Free Banach Lattices

Antonio Avilés
Universidad de Murcia
MTM2014-541982-P, MTM2017-86182-P (AEI/FEDER, UE) Fundación Séneca 19275/PI/14

Winter School in Abstract Analysis - Section Analysis 2018

Banach lattices

Definition

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \vee y$ and an infimum $x \wedge y$.

Banach lattices

Definition

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \vee y$ and an infimum $x \wedge y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and

Banach lattices

Definition

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \vee y$ and an infimum $x \wedge y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and $x \leq x^{\prime}, y \leq y^{\prime}, r, s \geq 0 \Rightarrow r x+s y \leq r x^{\prime}+s y^{\prime}$

Banach lattices

Definition

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \vee y$ and an infimum $x \wedge y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and $x \leq x^{\prime}, y \leq y^{\prime}, r, s \geq 0 \Rightarrow r x+s y \leq r x^{\prime}+s y^{\prime}$

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L,|x| \leq|y| \Rightarrow\|x\| \leq\|y\|$

$$
|x|=x \vee-x
$$

Banach lattices

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L,|x| \leq|y| \Rightarrow\|x\| \leq\|y\|$

Banach lattices

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L,|x| \leq|y| \Rightarrow\|x\| \leq\|y\|$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \vee y)=T(x) \vee T(y)$ and $T(x \wedge y)=T(x) \wedge T(y)$.

Banach lattices

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L,|x| \leq|y| \Rightarrow\|x\| \leq\|y\|$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \vee y)=T(x) \vee T(y)$ and $T(x \wedge y)=T(x) \wedge T(y)$.

- $C(K), L^{p}(\mu)$ with $f \leq g$ iff $f(x) \leq g(x)$ for (almost) all x.

Banach lattices

Definition

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L,|x| \leq|y| \Rightarrow\|x\| \leq\|y\|$

Definition

A homomorphism $T: X \longrightarrow Y$ between Banach lattices is a bounded operator such that $T(x \vee y)=T(x) \vee T(y)$ and $T(x \wedge y)=T(x) \wedge T(y)$.

- $C(K), L^{p}(\mu)$ with $f \leq g$ iff $f(x) \leq g(x)$ for (almost) all x.
- Spaces with unconditional basis with coordinatewise order.

Sublattices, ideals and quotients

Let X be a Banach lattice and $Y \subset X$

- Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations \vee, \wedge.

Sublattices, ideals and quotients

Let X be a Banach lattice and $Y \subset X$

- Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations \vee, \wedge. This makes Y a Banach lattice.

Sublattices, ideals and quotients

Let X be a Banach lattice and $Y \subset X$

- Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations \vee, \wedge. This makes Y a Banach lattice.
- Y is an ideal if moreover, if $f \in Y$ and $|g| \leq|f|$ then $g \in Y$.

Sublattices, ideals and quotients

Let X be a Banach lattice and $Y \subset X$

- Y is a Banach sublattice if it is closed linear subspace that is moreover closed under operations \vee, \wedge. This makes Y a Banach lattice.
- Y is an ideal if moreover, if $f \in Y$ and $|g| \leq|f|$ then $g \in Y$. This makes X / Y a Banach lattice.

Duality

For a Banach space E

$$
E^{*}=\left\{x^{*}: E \longrightarrow \mathbb{R} \text { bounded operators }\right\}
$$

The weak topology of E is the least topology that makes all $x^{*} \in E^{*}$ continuous.

Duality

For a Banach space E

$$
E^{*}=\left\{x^{*}: E \longrightarrow \mathbb{R} \text { bounded operators }\right\}
$$

The weak topology of E is the least topology that makes all $x^{*} \in E^{*}$ continuous.

For a Banach lattice X

The set of Banach lattice homomorphims $\operatorname{Hom}(X, \mathbb{R})$ is much smaller

Duality

For a Banach space E

$$
E^{*}=\left\{x^{*}: E \longrightarrow \mathbb{R} \text { bounded operators }\right\}
$$

The weak topology of E is the least topology that makes all $x^{*} \in E^{*}$ continuous.

For a Banach lattice X

The set of Banach lattice homomorphims $\operatorname{Hom}(X, \mathbb{R})$ is much smaller

- $\operatorname{Hom}(C(K), \mathbb{R})=\left\{r \delta_{x}: r \geq 0, x \in K\right\}$

Duality

For a Banach space E

$$
E^{*}=\left\{x^{*}: E \longrightarrow \mathbb{R} \text { bounded operators }\right\}
$$

The weak topology of E is the least topology that makes all $x^{*} \in E^{*}$ continuous.

For a Banach lattice X

The set of Banach lattice homomorphims $\operatorname{Hom}(X, \mathbb{R})$ is much smaller

- $\operatorname{Hom}(C(K), \mathbb{R})=\left\{r \delta_{x}: r \geq 0, x \in K\right\}$
- $\operatorname{Hom}\left(\ell_{p}, \mathbb{R}\right)=\left\{r e_{n}^{*}: r \geq 0, n \in \mathbb{N}\right\}$

Duality

For a Banach space E

$$
E^{*}=\left\{x^{*}: E \longrightarrow \mathbb{R} \text { bounded operators }\right\}
$$

The weak topology of E is the least topology that makes all $x^{*} \in E^{*}$ continuous.

