of Spin(m)), the action of G
is either the L-action (2.6) or the H-action (2.7) and V is a G-invariant
subspace of C`m. Note that the inner products (2.4) and (2.5) are invariant
on these G-modules.

2.1.1 Euclidean Clifford analysis

Euclidean Clifford analysis may be understood as the study of monogenic
functions in the Euclidean space Rm under the L-action of the group Spin(m).
Let V be an arbitrary L-invariant subspace of C`m. Then the space V has an
orthogonal decomposition into irreducible pieces V = S1⊕· · ·⊕Sp with each
Sj being equivalent to a basic spinor representation for Spin(m). As a direct
consequence, the moduleMk(Rm, V ) has an orthogonal decomposition

Mk(Rm, V ) =Mk(Rm,S1)⊕ · · · ⊕Mk(Rm,Sp).

Hence, in this case, it is sufficient to study only spinor valued monogenic func-
tions. Let S be a basic spinor representation of the group Spin(m). Then,
under the L-action of Spin(m), the spacesMk(Rm,S) form irreducible mod-
ules and are mutually inequivalent. As we know, to construct an orthogonal
basis for the complex Hilbert space L2(Bm,S) ∩ Ker ∂ it is sufficient to find
orthogonal bases in the spacesMk(Rm,S), which is done in Section 3.3.

2.1.2 Generalized Moisil-Théodoresco systems

For C`m-valued monogenic functions, we now consider theH-action of Pin(m).
The Clifford algebra C`m can be viewed naturally as the graded associative
algebra

C`m =
m⊕

s=0

C`sm.

Here C`sm stands for the space of s-vectors in C`m. Actually, under the H-
action, the spaces C`sm are mutually inequivalent irreducible submodules of
C`m. For a 1-vector u and an s-vector v, the Clifford product uv splits into
the sum of an (s − 1)-vector u • v and an (s + 1)-vector u ∧ v. Indeed, we
have that uv = u • v + u ∧ v with

u • v =
1

2
(uv − (−1)svu) and u ∧ v =

1

2
(uv + (−1)svu).
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By linearity, we extend the so-called inner product u • v and the outer prod-
uct u ∧ v for a 1-vector u and an arbitrary Clifford number v ∈ C`m. In
particular, we can split the left multiplication by a 1-vector x into the outer
multiplication (x ∧) and the inner multiplication (x •), that is,

x = (x ∧) + (x •).
Analogously, the Dirac operator ∂ can be split also into two parts ∂ = ∂++∂−

where

∂+P =
m∑

j=1

ej ∧ (∂xj
P ) and ∂−P =

m∑

j=1

ej • (∂xj
P ).

Obviously, for s-vector valued polynomials P , the Dirac equation ∂P = 0 is
equivalent to the system of equations

∂+P = 0, ∂−P = 0

we call the Hodge-de Rham system. This terminology is legitimate because,
after the translation into the language of differential forms explained in [14],
the operators ∂+ and ∂− correspond to the standard de Rham differential d
and its codifferential d∗ for differential forms.

In contrast with the spinor case, it is interesting to study V -valued mono-
genic functions not only for irreducible subspaces V of the Clifford algebra
C`m. Let V be an arbitrary H-invariant subspace of C`m, that is, for some
subset S of {0, 1, . . . ,m}, we have that V = C`Sm where

C`Sm =
⊕

s∈S
C`sm.

Then the so-called generalized Moisil-Théodoresco system introduced by R.
Delanghe is defined as the Dirac equation ∂f = 0 for V -valued functions f .
In particular, denote Hs

k(Rm) =Mk(Rm, C`sm). Then the spaces Hs
k(Rm) are

just formed by homogeneous solutions of the Hodge-de Rham system. It is
well-known that, under the H-action, the spaces Hs

k(Rm) form irreducible
modules. Moreover, all non-trivial modules Hs

k(Rm) are mutually inequiva-
lent, see [44]. The following result shows that the spaces Hs

k(Rm) play a role
of building blocks in this case (see [L8, 45]).

Theorem 1. Let S ⊂ {0, 1, . . . ,m} and let S ′ = {s : s± 1 ∈ S}. Under the
H-action of Pin(m), the space Mk(Rm, C`Sm) decomposes into inequivalent
irreducible pieces as

Mk(Rm, C`Sm) =

(⊕

s∈S
Hs
k(Rm)

)
⊕
(⊕

s∈S′
((x ∧) + βs,mk−1(x •))Hs

k−1(Rm)

)

with βs,mk = −(k +m− s)/(k + s).
In particular, this decomposition is orthogonal with respect to any in-

variant inner product, including the L2-inner product and the Fischer inner
product, see (2.4) and (2.5).

By Theorem 1, to construct an orthogonal basis for the (real or complex)
Hilbert space L2(Bm, C`Sm) ∩ Ker ∂ it obviously suffices to find orthogonal
bases in the spaces Hs

k(Rm), see Theorem 14 of Section 3.4.
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2.1.3 Hermitian Clifford analysis

For an acccount of Hermitian Clifford analysis, we refer to [96, 37, 12, 13,
24, 19]. The transition to Hermitian Clifford analysis consists in adding
a complex structure J to the above Euclidean setting, that is, an SO(m)-
element J for which J2 = −1. Note that a complex structure can exist only
in the even dimensional case m = 2n. In what follows, the complex structure
J is chosen to act upon the generators e1, . . . , e2n of C2n as J [ej] = −en+j

and J [en+j] = ej for j = 1, . . . , n. Moreover, a vector variable in R2n ' Cn is
now alternatively expressed by the real variables (x1, . . . , xn, y1, . . . , yn) or the
complex variables (z1, . . . , zn, z̄1, . . . , z̄n) with zj = xj + iyj and z̄j = xj− iyj.
Then the isotropic Witt basis elements (fj, f

†
j)
n
j=1 for C2n are defined by

fj =
1

2
(ej − i en+j) and f†j = −1

2
(ej + i en+j) for j = 1, . . . , n.

The Hermitian Clifford variables z and z† are given by

z =
n∑

j=1

fj zj and z† =
n∑

j=1

f†j z̄j.

Finally, we define the Hermitian Dirac operators ∂z and ∂†z by

∂†z =
n∑

j=1

fj ∂zj
and ∂z =

n∑

j=1

f†j ∂zj

with ∂z̄j
= 1

2
(∂xj

+ i∂yj
) and ∂zj

= 1
2
(∂xj
− i∂yj

). In particular, we have that
the Dirac operator ∂ in R2n splits into the Hermitian Dirac operators as

∂ = 2(∂†z − ∂z).

As explained above, for studying monogenic functions in R2n we can
restrict ourselves to spinor valued ones. The spinor space S is realized within
the Clifford algebra C2n as

S = C2nI ∼= CnI

where I is a suitable primitive idempotent, say I = I1 . . . In with Ij = fjf
†
j,

j = 1, . . . , n. As fjI = 0, j = 1, . . . , n, we also have that S ∼=
∧†
nI where

∧†
n

stands for the complex Grassmann algebra generated by {f†1, . . . , f†n}. Hence
spinor space S decomposes further into homogeneous parts as

S =
n⊕

r=0

Sr (2.8)

with Sr = (
∧†
n)(r)I. Here (

∧†
n)(r) is the space of r-vectors of

∧†
n.

In comparison with the Euclidean setting the symmetry in the Hermitian
framework is given not by the L-action of the whole group Spin(2n) but
only its subgroup SpinJ(2n). The subgroup SpinJ(2n) is a double cover of
the group SOJ(2n), the subgroup of rotations in R2n commuting with the
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complex structure J. Let us note that the group SOJ(2n) can be seen as
a realization of the unitary group U(n). Moreover, under the action of the
group U(n), (2.8) is the decomposition of S into inequivalent irreducible
pieces Sr.

It is easy to see that, for Sr-valued functions g, the Dirac equation ∂g = 0
is equivalent to the system of equations

∂z g = 0 and ∂†z g = 0. (2.9)

A continuously differentiable function g in an open region Ω of R2n with val-
ues in the complex Clifford algebra C2n is called (left) Hermitian monogenic
in Ω if and only if it satisfies in Ω the system (2.9). As ∂ = 2(∂†z − ∂z)
Hermitian monogenicity can be regarded as a refinement of monogenicity.

Let V be an arbitrary U(n)-invariant subspace of the spinor space S, that
is, for some subset R of {0, 1, . . . , n}, we have that V = SR where

SR =
⊕

r∈R
Sr. (2.10)

Moreover, denote by Mr
a,b(Cn) the space of Sr-valued (Hermitian) mono-

genic polynomials in R2n ' Cn which are (a, b)-homogeneous, that is, a-
homogeneous in the variables (z1, . . . , zn) and at the same time b-homogeneous
in the variables (z̄1, . . . , z̄n). It is well-known that, under the action of the
group U(n), the spacesMr

a,b(Cn) are mutually inequivalent irreducible mod-
ules. By the following theorem, the spacesMr

a,b(Cn) are actually basic build-
ing blocks in the hermitian case.

Theorem 2. Let R ⊂ {0, 1, . . . , n}, let R′ = {r : r±1 ∈ R} and let SR be as
in (2.10). Then, under the action of the group U(n), the spaceMk(R2n,SR)
has a multiplicity free irreducible decomposition

Mk(R2n,SR) =

(⊕

r∈R

k⊕

a=0

Mr
a,k−a

)
⊕
(⊕

r∈R′

k−1⊕

a=0

(
z + γr,na,k−1−az

†)Mr
a,k−1−a

)

with Mr
a,b = Mr

a,b(Cn) and γr,na,b = (a + n − r)/(b + r). In particular, this
decomposition is orthogonal with respect to any invariant inner product, in-
cluding the L2-inner product and the Fischer inner product, see (2.4) and
(2.5).

Proof. See [26, 36] for a proof in the case when R = {0, 1, . . . , n}. Then
a general case is obvious.

By Theorem 2, to construct an orthogonal basis for the complex Hilbert
space L2(B2n,SR) ∩ Ker ∂ it is obviously sufficient to find orthogonal bases
in the spacesMr

a,b(Cn), which is done in [L10] (see Section 3.5).

2.2 Quaternionic analysis
Quaternionic analysis developed by R. Fueter in 1930’s can be considered as
a special case of Clifford analysis. For an account of quaternionic analysis,
we refer to [104, 70, 27].
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Denote by H the field of real quaternions. The field H can be viewed
as the Euclidean space R4 endowed with a non-commutative multiplication.
A quaternion q can be written in the form q = x0 + x1i + x2j + x3k where
x0, x1, x2, x3 are real numbers and i, j, k are the imaginary units such that

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Quaternionic analysis studies H-valued functions f defined in R4 and
satisfying the so-called Fueter equation

D̄f = ∂x0f + i ∂x1f + j ∂x2f + k ∂x3f = 0,

which is an obvious generalization of the Cauchy-Riemann equations from
complex analysis. These functions called by R. Fueter regular have analogous
properties like monogenic functions studied in Clifford analysis. For example,
the Fueter equation is conformally invariant (see [27, Theorem 4.5.1]). Recall
that, for m ≥ 3, the only conformal mappings in Rm are conformal Möbius
transformations, that is, compositions of translations, dilatations and the
inversion x → x/|x|2. This was first shown in R3 by Liouville in 1850. As
is known from a series of papers written by L. V. Ahlfors in the 1980s (see
e.g. [2]), Möbius transformations in Rm may be represented by using Clifford
algebras.

Moreover, in R4, we can use quaternions to represent Möbius transfor-
mations similarly as in R2 complex numbers. Indeed, the conformal Möbius
transformations in R4 can be identified with bijections of H∞ (the one-point
compactification of H) of the form

q → (aq + b)(cq + d)−1

where a, b, c, d ∈ H. Let us note that, in [L1], reversible maps are classified
in the group of Möbius transformations in R4. Recall that the reversible
elements of a group are those elements that are conjugate to their own inverse.
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Chapter 3

Complete orthogonal Appell
systems

In this chapter, we show that Gelfand-Tsetlin bases form complete orthogonal
Appell systems for spherical harmonics (see Section 3.1), for Clifford algebra
valued spherical monogenics (see Section 3.2), for spinor valued spherical
monogenics (see Section 3.3), for s-vector valued spherical monogenics (see
Section 3.4) and, finally, for Hermitian monogenics (see Section 3.5).

3.1 Spherical harmonics
Following [79], we construct a complete orthogonal Appell system for spher-
ical harmonics. Let us recall a standard construction of orthogonal bases in
this case. Denote by Hk(Rm) the space of complex valued harmonic polyno-
mials in Rm which are k-homogeneous. Let (e1, . . . , em) be an orthonormal
basis of the Euclidean space Rm. Then the construction of an orthogonal
basis for the space Hk(Rm) is based on the following decomposition (see [64,
p. 171])

Hk(Rm) =
k⊕

j=0

F
(k−j)
m,j Hj(Rm−1). (3.1)

This decomposition is orthogonal with respect to the L2-inner product, say,
on the unit ball Bm in Rm and the embedding factors F (k−j)

m,j are defined as
the polynomials

F
(k−j)
m,j (x) =

(j + 1)k−j
(m− 2 + 2j)k−j

|x|k−jCm/2+j−1
k−j (xm/|x|), x ∈ Rm. (3.2)

Here x = (x1, . . . , xm), |x| =
√
x2

1 + · · ·+ x2
m and Cν

k is the Gegenbauer
polynomial given by

Cν
k (z) =

[k/2]∑

i=0

(−1)i(ν)k−i
i!(k − 2i)!

(2z)k−2i with (ν)k = ν(ν+1) · · · (ν+k−1). (3.3)

The decomposition (3.1) shows that spherical harmonics in Rm can be ex-
pressed in terms of spherical harmonics in Rm−1, that is, for each P ∈
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Hk(Rm), we have that

P (x) = Pk(x) + F
(1)
m,k−1(x)Pk−1(x) + · · ·+ F

(k)
m,0(x)P0(x), x = (x, xm) ∈ Rm

for some polynomials Pj ∈ Hj(Rm−1). Of course, here F (0)
m,k = 1 and x =

(x1, . . . , xm−1).
Applying the decomposition (3.1), we easily construct an orthogonal ba-

sis of the space Hk(Rm) by induction on the dimension m. Indeed, as the
polynomials (x1 ∓ ix2)k form an orthogonal basis of the space Hk(R2) an
orthogonal basis of the space Hk(Rm) is formed by the polynomials

hk,µ(x) = (x1 ∓ ix2)k2
m∏

r=3

F
(kr−kr−1)
r,kr−1

(3.4)

where µ is an arbitrary sequence of integers (km−1, . . . , k3,±k2) such that
k = km ≥ km−1 ≥ · · · ≥ k3 ≥ k2 ≥ 0. Furthermore, we have taken the
normalization of the embedding factors F (k−j)

m,j so that the basis elements
hk,µ possess the following Appell property.

Theorem 3. Let m ≥ 3 and let hk,µ be the basis elements of the spaces
Hk(Rm) defined in (3.4) with µ = (km−1, . . . , k3,±k2). Then we have that

(i) ∂xmhk,µ = 0 for k = km−1;

(ii) ∂xmhk,µ = k hk−1,µ for k > km−1;

(iii) ∂k2± ∂k3−k2x3
· · · ∂k−km−1

xm
hk,µ = k! where ∂± = (1/2)(∂x1 ± i∂x2).

Proof. The statement (i) follows from the fact that F (0)
m,j = 1. Using standard

formulas for Gegenbauer polynomials (see [3]), it is easy to verify that, for k >
j, ∂xmF

(k−j)
m,j = k F

(k−1−j)
m,j , which implies (ii). Finally, we get (iii) by applying

(ii) several times and by the fact that ∂± (x1 ∓ ix2)k = k (x1 ∓ ix2)k−1.

To summarize, we have constructed a complete orthogonal Appell system
for the complex Hilbert space L2(Bm,C) ∩ Ker ∆ of L2-integrable harmonic
functions g : Bm → C. Here Bm is the unit ball in Rm. Indeed, we have the
following result.

Theorem 4. Let m ≥ 3 and, for each k ∈ N0, denote by Nm
k the set of

sequences (km−1, . . . , k3,±k2) of integers such that k ≥ km−1 ≥ · · · ≥ k3 ≥
k2 ≥ 0.

(a) Then an orthogonal basis of the space L2(Bm,C) ∩Ker ∆ is formed by
the polynomials hk,µ for k ∈ N0 and µ ∈ Nm

k . Here the basis elements
hk,µ are defined in (3.4).

(b) Each function g ∈ L2(Bm,C) ∩ Ker ∆ has a unique orthogonal series
expansion

g =
∞∑

k=0

∑

µ∈Nm
k

tk,µ(g) hk,µ (3.5)
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for some complex coefficients tk,µ(g).

In addition, for µ = (km−1, . . . , k3,±k2) ∈ Nm
k , we have that

tk,µ(g) =
1

k!
∂k2± ∂

k3−k2
x3

· · · ∂k−km−1
xm

g(x)|x=0 (3.6)

with ∂± = (1/2)(∂x1 ± i∂x2).

Proof. It is well-known that the orthogonal direct sum

∞⊕

k=0

Hk(Rm)

is dense in the space L2(Bm,C) ∩Ker ∆, which gives (a). The formula (3.6)
then follows directly from the Appell property of the basis elements, namely,
from (iii) of Theorem 3.

For a function g ∈ L2(Bm,C) ∩ Ker ∆, we call the orthogonal series ex-
pansion (3.5) its generalized Taylor series.

From the point of view of representation theory, the space Hk(Rm) forms
an irreducible module under the action of the group Spin(m), defined by

[h(s)(P )](x) = P (s−1xs), s ∈ Spin(m) and x ∈ Rm,

whenm ≥ 3. Under the action of Spin(2), the moduleHk(R2) decomposes as
Hk(R2) = 〈(x1 + ix2)k〉∪〈(x1− ix2)k〉. Here 〈M〉 stands for the linear span of
a set M. See [64, Chapter 3] for details. We show that the constructed basis
(3.4) is actually a Gelfand-Tsetlin basis of the Spin(m)-module Hk(Rm).

3.1.1 Gelfand-Tsetlin bases for spin modules

Now we recall an abstract definition of a Gelfand-Tsetlin basis for any given
irreducible finite dimensional Spin(m)-module V (see [63, 87]). We assume
that the space V is endowed with an invariant inner product.

The first step of the construction of a Gelfand-Tsetlin basis consists in
reducing the symmetry to the group Spin(m − 1), realized as the subgroup
of Spin(m) describing rotations fixing the last vector em. It turns out that,
under the action of the group Spin(m − 1), the module V is reducible and
decomposes into a multiplicity free direct sum of irreducible Spin(m − 1)-
submodules

V =
⊕

µm−1

V (µm−1). (3.7)

This irreducible decomposition is multiplicity free and so it is orthogonal. Let
us remark that, in representation theory, the decomposition (3.7) is called
the branching of the module V .

Of course, we can further reduce the symmetry to the group Spin(m−2),
the subgroup of Spin(m) describing rotations fixing the last two vectors
em−1, em. Then we can again decompose each piece V (µm−1) of the decom-
position (3.7) into irreducible Spin(m−2)-submodules V (µm−1, µm−2) and so
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on. Hence we end up with the decomposition of the given Spin(m)-module
V into irreducible Spin(2)-modules V (µ). Moreover, any such module V (µ)
is uniquely determined by the sequence of labels

µ = (µm−1, . . . , µ2). (3.8)

To summarize, the given module V is the direct sum of irreducible Spin(2)-
modules

V =
⊕

µ

V (µ). (3.9)

Moreover, the decomposition (3.9) is obviously orthogonal. Now it is easy
to obtain an orthogonal basis of the space V. Indeed, as each irreducible
Spin(2)-module V (µ) is one-dimensional we easily construct a basis of the
space V by taking a non-zero vector e(µ) from each piece V (µ). The obtained
basis E = {e(µ)}µ is called a Gelfand-Tsetlin basis of the module V. By
construction, the basis E is orthogonal with respect to any invariant inner
product given on the module V . Moreover, each vector e(µ) ∈ E is uniquely
determined by its index µ up to a scalar multiple. In other words, for the
given orthonormal basis (e1, . . . , em) of Rm, the Gelfand-Tsetlin basis E is
uniquely determined up to a normalization.

It is easily seen that, for the Spin(m)-moduleHk(Rm), the decomposition
(3.1) is nothing else than its branching and, consequently, the basis (3.4) is
obviously its Gelfand-Tsetlin basis, uniquely determined by the property (iii)
of Theorem 3. Moreover, the Appell property described in Theorem 3 is not
a coincidence but, by Schur’s lemma (see Lemma 1), the consequence of
the fact that ∂xm is an invariant operator under the action of the subgroup
Spin(m− 1).

3.2 Clifford algebra valued spherical monogen-
ics

Following [79], we construct a complete orthogonal Appell system for Clif-
ford algebra valued spherical monogenics. Denote by C`m either the Clifford
algebra R0,m or Cm. For notation, see Section 2.1. First we construct an
orthogonal basis for the space Mk(Rm, C`m) of k-homogeneous monogenic
polynomials P : Rm → C`m, endowed with a C`m-valued inner product (2.3).
We want to proceed as in the harmonic case so we need to express spherical
monogenics in Rm in terms of spherical monogenics in Rm−1, which is done
in the following theorem.

Theorem 5. The spaceMk(Rm, C`m) has the orthogonal decomposition

Mk(Rm, C`m) =
k⊕

j=0

X
(k−j)
m,j Mj(Rm−1, C`m). (3.10)

Here the embedding factors X(k−j)
m,j are defined as the polynomials

X
(k−j)
m,j (x) = F

(k−j)
m,j +

j + 1

m+ 2j − 1
F

(k−j−1)
m,j+1 xem, x = (x, xm) ∈ Rm (3.11)
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with x = x1e1 + · · ·+ xm−1em−1, F
(k−j)
m,j defined in (3.2) and F (−1)

m,k+1 = 0.

Proof. See [43, Theorem 2.2.3, p. 315] for a proof. Denote by Pk(Rm−1, C`m)
the space of k-homogeneous polynomials P : Rm−1 → C`m. Then, in the
proof, the decomposition (3.10) is obtained by applying the Cauchy-Kovalevskaya
extension operator CK = exmem∂ to the Fischer decomposition of the space
Pk(Rm−1, C`m), that is,

Pk(Rm−1, C`m) =
k⊕

j=0

(xem)k−jMj(Rm−1, C`m). (3.12)

Here ∂ = e1∂x1 + · · ·+ em−1∂xm−1 . Indeed, it holds that

CK(Pk(Rm−1, C`m)) =Mk(Rm, C`m)

and, for each P ∈Mj(Rm−1, C`m), we have that

CK((xem)k−jP (x)) = µ
(k−j)
m,j X

(k−j)
m,j (x)P (x)

where the non-zero constants µ(k−j)
m,j are defined as µ(2l)

m,j = (−1)l(C
m/2+j−1
2l (0))−1

and µ(2l+1)
m,j = (−1)l m+2j+2l−1

m+2j−2
(C

m/2+j
2l (0))−1 (see [L5, Lemma 1]). We want to

have a decomposition analogous to (3.10) also for spinor valued polynomi-
als (see (3.17) below) and therefore we have used the Fischer decomposition
(3.12) given in terms of powers of xem and not x as usual. Moreover, we
have chosen a different normalization of the embedding factors X(k−j)

m,j than
in [43, L5], namely, we have omitted the constants µ(k−j)

m,j .

Using the decomposition (3.10), we easily construct an orthogonal basis
of the spaceMk(Rm, C`m) by induction on the dimension m as explained in
[43, pp. 262-264]. Indeed, as the polynomial (x1 − e12x2)k2 forms a basis
ofMk2(R2, C`2) an orthogonal basis of the spaceMk(Rm, C`m) is formed by
the polynomials

fk,µ = X
(k−km−1)
m,km−1

X
(km−1−km−2)
m−1,km−2

· · ·X(k3−k2)
3,k2

(x1 − e12x2)k2 (3.13)

where µ is an arbitrary sequence of integers (km−1, . . . , k2) such that k =
km ≥ km−1 ≥ · · · ≥ k3 ≥ k2 ≥ 0. Here e12 = e1e2. Due to non-commutativity
of the Clifford multiplication the order of factors in the product (3.13) is
important. It is easy to see that the basis elements fk,µ possess again the
Appell property.

Theorem 6. Let m ≥ 3 and let fk,µ be the basis elements of the spaces
Mk(Rm, C`m) defined in (3.13) with µ = (km−1, . . . , k2). Then we have that

(i) ∂xmfk,µ = 0 for k = km−1;

(ii) ∂xmfk,µ = k fk−1,µ for k > km−1;

(iii) ∂k212 ∂
k3−k2
x3

· · · ∂k−km−1
xm

fk,µ = k! where ∂12 = (1/2)(∂x1 + e12∂x2).

Proof. It is obvious from the fact that, for k > j, ∂xmX
(k−j)
m,j = k X

(k−j−1)
m,j

and X(0)
m,j = 1.
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Actually, we have constructed a complete orthogonal Appell system for
the right C`m-linear Hilbert space L2(Bm, C`m)∩Ker ∂ of L2-integrable mono-
genic functions g : Bm → C`m. Indeed, we have obtained the following result.

Theorem 7. Let m ≥ 3 and, for each k ∈ N0, denote by Jmk the set of
sequences (km−1, km−2, . . . , k2) of integers such that k ≥ km−1 ≥ · · · ≥ k3 ≥
k2 ≥ 0.

(a) Then an orthogonal basis of the space L2(Bm, C`m)∩Ker ∂ is formed by
the polynomials fk,µ for k ∈ N0 and µ ∈ Jmk . Here the basis elements
fk,µ are defined in (3.13).

(b) Each function g ∈ L2(Bm, C`m) ∩Ker ∂ has a unique orthogonal series
expansion

g =
∞∑

k=0

∑

µ∈Jm
k

fk,µ tk,µ(g) (3.14)

for some coefficients tk,µ(g) of C`m.
In addition, for µ = (km−1, . . . , k2) ∈ Jmk , we have that

tk,µ(g) =
1

k!
∂k212∂

k3−k2
x3

· · · ∂k−km−1
xm

g(x)|x=0

with ∂12 = (1/2)(∂x1 + e12∂x2).

For a function g ∈ L2(Bm, C`m) ∩ Ker ∂, we call the orthogonal series
expansion (3.14) its generalized Taylor series.

In the next section, we show that the studied bases can be interpreted as
Gelfand-Tsetlin bases at least for spinor valued spherical monogenics.

3.3 Spinor valued spherical monogenics
Following [79], we adapt the results obtained in the previous section for spinor
valued spherical monogenics. As is well known, the Lie algebra spin(m) of
the group Spin(m) can be realized as the space of bivectors, that is,

spin(m) = 〈e12, e13, . . . , em−1,m〉

with eij = eiej. Let S be a basic spinor representation of the group Spin(m)
and let Mk(Rm,S) be the space of k-homogeneous monogenic polynomials
P : Rm → S. Then it is well-known that the space Mk(Rm,S) forms an
irreducible module under the L-action of the group Spin(m). Now we recall
an explicit realization of the space S. For j = 1, . . . , n, put

wj =
1

2
(e2j−1 + ie2j), wj =

1

2
(−e2j−1 + ie2j) and Ij = wjwj.

Then I1, . . . , In are mutually commuting idempotent elements in C2n. More-
over, I = I1I2 · · · In is a primitive idempotent in C2n and S2n = C2nI is
a minimal left ideal in C2n. Putting W = 〈w1, . . . , wn〉, we have that

S2n = Λ(W )I, S+
2n = Λ+(W )I and S−2n = Λ−(W )I (3.15)
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where Λ(W ) is the exterior algebra over W with the even part Λ+(W ) and
the odd part Λ−(W ). Putting θ2n = (−i)ne1e2 · · · e2n, we have that

S±2n = {u ∈ S2n : θ2nu = ±u}. (3.16)

Let us recall that S±2n are just two inequivalent basic spinor representations
of the group Spin(2n). On the other hand, there exists only a unique basic
spinor representation S of the group Spin(2n − 1) and, as Spin(2n − 1)-
modules, the modules S±2n are both equivalent to S. See [43, pp. 114-118] for
details.

In what follows, we explicitly construct a Gelfand-Tsetlin basis for the
space Mk(Rm,S). First we recall the branching for spherical monogenics
described in [L5]. When you adapt the decomposition (3.10) for spinor valued
polynomials you get obviously

Mk(Rm, S) =
k⊕

j=0

X
(k−j)
m,j Mj(Rm−1,S). (3.17)

Indeed, it is easy to see that by multiplying S-valued polynomials in Rm−1

with the embedding factors X(k−j)
m,j from the left you get S-valued polynomials

in Rm. In the even dimensional case m = 2n, the decomposition (3.17)
describes the branching of the moduleMk(Rm, S), that is, its decomposition
into Spin(m− 1)-irreducible submodules. In the odd dimensional case m =
2n − 1, under the action of Spin(2n − 2), the module S splits into two
inequivalent submodules S± ' S±2n−2 and so each module Mj(R2n−2,S) in
(3.17) decomposes further as

Mj(R2n−2,S) =Mj(R2n−2, S+)⊕Mj(R2n−2,S−).

See [L5, Theorems 1 and 2] for details.
Using the decomposition (3.17), it is easy to construct Gelfand-Tsetlin

bases for the module Mk(Rm,S) by induction on the dimension m. Let
m = 2n or m = 2n−1. To do this we need to describe a Gelfand-Tsetlin basis
of the space S itself. The space S is a basic spinor representation for Spin(m).
As Spin(2n− 2)-module, the space S has the irreducible decomposition S =
S+⊕S−. By reducing the symmetry to Spin(2n−4), the pieces S± themselves
further decompose and so on. Indeed, for j = 0, . . . , n− 1, denote by Sj the
set of sequences of the length j consisting of the signs ±. For each ν ∈ Sj,
define (by induction on j) the subset Sν of the set S such that S∅ = S and,
for ν = (ν,±), we have that Sν = (Sν)±. Put Sm = Sn−1. Then we get the
following decomposition of the space S into irreducible Spin(2)-submodules

S =
⊕

ν∈Sm

Sν with Sν = 〈vν〉 (3.18)

where, in each 1-dimensional piece Sν , we have chosen an arbitrary non-
zero element vν . The last ingredient is to describe Gelfand-Tsetlin bases
for spherical monogenics in dimension 2. Obviously, for a given ν ∈ Sm
and k ∈ N0, the polynomial (x1 − e12x2)kvν forms a Gelfand-Tsetlin basis of
Mk(R2,Sν). To summarize, we have proved the following result.
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Theorem 8. Let m ≥ 3 and let S be a basic spinor representation of
Spin(m).

(i) Then a Gelfand-Tsetlin basis of the Spin(m)-module Mk(Rm,S) is
formed by the polynomials

f νk,µ = fk,µ v
ν (3.19)

where ν ∈ Sm and µ ∈ Jmk . Here fk,µ are as in Theorem 7 and Sm and
vν as in (3.18).

In addition, the basis (3.19) is orthogonal with respect to any invariant
inner product on the moduleMk(Rm,S), including the L2-inner product
and the Fischer inner product.

(ii) The Gelfand-Tsetlin basis (3.19) is uniquely determined by the property
that, for each ν = (ν,±) ∈ Sm and µ = (km−1, km−2, . . . , k2) ∈ Jmk ,

∂k2± ∂k3−k2x3
· · · ∂k−km−1

xm
f νk,µ = k! vν . (3.20)

Here ∂± = (1/2)(∂x1 ± i∂x2).

Proof. The statement (i) is obvious. The Appell property (3.20) follows
directly from the statement (iii) of Theorem 6 and the fact that, for ν =
(ν,±), we have that e12v

ν = ±ivν and hence (x1− e12x2)kvν = (x1∓ ix2)kvν .

Remark 1. In (3.15) above, we realize the space S = S±2n inside the Clifford
algebra C2n as

S = Λs(w1, . . . , wn)I with s = ±.
It is not difficult to find generators of 1-dimensional pieces Sν of S. Indeed,
we have that

S± = Λ±(w1, . . . , wn−1)I±

where, for s = +, we put I+ = I and I− = wnI and, for s = −, obviously
I+ = wnI and I− = I. Hence, by induction on j, we deduce easily that, for
s, t ∈ {±} and ν = (ν, s, t) ∈ Sj, we have that

Sν = Λt(w1, . . . , wn−j)I
ν

where we put I(ν,+,+) = I(ν,+), I(ν,+,−) = wn−j+1I
(ν,+), I(ν,−,+) = wn−j+1I

(ν,−)

and I(ν,−,−) = I(ν,−). In particular, we have that Sν ' St2(n−j). Finally, for
each ν ∈ Sm = Sn−1, the 1-dimensional piece Sν is generated by the element

vν =

{
Iν , ν = (ν,+);

w1I
ν , ν = (ν,−).

(3.21)

It is easy to see that
for S = S+

4 , we have that v+ = I and v− = w1w2I;
for S = S−4 , we have that v+ = w2I and v− = w1I;
for S = S+

6 , v
++ = I, v+− = w1w2I, v−+ = w2w3I, v−− = w1w3I;

for S = S−6 , v++ = w3I, v+− = w1w2w3I, v−+ = w2I and v−− = w1I.
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In fact, we have constructed a complete orthogonal Appell system for the
complex Hilbert space L2(Bm, S)∩Ker ∂ of L2-integrable monogenic functions
g : Bm → S. Indeed, using Theorem 8, we easily obtain the following result.

Theorem 9. Let m ≥ 3 and let S be a basic spinor representation for
Spin(m).

(a) Then an orthogonal basis of the space L2(Bm,S) ∩ Ker ∂ is formed by
the polynomials f νk,µ for k ∈ N0, µ ∈ Jmk and ν ∈ Sm. Here the basis
elements f νk,µ are defined in Theorem 8.

(b) Each function g ∈ L2(Bm,S) ∩ Ker ∂ has a unique orthogonal series
expansion

g =
∞∑

k=0

∑

ν∈Sm

∑

µ∈Jm
k

tνk,µ(g) f νk,µ (3.22)

for some complex coefficients tνk,µ(g).

In addition, let g =
∑

ν∈Sm gνvν for some complex functions gν on Bm.
Then, for µ = (km−1, . . . , k2) ∈ Jmk and ν = (ν,±) ∈ Sm, we have that

tνk,µ(g) =
1

k!
∂k2± ∂k3−k2x3

· · · ∂k−km−1
xm

gν(x)|x=0

with ∂± = (1/2)(∂x1 ± i∂x2).

For a function g ∈ L2(Bm,S)∩Ker ∂, we call the orthogonal series expan-
sion (3.22) its generalized Taylor series.
Remark 2. Of course, there is a close connection between the generalized
Taylor series expansions from Theorem 7 and Theorem 9. Indeed, we can
always realize the spinor space S inside the Clifford algebra Cm and then, for
each g ∈ L2(Bm,S) ∩Ker ∂, we have that

tk,µ(g) =
∑

ν∈Sm

tνk,µ(g) vν .

3.3.1 The generalized Appell property in dimension 3

According to [L5], we recall briefly a construction of Gelfand-Tsetlin bases
for Spin(3)-modulesMk(R3,S) using the Cauchy-Kovalevskaya method and
the fact that the basis elements in this case possess the Appell property
even with respect to all variables. As a Spin(2)-module, the space S is
reducible and decomposes into two parts S = S+ ⊕ S−. Let v± be gener-
ators of S±, that is, S± = 〈v±〉. Put z = x1 + ix2 and z = x1 − ix2. As
is well-known, the Spin(2)-modules Pk(R2,S±) decompose into inequivalent
irreducible Spin(2)-submodules as

Pk(R2,S±) =
k⊕

j=0

〈zjzk−jv±〉. (3.23)

In particular, we have thatMk(R2,S+) = 〈zkv+〉 andMk(R2,S−) = 〈zkv−〉.
Applying the Cauchy-Kovalevskaya extension operator to the Fischer decom-
position (3.23) we get the following result (see [L5]).
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Proposition 1. Denote ∂ = e1∂x1 + e2∂x2. Then, for each k ∈ N0, the
polynomials

fk2j = ex3e3∂ (
zjzk−j

j!(k − j)! v
+) and fk2j+1 = ex3e3∂ (

zjzk−j

j!(k − j)! v
−), j = 0, . . . , k

form a Gelfand-Tsetlin basis of the irreducible Spin(3)-moduleMk(R3,S).

For the sake of explicitness, we limit ourselves to the case when S = S+
4

or S = S−4 . In the former case, we put v+ = I and v− = w1w2I. In the latter
case, we put v+ = w2I and v− = w1I. See Remark 1 of Section 3.3. In [L5],
the basis elements fkj are expressed explicitly using hypergeometric series
2F1. Moreover, in [L6], explicit formulae for the basis elements in spherical
coordinates are given in terms of the Legendre polynomials. In Theorem 8
above, we expressed elements of Gelfand-Tsetlin bases for spherical mono-
genics in terms of Gegenbauer polynomials not only in dimension 3 but even
in any dimension. In Proposition 2 below, we collect basic properties of
Gelfand-Tsetlin bases in dimension 3.

Proposition 2. Let {fk0 , . . . , fk2k+1} be the Gelfand-Tsetlin bases ofMk(R3,S±4 )
defined in Proposition 1. Then the following statements hold.

(a) For each k ∈ N and j = 0, . . . , 2k + 1, we have that

∂zf
k
j = fk−1

j−2 , ∂zf
k
j = fk−1

j and ∂x3f
k
j = ∓(−1)j2 fk−1

j−1 .

Here fk−1
j = 0 unless j = 0, . . . , 2k + 1.

(b) For k ∈ N0 and j = 0, . . . , 2k + 1, there are non-zero constants dkj such
that the polynomials f̂kj = dkjf

k
j satisfy

(b1) f̂k0 = zkv+ and f̂k2k+1 = zkv−

(b2) For j = 1, . . . , 2k, we have that ∂x3 f̂
k
j = k f̂k−1

j−1 .

(c) Moreover, {f̂k0 , . . . , f̂k2k+1} are the Gelfand-Tsetlin bases of the modules
Mk(R3,S), uniquely determined by the properties (b1) and (b2).

For a proof of Proposition 2, see [L5]. Let us remark only that the state-
ment (a) of Proposition 2 follows easily from the formula

∂x3(e
x3e3∂f) = ex3e3∂(e3∂f)

and from the fact that the derivatives ∂z and ∂z both commute with the
operator ex3e3∂.

In Figure 3.1, structural properties of the Gelfand-Tsetlin bases in this
case are shown. In the k-th column of Figure 3.1, the decomposition of the
Spin(3)-module

Mk =Mk(R3,S)

into irreducible Spin(2)-submodules can be found. By Proposition 2, we
know that the application of the derivative ∂x3 to basis elements causes the
shift in a given row to the left, the derivative ∂z moves them diagonally
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M0 M1 M2 · · ·
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1 〉OO

��

oo

}}{{{{{{{{
· · ·

〈f̂ 0
0 〉OO

��

〈f̂ 1
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��

∂x3oo
OO

��}}{{{{{{{{
〈f̂ 2

2 〉OO

��

oo

aaCCCCCCCC

}}{{{{{{{{
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OO

〈f̂ 0
1 〉 〈f̂ 1

2 〉OO

��

∂x3oo
OO

��

aaCCCCCCCC

〈f̂ 2
3 〉OO

��

oo

}}{{{{{{{{

aaCCCCCCCC

· · ·

X̃−

��〈f̂ 1
3 〉

aaCCCCCCCC

〈f̂ 2
4 〉OO

��

oo

aaCCCCCCCC

〈f̂ 2
5 〉

∂z

aaCCCCCCCC

· · ·

Figure 3.1: The decomposition of the modulesMk =Mk(R3, S).

downward and ∂z diagonally upward. In other words, the Gelfand-Tsetlin
bases in this case possess the Appell property not only with respect to the
last real variable x3 but also with respect to the complex variables z and
z. Furthermore, in [L6], it is shown that the spaces Mk(R3,S) can be also
considered as irreducible modules over the Lie algebra sl(2,C) generated by
the operators H̃ = −i(x2∂x1 − x1∂x2 + e12/2),

X̃+ = −2x3
∂

∂z
+z

∂

∂x3

+
1

2
(e31+ie23) and X̃− = 2x3

∂

∂z
−z ∂

∂x3

−1

2
(e31−ie23).

In particular, the operators X̃+ and X̃− move basis elements in a given
column upward and downward, respectively. Moreover, each basis element
f̂kj is an eigenvector of the operator H̃ with the eigenvalue k − j + 1/2 and
all eigenvectors f̂kj with the same eigenvalue are collected in the same row.

3.4 Hodge-de Rham systems
In this section, we construct Gelfand-Tsetlin bases for the spaces Hs

k(Rm) of
k-homogeneous monogenic polynomials P : Rm → C`sm. Here C`sm stands for
the space of s-vectors in C`m. For notation, see Section 2.1.2.

Remark 3. Obviously, we have that Hs
k(Rm) = {0} for s ∈ {0,m} and k ≥ 1.

In the case when C`m = R0,m (resp. Cm), we have that H0
0(Rm) = R (resp.

C) and Hm
0 (Rm) = R e∗M (resp. C e∗M) with e∗M = emem−1 · · · e1.

As we know, the space Hs
k(Rm) forms an irreducible module under the H-

action of the Pin group Pin(m). Moreover, all non-trivial modules Hs
k(Rm)
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are mutually inequivalent, see [44]. The key step for constructing the Gelfand-
Tsetlin bases is to understand the branching of the module Hs

k(Rm).

Theorem 10. Let m ≥ 3, s = 0, . . . ,m and k ∈ N0. Denote by N s,m
k the

set of pairs (t, j) ∈ {0, . . . ,m− 1} × {0, . . . , k} such that t ∈ {s− 1, s} and,
if t ∈ {0,m − 1} then j = 0. Then, under the H-action of Pin(m − 1), we
have the following multiplicity free irreducible decomposition

Hs
k(Rm) =

⊕

(t,j)∈Ns,m
k

Xs,t,m
k,j Ht

j(Rm−1). (3.24)

Here the embedding factors Xs,t,m
k,j are defined as the polynomials

Xs,t,m
k,j (x) = X

(k−j)
m,j (x)es−tm + α X

(k−1−j)
m,j+1 (x)(βt−s(x ∧) + βt−s+1 (x •)) es−t+1

m

where x = (x, xm) ∈ Rm, X(k−j)
m,j are given in (3.11), X(−1)

m,k+1 = 0,
β = −(j +m− 1− t)/(j + t) and

α =

{
−(j + 1)/(m+ 2j − 1) unless t = 0,m− 1;

0 if t = 0,m− 1.

In particular, this decomposition is orthogonal.

Proof. In [L9], a proof is given by the Cauchy-Kovalevskaya method. Let Isk
be the set of initial polynomials for the space Hs

k(Rm), that is, Isk is a subset
of Pk(Rm−1, C`m) such that CK(Isk) = Hs

k(Rm). Then, in [L9], it is shown
that

Isk = Kersk ∂
+ ⊕ (Kers−1

k ∂−)em

where Kersk ∂
± = {u ∈ Pk(Rm−1, C`sm) | ∂±u = 0}. The branching (3.24) for

Hs
k(Rm) is obtained by applying the operator CK = exmem∂ to the irreducible

decomposition of the module Isk under the H-action of Pin(m− 1). See [L9]
for details.

Now we give an alternative proof. It is a well-known fact from represen-
tation theory that, under the H-action of Pin(m − 1), the module Hs

k(Rm)
possesses the decomposition

Hs
k(Rm) =

⊕

(t,j)∈Ns,m
k

H̃t
j

into irreducible submodules H̃t
j equivalent to Ht

j(Rm−1). To get (3.24) we
need to describe explicitly the pieces H̃t

j in the decomposition. To do this,
we recall that, under the H-action of Pin(m), the space Mk(Rm, C`m) de-
composes into inequivalent irreducible pieces as

Mk(Rm, C`m) =

(
m⊕

s=0

Hs
k(Rm)

)
⊕
(
m−1⊕

s=1

((x ∧) + βs,mk−1(x •))Hs
k−1(Rm)

)

(3.25)
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with βs,mk = −(k + m− s)/(k + s) (see Theorem 1). On the other hand, by
(3.10), we have that

Mk(Rm, C`m) =
k⊕

j=0

X
(k−j)
m,j Mj(Rm−1, C`m). (3.26)

As C`m = C`m−1 ⊕ em C`m−1 each space Mj(Rm−1, C`m) in (3.26) decom-
poses further asMj(Rm−1, C`m) =Mj(Rm−1, C`m−1)⊕emMj(Rm−1, C`m−1).
Finally, the spacesMj(Rm−1, C`m−1) possess the irreducible decompositions
(3.25) under the H-action of Pin(m− 1). As a result, we have decomposed
the spaceMk(Rm, C`m) into Pin(m− 1)-irreducible pieces

X
(k−j)
m,j erm Ht

j(Rm−1) and X(k−j)
m,j ((x ∧) + βt,m−1

j−1 (x •))erm Ht
j−1(Rm−1) (3.27)

where t = 0, . . . ,m − 1, j = 0, . . . , k and t = 1, . . . ,m − 2, j = 1, . . . , k,
respectively, and r = 0, 1. Now it is easy to find the submodule H̃t

j equivalent
to Ht

j(Rm−1) inside Hs
k(Rm). Indeed, by (3.27), it is sufficient to choose

a constant α̃ such that, for

Xs,t,m
k,j (x) = X

(k−j)
m,j (x)es−tm + α̃ X

(k−1−j)
m,j+1 (x)((x ∧) + βt,m−1

j (x •)) es−t+1
m ,

we have that Xs,t,m
k,j Ht

j(Rm−1) ⊂ Hs
k(Rm). As we know that

Xs,t,m
k,j Ht

j(Rm−1) ⊂Mk(Rm, C`m)

it is sufficient to take the constant α̃ such that the piece Xs,t,m
k,j Ht

j(Rm−1)
contains only s-vector valued polynomials. But, recalling the definition (3.11)
of the factors X(k−j)

m,j , this is not difficult to do.

Using Theorem 10, we easily construct Gelfand-Tsetlin bases of the mod-
ules Hs

k(Rm) by induction on the dimension m.
Example 1. First we construct Gelfand-Tsetlin bases for Hodge-de Rham
systems in dimension 2. Indeed, the following statements are obvious.

(i) For s ∈ {0, 2}, the Gelfand-Tsetlin basis for Hs
0(R2) is formed by the

unique element f s0 = es,0 with e0,0 = 1 and e2,2 = e21.

(ii) Let C`2 = R0,2. Then, for k ∈ N0, the Gelfand-Tsetlin basis for H1
k(R2)

consists of two polynomials f±1
k (x) = (x1 − e12x2)ke1,±1 with e1,1 = e1 and

e1,−1 = e2.

(iii) Let C`2 = C2. Then, for k ∈ N0, the Gelfand-Tsetlin basis for H1
k(R2)

consists of two polynomials f±1
k (x) = (x1 ∓ ix2)ke1,±1 with e1,±1 = e1 ∓ ie2.

(iv) Otherwise, the spaces Hs
k(R2) are trivial.

Theorem 11. Let m ≥ 3. Denote by Is,mk the set of pairs (ν, µ) such that
the sequences

ν = (sm−1, . . . , s3, t2), µ = (km−1, km−1, . . . , k2)

of integers, km = k, sm = s and s2 = |t2| satisfy, for each r = 3, . . . ,m, that
(sr−1, kr−1) ∈ N sr,r

kr
and (t2, k2) ∈ {(0, 0), (2, 0)} ∪ {(±1, k)| k ∈ N0}.
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Then a Gelfand-Tsetlin basis of the Pin(m)-module Hs
k(Rm) is formed by the

polynomials

f s,νk,µ = X
s,sm−1,m
k,km−1

X
sm−1,sm−2,m−1
km−1,km−2

· · ·Xs3,s2,3
k3,k2

f t2k2 , (ν, µ) ∈ Is,mk .

Here the embedding factors Xs,t,m
k,j are given in Theorem 10 and f t2k2 in Ex-

ample 1.

The basis elements f s,νk,µ have the following Appell property.

Theorem 12. Let m ≥ 3 and let f s,νk,µ be the basis elements of the spaces
Hs
k(Rm) given in Theorem 11 with ν = (sm−1, . . . , s3, t2), µ = (km−1, km−1, . . . , k2)

and s2 = |t2|. Then we have that

(i) ∂xmf
s,ν
k,µ = 0 for k = km−1;

(ii) ∂xmf
s,ν
k,µ = k f s,νk−1,µ for k > km−1;

(iii) ∂k2t2 ∂
k3−k2
x3

· · · ∂k−km−1
xm

f s,νk,µ = k! es,ν

with es,ν = es−sm−1
m · · · es3−s23 es2,t2 and

∂t2 =

{
(1/2)(∂x1 + e12∂x2) if C`m = R0,m and t2 = ±1;

(1/2)(∂x1 ± i∂x2) if C`m = Cm and t2 = ±1.
(3.28)

Note that k2 = 0 unless t2 = ±1.

Proof. It is obvious from the fact that, for k > j, ∂xmX
s,t,m
k,j = k Xs,t,m

k−1,j and
Xs,t,m
k,k = es−tm .

Remark 4. For s = 0, . . . ,m, let us denote by Js,m the set of sequences
ν = (sm−1, . . . , s3, t2) of integers such that, putting sm = s and s2 = |t2|,

0 ≤ sr ≤ r and sr+1 − 1 ≤ sr ≤ sr+1

for each r = 2, . . . ,m − 1. Obviously, the set {es,ν | ν ∈ Js,m} is a basis of
the space C`sm of s-vectors. Here es,ν are given in Theorem 12. Then each
a ∈ C`sm can be uniquely written as

a =
∑

ν∈Js,m

aνes,ν

for some (real or complex) numbers aν .

To summarize, we have constructed a complete orthogonal Appell system
for the Hilbert space L2(Bm, C`sm) ∩ Ker ∂ of L2-integrable monogenic func-
tions g : Bm → C`sm. Indeed, using Theorems 11 and 12, we easily obtain the
following result.

Theorem 13. Let m ≥ 3, let Bm be the unit ball in Rm and let s = 0, . . . ,m.

(a) Then an orthogonal basis of the space L2(Bm, C`sm) ∩ Ker ∂ is formed
by the polynomials f s,νk,µ for k ∈ N0 and (ν, µ) ∈ Is,mk . Here the basis
elements f s,νk,µ are defined in Theorem 11.
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(b) Each function g ∈ L2(Bm, C`sm) ∩Ker ∂ has a unique orthogonal series
expansion

g =
∞∑

k=0

∑

(ν,µ)∈Is,m
k

ts,νk,µ(g) f s,νk,µ (3.29)

for some complex coefficients ts,νk,µ(g). In addition, by Remark 4, we
have that

g =
∑

ν∈Js,m

gνes,ν

for some complex functions gν on Bm. Then, for (ν, µ) ∈ Is,mk , it holds
that

ts,νk,µ(g) =
1

k!
∂k2t2 ∂

k3−k2
x3

· · · ∂k−km−1
xm

gν(x)|x=0 (3.30)

where ∂t2 is defined in (3.28).

For a function g ∈ L2(Bm, C`sm) ∩ Ker ∂, we call the orthogonal series
expansion (3.29) its generalized Taylor series.

Now we construct orthogonal bases for solutions of an arbitrary general-
ized Moisil-Théodoresco systems. For a subset S of {0, 1, . . . ,m}, put

C`Sm =
⊕

s∈S
C`sm.

It is easy to see that, using Theorems 1 and 11, we obtain the following
result.

Theorem 14. Let S be a subset of {0, 1, . . . ,m} and let S ′ = {s : s±1 ∈ S}.
Then an orthogonal basis of the Hilbert space L2(Bm, C`Sm) ∩Ker ∂ is formed
by the polynomials

f s,νk,µ for s ∈ S, k ∈ N0 and (ν, µ) ∈ Is,mk

together with the polynomials

((x ∧) + βs,mk−1(x •)) f s,νk−1,µ for s ∈ S ′, k ∈ N and (ν, µ) ∈ Is,mk−1.

Here βs,mk = −(k +m− s)/(k + s).

3.4.1 The Riesz system in dimension 3

In this section, we recall a construction of Gelfand-Tsetlin bases for Hodge-de
Rham systems in dimension 3 using the Cauchy-Kovalevskaya method and
the fact that the basis elements in this case possess the Appell property even
with respect to all variables, see [L9, 78]. In what follows, we assume that
C`3 = C3. Obviously, we have that, for s ∈ {0, 3} and k ≥ 1, Hs

k(R3) =
{0}, H0

0(R3) = C and H3
0(R3) = C e321 with e321 = e3e2e1. As H2

k(R3) =
H1
k(R3) e321 we may limit ourselves to the spaces H1

k(R3) of k-homogeneous
solutions of the Riesz system in dimension 3.

According to [L9], the operator CK = ex3e3∂ is an isomorphism of the
space I1

k onto the spaceH1
k(R3). Here I1

k = Ker1
k ∂

+⊕(Ker0
k ∂
−)e3 is the space
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of initial polynomials for H1
k(R3). Next we need to describe a decomposition

of the space I1
k into irreducible Spin(2)-submodules. Put z = x1 + ix2,

z = x1 − ix2 and, for k ∈ N0, denote

pkj =
zjzk−j

j!(k − j)!e3, j = 0, . . . , k and qkj =
1

2
e3∂(pk+1

j ), j = 0, . . . , k + 1.

(3.31)
Then the space I1

k decomposes into 1-dimensional irreducible Spin(2)-submodules
as follows:

I1
k =

k+1⊕

j=0

〈qkj 〉 ⊕
k⊕

j=0

〈pkj 〉. (3.32)

To get the Gelfand-Tsetlin basis for H1
k(R3) it is now sufficient to apply

the Cauchy-Kovalevskaya extension operator to the polynomials pkj and qkj .
Indeed, we have the following result (see [L9, 78]).

Proposition 3. Let k ∈ N0 and let the polynomials pkj and qkj be as in (3.31).
Then the polynomials

gk2j+2 = ex3e3∂(pkj ), j = 0, . . . , k and gk2j+1 = ex3e3∂(qkj ), j = 0, . . . , k + 1

form a Gelfand-Tsetlin basis of the irreducible Spin(3)-module H1
k(R3).

It is not difficult to obtain explicit formulas for the basis elements in terms
of hypergeometric series. Recall that the hypergeometric series 2F1(a, b, c; y)
is given by

2F1(a, b, c; y) =
∞∑

s=0

(a)s(b)s
(c)s s!

ys with (a)s = a(a+ 1) · · · (a+ s− 1).

Corollary 1. (See [78].) Let {gkj | j = 1, . . . , 2k + 3} be the Gelfand-Tsetlin
basis of the module H1

k(R3) defined in Proposition 3. Let v± = (e1 ± ie2)/2.
Then we have that gk1 = (zk/k!)v−, gk2k+3 = (zk/k!)v+ and, in general,

gk2j+2 =
1

j!(k − j)! (2F1(−j,−k + j,
1

2
,− x2

3

|z|2 ) zjzk−je3 +

+2 2F1(−j + 1,−k + j,
3

2
,− x2

3

|z|2 ) jx3z
j−1zk−jv+ +

+2 2F1(−j,−k + j + 1,
3

2
,− x2

3

|z|2 ) (k − j)x3z
jzk−j−1v−);

gk2j+1 =
1

j!(k + 1− j)! (2F1(−j + 1,−k − 1 + j,
1

2
,− x2

3

|z|2 ) jzj−1zk+1−jv+ +

−2 2F1(−j + 1,−k + j,
3

2
,− x2

3

|z|2 ) j(k + 1− j)x3z
j−1zk−je3 +

+2F1(−j,−k + j,
1

2
,− x2

3

|z|2 ) (k + 1− j)zjzk−jv−).

Here |z|2 = zz.
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Figure 3.2: Generalized Appell property

Remark 5. It is well-known that orthogonal bases for the spaces H1
k(R3)

can be also obtained by applying the Dirac operator ∂ to standard bases of
spherical harmonics in R3 (see [35, 28, 29, 88, 69]). Indeed, let us recall that
a standard basis of k-homogeneous spherical harmonics in R3 is formed by
the polynomials

hk±j = |x|k−jC1/2+j
k−j (x3/|x|) (x1 ± ix2)j, j = 0, . . . , k,

see Section 3.1. Then the Gelfand-Tsetlin basis for H1
k(R3) given in Propo-

sition 3 coincides, up to a normalization, with

{∂hk+1
±j | j = 0, . . . , k + 1}

(see [L9] for details).

By [78], the basis elements from Proposition 3 possess the Appell property
even with respect to all variables z, z and x3.

Proposition 4. For each k ∈ N0, let {gkj | j = 1, . . . , 2k+ 3} be the Gelfand-
Tsetlin basis of the module H1

k(R3) defined in Proposition 3. Then, for each
k ∈ N and j = 1, . . . , 2k + 3, we have that

∂z g
k
j = gk−1

j−2 , ∂z g
k
j = gk−1

j , ∂x3 g
k
j = (−1)j2 gk−1

j−1 .

Here gk−1
j = 0 unless j = 1, . . . , 2k + 1.

Figure 3.2 shows structural properties of Gelfand-Tsetlin bases in this
case. Indeed, the k-th row of Figure 3.2 contains the basis elements gkj of the
space H1

k = H1
k(R3). Then, according to Proposition 4, the application of the

derivative ∂x3 to basis elements causes upward shift in a given column, the
derivative ∂z moves them diagonally upward to the right and ∂z diagonally
upward to the left.

3.5 Hermitian monogenics
In this section, we describe an algorithm for a construction of Gelfand-Tsetlin
bases of homogeneous Hermitian monogenic polynomials given in [L10]. The
construction is based on the Cauchy-Kovalevskaya method. The first step
is to generalize the Cauchy-Kovalevskaya extension to this setting, which is
done in [20].
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The Cauchy-Kovalevskaya extension. We denote by Pra,b(Cn) the space
of (a, b)-homogeneous polynomials P in Cn taking values in the part Sr of
the spinor space S. For notation, see Section 2.1.3. Recall that the space
Mr

a,b(Cn) consists of (Hermitian) monogenic polynomials of Pra,b(Cn) and
that, under the action of the group U(n), the spacesMr

a,b(Cn) are mutually
inequivalent irreducible modules. Moreover, the definition of Gelfand-Tsetlin
bases for irreducible U(n)-modules is quite analogous as for spin modules (see
[L10]).

For the case r = 0, resp. r = n, the notion of Hermitian monogenicity
coincides with the notion of antiholomorphy, resp. holomorphy, in n complex
variables. Hence we can assume that 1 ≤ r ≤ n− 1 from now on. The idea
of the Cauchy-Kovalevskaya extension is simply to characterize solutions of
a given system of PDE’s by their restriction, sometimes together with the
restrictions of some of their derivatives, to a submanifold of codimension one.
In [20], this is done for the hermitian case, namely, homogeneous Hermitian
monogenic polynomials in Cn are characterized by their restrictions, together
with the restrictions of some of their derivatives, to the hyperplane of complex
codimension 1. Indeed, we single out the variables (zn, zn) and split z, z†, ∂z
and ∂†z as z = z̃ + fnzn, z

† = z̃† + f†nzn, ∂z = ∂̃z + f†n∂zn and ∂†z = ∂̃†z + fn∂zn .
We consider restrictions to the hyperplane {z ∈ Cn | zn = zn = 0}, identified
with Cn−1. We may then split the value space Sr = (

∧†
n)(r) I as

Sr = (
∧†
n−1)(r) I ⊕ f†n (

∧†
n−1)(r−1) I

Hence any polynomial p with values in (
∧†
n)(r)I can be split as

p = p0 + f†n p
1

where p0 has values in (
∧†
n−1)(r)I and p1 has values in (

∧†
n−1)(r−1)I. Now con-

sider Ma,b ∈ Mr
a,b(Cn) and denote the restrictions of some of its derivatives

to Cn−1 as

∂iMa,b

∂zni
|Cn−1 = pa−i,b = p0

a−i,b + f†n p
1
a−i,b, i = 0, . . . , a, (3.33)

∂jMa,b

∂zn
j |Cn−1 = pa,b−j = p0

a,b−j + f†n p
1
a,b−j, j = 0, . . . , b. (3.34)

In [20], the Hermitian Cauchy-Kovalevskaya extension operator is intro-
duced and the following theorem is proved.

Theorem 15. (i) Any Ma,b ∈ Mr
a,b(Cn) is uniquely determined by the

initial polynomials p0
a,b−j, j = 0, . . . , b, and p1

a−i,b, i = 0, . . . , a, defined
in (3.33)-(3.34). Moreover, the initial data satisfy the compatibility
conditions

∂̃zp
0
a,b−j = 0 for r < n− 1 and ∂̃†z p

1
a−i,b = 0 for r > 1.

(ii) On the other hand, denote Ara,b−j = Kerra,b−j(∂̃z) and Bra−i,b = Kerr−1
a−i,b(∂̃

†
z)

where, for example, we put

Kerra,b−j(∂̃z) = Ker(∂̃z) ∩ Pra,b−j(Cn−1).
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Then the Hermitian Cauchy-Kovalevskaya extension operator CK is
an isomorphism from the space of initial data

b⊕

j=0

Ara,b−j ⊕
a⊕

i=0

Bra−i,b

onto the spaceMr
a,b(Cn) commuting with the action of U(n− 1).

In particular, the operator CK yields a splitting of Mr
a,b(Cn) into a

direct sum of U(n− 1)-invariant subspaces.

The Fischer decomposition for two kernels. The last ingredient for
the construction of the Gelfand-Tsetlin basis is the decomposition of both
spaces of initial data Ara,b−j and Bra−i,b into irreducible components under the
action of U(n − 1). The tool needed here is the Fischer decomposition for
the kernels of the Hermitian Dirac operators (see [21]).

Theorem 16. Let 1 ≤ r ≤ n− 2 and let M̃r
a,b stand forMr

a,b(Cn−1). Then
the following statements hold.

(i) Under the action of U(n − 1), the space Kerra,b(∂̃z) has the multiplicity
free irreducible decomposition

Kerra,b(∂̃z) = M̃r
a,b ⊕

min(a,b−1)⊕

j=0

|z̃|2j z̃†M̃r−1
a−j,b−j−1

⊕
min(a−1,b−1)⊕

j=0

|z̃|2j(z̃†z̃ +
(a− j − 1 + r)

(a+ r)
z̃ z̃†)M̃r

a−j−1,b−j−1

(ii) Under the action of U(n − 1), the space Kerr−1
a,b (∂̃†z) has the multiplicity

free irreducible decomposition

Kerr−1
a,b (∂̃†z) = M̃r−1

a,b ⊕
min(a−1,b)⊕

j=0

|z̃|2j z̃M̃r
a−j−1,b−j

⊕
min(a−1,b−1)⊕

j=0

|z̃|2j(z̃z̃† +
(b− j − 1 + n− r)

(b+ n− r) z̃ z̃†)M̃r−1
a−j−1,b−j−1

The construction. Now we are ready to construct Gelfand-Tsetlin bases
of homogeneous Hermitian monogenics in Cn by induction on the dimension
n.

(i) The case n = 1 corresponds to complex valued functions on C. The
case r = 0 leads to antiholomorphic functions, the case r = 1 to holomor-
phic functions. Obviously, for j ∈ N0, a Gelfand-Tsetlin basis of the space
M0

0,j(C), resp.M1
j,0(C), is formed by the unique polynomial z̄j1 I, resp. z

j
1 f†1I.

Otherwise, the spacesMr
a,b(C) are trivial.

(ii) Now assume that we know the Gelfand-Tsetlin bases in dimension n− 1
for all spaces Mr′

a′,b′(Cn−1), r′ = 0, . . . , n − 1 and a′, b′ ∈ N0. Then we can
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construct the Gelfand-Tsetlin basis of the spaceMr
a,b(Cn) using the Cauchy-

Kovalevskaya method as follows. First we use Theorem 16 to decompose the
space of initial data, introduced in Theorem 15, into U(n − 1) irreducible
components. Applying the Cauchy-Kovalevskaya extension map to this irre-
ducible decomposition gives us the branching of the given space Mr

a,b(Cn),
that is, a decomposition of Mr

a,b(Cn) into U(n − 1)-irreducible pieces (see
Theorem 15). Due to the induction assumption, we can use the explicit form
of the Gelfand-Tsetlin bases in dimension n−1 to get an explicit basis of the
space of initial data. Moreover, in [20], the Cauchy-Kovalevskaya extension
map is described as a differential operator acting on initial data. In such
a way, we can construct elements of the Gelfand-Tsetlin basis of the space
Mr

a,b(Cn) explicitly.

In [L10], it is shown that, in any complex dimension n, elements of the
Gelfand-Tsetlin bases for Hermitian monogenics possess the Appell property
with respect to the last variables zn and zn. On the other hand, in complex
dimension n = 2, the basis elements have the Appell property even with
respect to all variables and, in this case, we know explicit formulas for the
basis elements, see [L10] for details.
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Chapter 4

Finely monogenic functions

In this chapter, we review results about finely monogenic functions obtained
in a series of the papers [74, L2, L4, 75, L3, 76]. Finely monogenic functions
are a generalization of B. Fuglede’s finely holomorphic functions to higher
dimensions in the context of Clifford analysis.

4.1 Finely holomorphic functions
In this section, we recall briefly the theory of finely holomorphic functions
(see [56, 57, 61]). It generalizes the theory of holomorphic functions to plane
domains open in a topology finer than the Euclidean topology, namely, in
the fine topology from potential theory.

Recall that the fine topology F in Rm+1, where m ≥ 1, is the weakest
topology making all subharmonic functions in Rm+1 continuous, see e.g. [5,
Chapter 7]. It is strictly finer than the Euclidean topology in Rm+1. For
example, if K is a dense countable subset of an open set Ω ⊂ Rm+1, then
U := Ω\K is a finely open set but it has no interior points in the usual sense.
Let U ⊂ Rm+1 be finely open and let f : U → Rn. Then we call the function
f finely continuous on U if it is continuous from U endowed with the fine
topology to Rn with the Euclidean topology. Denote by Fz the family of all
finely open sets containing a point z ∈ Rm+1. The fine limit of f at a point
z̃ ∈ U can be understood as the usual limit along some fine neighourhood of
z̃, that is, there is V ∈ Fz̃ such that

fine-lim
z→z̃

f(z) = lim
z→z̃,z∈V

f(z),

see [5, p. 207]. Moreover, we call a linear map L : Rm+1 → Rn the fine
differential of f at a point z̃ ∈ U if

fine-lim
z→z̃

f(z)− f(z̃)− L(z − z̃)

|z − z̃| = 0.

We write dff(z̃) for the fine differential L and, for l = 0, . . . ,m, we define
the first order fine derivatives of f at the point z̃ by

∂ff

∂xl
(z̃) := dff(z̃)(el).

Here (e0, . . . , em) is the standard basis of Rm+1 and z = (x0, . . . , xm) ∈ Rm+1.
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Remark 6. In the case when m > 1, a definition of fine partial derivatives is
not straightforward because

V := B(z̃, r) \
m⋃

l=0

{z̃ + tel; t ∈ R, t 6= 0}

is a fine neighbourhood of a point z̃ ∈ Rm+1 for any r > 0. Here B(z̃, r) is
the ball in Rm+1 with center z̃ and radius r.

Now we introduce some function spaces. Let us denote by fine-C1(U)
the set of all functions f finely differentiable everywhere on U whose fine
differential dff is finely continuous on U. As usual we can define inductively
the spaces fine-Ck(U) for all k ∈ N0. In particular, the space fine-C0(U) =
fine-C(U) is the set of finely continuous functions on U and the space fine-C2(U)
consists of functions f ∈ fine-C1(U) whose first fine derivatives belong to
fine-C1(U) as well. Finally, put

fine-C∞(U) =
∞⋂

k=0

fine-Ck(U).

See [62] for details. Moreover, for k ∈ N0 ∪ {∞}, we denote by Ckf-loc(U) the
set of all functions f on U such that, for each z ∈ U, there is V ∈ Fz and
F ∈ Ck(Rm+1) with F = f on V. It is easy to see that Ckf-loc(U) ⊂ fine-Ck(U).
A question whether these spaces coincide or not is discussed later on, see
Section 4.3.

Finally, let us recall that the Sobolev spaceW 1,2(Rm+1) consists of (Lebesgue)
measurable functions F whose second power is integrable on Rm+1 together
with second powers of its first weak derivatives. Denote by W 1,2

f-loc(U) the set
of functions f on U satisfying that, for each z ∈ U, there exist V ∈ Fz and
F ∈ W 1,2(Rm+1) such that F = f on V. For an account of the Sobolev spaces
on fine domains, we refer to [73].

Finely holomorphic functions are closely related with finely harmonic ones
(see [54]). For our purposes, let us recall one of their characterizations.
A real-valued function f is finely harmonic on a finely open set U ⊂ Rm+1 if
and only if for every z ∈ U there is V ∈ Fz such that f |V , the restriction of f
to V , is a uniform limit of functions fn harmonic on open sets Vn containing
V . Let us remark that f is harmonic on a usual open set Ω ⊂ Rm+1 if and
only if f is finely harmonic and locally bounded (from above or below) on Ω.
In case of R2 we need not assume local boundedness of f . Moreover, finely
harmonic functions are finely continuous but, in general, have the first fine
differential only almost everywhere (a.e.), see e.g. [58]. Next finely harmonic
functions need not possess the unique continuation property. Indeed, by [81],
there is a non-trivial finely harmonic function f in a fine domain U which
vanish in some fine neighbourhood of a point of U .

Now we are ready to state some basic facts about finely holomorphic
functions, see e.g. [56], [57] and [61]. Let U ⊂ C be finely open and let f :
U → C. Then there are several equivalent definitions of finely holomorphic
functions available. Indeed, a function f is finely holomorphic if one of the
following (equivalent) conditions holds:
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(FH1) f has a finely continuous fine derivative f ′ on U . Here

f ′(z̃) = fine-lim
z→z̃

f(z)− f(z̃)

z − z̃ , z̃ ∈ U.

In other words, f ∈ fine-C1(U) and ∂̄ff = 0 on U. Here z = x0 + ix1

and
∂̄ff =

1

2

(
∂ff

∂x0

+ i
∂ff

∂x1

)
.

(FH2) f ∈ C1
f-loc(U) and ∂̄ff = 0 on U.

(FH3) f is finely continuous on U, f ∈ W 1,2
f-loc(U) and ∂̄f = 0 on U,

(FH4) f is finely harmonic and ∂̄ff = 0 a.e. on U .

(FH5) f and zf(z) are finely harmonic (componentwise) on U .

(FH6) For each z ∈ U there is V ∈ Fz such that the restriction f |V is a uniform
limit of functions fn holomorphic on open sets Vn containing V .

Now let us recall some remarkable properties of finely holomorphic func-
tions. Obviously, by (FH5), a function f is holomorphic on a usual open set
Ω ⊂ C if and only if f is finely holomorphic on Ω because the same is true
even for finely harmonic functions. It is a bit surprising that, in comparison
with finely harmonic functions, they have much better properties. For exam-
ple, if a function f is finely holomorphic, so is its fine derivative f ′. Hence
finely holomorphic functions are always infinitely fine differentiable. More-
over, finely holomorphic functions possess the unique continuation property.
Namely, if f is finely holomorphic on a fine domain U ⊂ C and all its fine
derivatives f (k)(z̃), k ∈ N, vanish at a point z̃ ∈ U , then f is constant on U .

4.2 Finely monogenic functions
Before introducing finely monogenic functions we slightly modify in this part
the definition of monogenic functions. As usual, let C`m be the Clifford
algebra R0,m or Cm over Rm, generated by the vectors e1, . . . , em. A vector
z = (x0, . . . , xm) of Rm+1 is now identified with the Clifford number x0 +
x1e1 · · ·+ xmem of C`m. Let V be an arbitrary Pin(m)-module, for example,
V = C`m. Then a function f defined and continuously differentiable in an
open region Ω of Rm+1 and taking values in the module V is called monogenic
in Ω if it satisfies the equation D̄f = 0 in Ω where the generalized Cauchy-
Riemann operator D̄ is defined as

D̄ = ∂x0 + e1∂x1 + · · ·+ em∂xm . (4.1)

The advantage of this definition is the fact that, form = 1 and V = R0,1 ' C,
monogenic functions obviously coincide with holomorphic ones without any
other identifications. Put D = ∂x0 − e1∂x1 − · · · − em∂xm . As ∆ = DD̄
monogenic functions are obviously harmonic. On the other hand, a function
f is monogenic if and only if both f and zf(z) are harmonic.
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In what follows, we suppose that V is a Pin(m)-module, U ⊂ Rm+1 is
a finely open set and f : U → V unless otherwise stated. As is obvious from
the previous section, there are quite a few possible generalizations of finely
holomorphic functions to higher dimensions, namely:

(FM1) f ∈ fine-C1(U) and D̄ff = 0 on U. Here

D̄ff =
∂ff

∂x0

+ e1
∂ff

∂x1

+ · · ·+ em
∂ff

∂xm
.

(FM2) f ∈ C1
f-loc(U) and D̄ff = 0 on U.

(FM3) f is finely continuous on U, f ∈ W 1,2
f-loc(U) and D̄f = 0 on U,

(FM4) f is finely harmonic and D̄ff = 0 a.e. on U .

(FM5) f and zf(z) are finely harmonic (componentwise) on U .

(FM6) For each z ∈ U there is V ∈ Fz such that the restriction f |V is a uniform
limit of functions fn monogenic on open sets Vn containing V .

A natural question arises whether these conditions are equivalent to each
other not only in dimension 2 but also in higher dimesions. In [L2], the
following result is shown.

Theorem 17. The conditions (FM3), (FM4) and (FM5) are equivalent to
each other.

In [L2], finely monogenic functions are defined as follows.

Definition 1. A function f is called finely monogenic if the function f and
zf(z) are both finely harmonic on U, that is, the condition (FM5) holds.

When m = 1 and V = R0,1 finely monogenic functions obviously coincide
with B. Fuglede’s finely holomorphic functions. A function f is monogenic
on a usual open set Ω ⊂ Rm+1 if and only if f is finely monogenic and locally
bounded on Ω because the same is true even for finely harmonic functions.
Moreover, when m = 1 we do not need to assume local boundedness of f.
See [54, Theorem 10.16].

4.3 Finely differentiable monogenic functions
In this section, we discuss fine differentiability and finely differentiable mono-
genic functions. As for fine differentiability, we refer to [84, 85, 93, L3, L4, 62].
First we describe, in more detail, a relation between the function spaces
fine-Ck(U) and Ckf-loc(U) introduced in Section 4.1. Let us recall that the space
fine-Ck(U) consists of finely continuously differentiable functions of order k on
U and the space Ckf-loc(U) is the set of functions on U which are finely locally
extendable to usual Ck functions. As we mentioned before, we obviously have
that Ckf-loc(U) ⊂ fine-Ck(U). Moreover, the fact that Cf-loc(U) = fine-C(U) is
known as the so-called Brelot property for finely continuous functions, see
[55]. Now a quite natural question arises whether finely continuously differ-
entiable functions have the corresponding Brelot property as well. In this
connection, in [L3], it was proved that
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Theorem 18. If U ⊂ R2 is a finely open set, then

C1
f-loc(U) = fine-C1(U).

In addition, if f is a function with dff = 0 on a fine domain U in R2, then
the function f is constant on U.

Furthermore, in [L4], under a mild additional assumption, analogous re-
sults were obtained in higher dimensions as well. In particular, in [L4], it is
shown that, for a given finely open set U ⊂ Rm+1, we have that

C1
f-loc(U) = fine-C1(U) ∩W 1,2

f-loc(U).

Using this result and Theorem 17, it is not difficult to show the following
characterization of finely differentiable monogenic functions (see [75]).

Theorem 19. A function f is finely monogenic and f ∈ fine-C1(U) if and
only if f ∈ C1

f-loc(U) and D̄ff = 0 on U .

Finally, in [62], S. Gardiner obtained the following results.

Theorem 20. If U ⊂ Rm+1 is a finely open set and k ∈ N ∪ {∞}, then

Ckf-loc(U) = fine-Ck(U).

In addition, if f is a function with dff = 0 on a fine domain U in Rm+1,
then the function f is constant on U.

Corollary 2. Let U ⊂ Rm+1 be a finely open set and let f ∈ fine-C2(U).

(i) Then f is finely harmonic if and only if ∆ff = 0 on U. Here the fine
laplacian ∆f is given by

∆f =
∂2

f

∂x2
0

+ · · ·+ ∂2
f

∂x2
m

.

(ii) If, in addition, m = 1 and the function f is finely harmonic then ∂ff is
finely holomorphic and f ∈ fine-C∞(U). Here

∂ff =
1

2

(
∂ff

∂x0

− i ∂ff

∂x1

)
.

Now we are ready to summarize what is known about finely monogenic
functions.

Theorem 21. The following statements about the conditions (FM1)-(FM6)
of Section 4.2 hold.

(i) The conditions (FM1) and (FM2) are equivalent to each other.

(ii) The conditions (FM3), (FM4) and (FM5) are equivalent to each other.

(iii) The condition (FM2) implies (FM3).

In addition, for f ∈ fine-C1(U), the condition (FM3) implies (FM2)
and the function f is finely monogenic if and only if D̄ff = 0 on U.

43



(iv) The condition (FM6) implies (FM5). The condition (FM2) implies
(FM6).

(v) For f ∈ fine-C1(U), the conditions (FM1)-(FM6) are all equivalent to
each other.

In the proof of Theorem 21 given below, we use the Théodoresco integral
transform T in Rm+1. So let us recall briefly the definition and some proper-
ties of this transform, see [70, Sections 3.1 and 3.2] for details. Let βm+1 be
the m-dimensional area of the unit sphere in Rm+1 and define

E(z) =
1

βm+1

z̄

|z|m+1
, z 6= 0.

Then E is a fundamental solution of the differential operator D̄, in particular,
D̄E(z) = 0 for z 6= 0. Of course, for m = 1, E(z) = 1/(2πz) is the well-
known Cauchy kernel from complex analysis. Denote by Ckc (Rm+1) the set
of functions of Ck(Rm+1) with a compact support in Rm+1. Then, for f ∈
Cc(Rm+1), we define

T (f)(z) = −
∫

Rm+1

E(z − y)f(y) dy, z ∈ Rm+1.

Obviously, T (f) is monogenic in an open subset Ω of Rm+1 if f = 0 on Ω.
Moreover, it is well-known that each function f ∈ C1

c (Rm+1) can be expressed
on Rm+1 as f = T (D̄f) (see [70, Theorem 3.23]). In the proof, we also need
the following routine estimate.

Lemma 2. Let V ⊂ Rm+1 be of a finite Lebesgue measure and let αm+1 be
the Lebesgue measure of the unit ball in Rm+1. Then we have that

∫

V

|E(z − y)| dy ≤ (λm+1(V )/αm+1)1/(m+1), z ∈ Rm+1.

Here λm+1 is the Lebesgue measure in Rm+1.

Proof. Let z ∈ Rm+1 and take r ≥ 0 such that λm+1(V ) = λm+1(B(z, r)).
Then we have that r = (λm+1(V )/αm+1)1/(m+1) and

∫

V

|E(z − y)| dy ≤ 1

βm+1

∫

B(z,r)

dy

|z − y|m = r,

which finishes the proof.

Proof of Theorem 21. The statement (i) follows directly from Theorem 20.
For the statement (ii), see Theorem 17. Finally, Theorems 19 and 20 give
easily (iii). Moreover, obviously, the condition (FM6) implies (FM5).

It remains to show only that (FM2) implies (FM6). Let thus f ∈ C1
f-loc(U),

D̄ff = 0 on U and z̃ ∈ U . Then there is a bounded set V ∈ Fz̃ and
a function F ∈ C1

c (Rm+1) such that F = f on V . Of course, we have that
D̄F = 0 on V . As we know, the function F can be expressed as F = T (D̄F ).
Furthermore, choose a sequence of open sets Vn ⊂ Rm+1 containing V such
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that λm+1(Vn \ V ) → 0 as n → ∞ and define fn = T (D̄F (1 − χVn)). Here
χM is the characteristic function of a set M . Obviously, each function fn is
monogenic on Vn and, by Lemma 2, we have that

sup
z∈V
|fn(z)− f(z)| = sup

z∈V
|T (D̄FχVn\V )(z)| ≤

≤ (λm+1(Vn \ V )/αm+1)1/(m+1) sup
z∈Rm+1

|D̄F (z)|,

which tends to zero as n→∞. So the proof is finished.

4.4 Open problems
As we have mentioned, in comparison with finely harmonic functions, finely
holomorphic functions are infinitely fine differentiable everywhere and have
the unique continuation property. It would be interesting to clear up to
what extent these properties remain true for finely monogenic functions in
higher dimensions. In particular, if finely monogenic functions were finely
continuously differentiable then, by the statement (v) of Theorem 21, the
conditions (FM1)-(FM6) of Section 4.2 would be all equivalent to each other.
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