For a Banach lattice X

The set of Banach lattice homomorphims $\operatorname{Hom}(X, \mathbb{R})$ is much smaller

- $\operatorname{Hom}(C(K), \mathbb{R})=\left\{r \delta_{x}: r \geq 0, x \in K\right\}$
- $\operatorname{Hom}\left(\ell_{p}, \mathbb{R}\right)=\left\{r e_{n}^{*}: r \geq 0, n \in \mathbb{N}\right\}$
- $\operatorname{Hom}\left(L_{p}[0,1], \mathbb{R}\right)=\{0\}$

A question by Joe Diestel

- A Banach space E is weakly compactly generated (WCG) if there exists a weakly compact subset $K \subset E$ that is linearly dense in E.

A question by Joe Diestel

- A Banach space E is weakly compactly generated (WCG) if there exists a weakly compact subset $K \subset E$ that is linearly dense in E.
- A Banach lattice X is lattice-weakly compactly generated (LWCG) if there exists a weakly compact subset $K \subset X$ that generates X as a Banach lattice.

A question by Joe Diestel

- A Banach space E is weakly compactly generated (WCG) if there exists a weakly compact subset $K \subset E$ that is linearly dense in E.
- A Banach lattice X is lattice-weakly compactly generated (LWCG) if there exists a weakly compact subset $K \subset X$ that generates X as a Banach lattice.

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

A question by Joe Diestel

Problem (Joe Diestel)
If a Banach lattice X is LWCG, is it also WCG when viewed as a
Banach space?

A question by Joe Diestel

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Theorem (A., Guirao, Lajara, Rodríguez, Tradacete)

The answer is YES in the following cases:

A question by Joe Diestel

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Theorem (A., Guirao, Lajara, Rodríguez, Tradacete)

The answer is YES in the following cases:

- When $X=C(K)$,

A question by Joe Diestel

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Theorem (A., Guirao, Lajara, Rodríguez, Tradacete)

The answer is YES in the following cases:

- When $X=C(K)$,
- When the lattice operations \wedge and \vee are weakly sequentially continuous,

A question by Joe Diestel

Problem (Joe Diestel)

If a Banach lattice X is LWCG, is it also WCG when viewed as a Banach space?

Theorem (A., Guirao, Lajara, Rodríguez, Tradacete)

The answer is YES in the following cases:

- When $X=C(K)$,
- When the lattice operations \wedge and \vee are weakly sequentially continuous,
- X is order continuous
- ...

Order continuous: if $\bigwedge_{i \in I} f_{i}=0$, then $\bigwedge\left\{\left\|f_{i_{1}} \wedge \cdots \wedge f_{i_{n}}\right\|\right\}=0$.

Independence and free generation

Let \mathscr{C} be an algebraic category (groups, rings, vector spaces, vector lattices...)

Independence and free generation

Let \mathscr{C} be an algebraic category (groups, rings, vector spaces, vector lattices...)

The algebraic notion of independence
For $X \in \mathscr{C}$, elements $x_{1}, \ldots, x_{n} \in X$ are \mathscr{C}-independent if the only equations that they satisfy are those that follow from the axioms.

Independence and free generation

Let \mathscr{C} be an algebraic category（groups，rings，vector spaces， vector lattices．．．）

The algebraic notion of independence

For $X \in \mathscr{C}$ ，elements $x_{1}, \ldots, x_{n} \in X$ are \mathscr{C}－independent if the only equations that they satisfy are those that follow from the axioms．

The algebraic notion of free generation

Free⿻丅⿵冂⿰⿱丶㇀⿱㇒丶⿻乚㇒ (A) is the set of all the algebraic expressions that we can form operating with elements of A ，

Independence and free generation

Let \mathscr{C} be an algebraic category（groups，rings，vector spaces， vector lattices．．．）

The algebraic notion of independence

For $X \in \mathscr{C}$ ，elements $x_{1}, \ldots, x_{n} \in X$ are \mathscr{C}－independent if the only equations that they satisfy are those that follow from the axioms．

The algebraic notion of free generation
Free⿻丅⿵冂⿰⿱丶㇀⿱㇒丶⿻乚㇒ (A) is the set of all the algebraic expressions that we can form operating with elements of A ，two expressions being equal only when this is forced by the axioms．

Independence and free generation

Let \mathscr{C} be an algebraic category (groups, rings, vector spaces, vector lattices...)

The algebraic notion of independence

For $X \in \mathscr{C}$, elements $x_{1}, \ldots, x_{n} \in X$ are \mathscr{C}-independent if the only equations that they satisfy are those that follow from the axioms.

The algebraic notion of free generation

Free $_{\mathscr{C}}(A)$ is the set of all the algebraic expressions that we can form operating with elements of A, two expressions being equal only when this is forced by the axioms.

That is, $\operatorname{Free}_{\mathscr{C}}(A)$ contains A as a set of independent generators.

Independence and free generation

Categorical characterization of free generation
Free $_{\mathscr{C}}(A)$ is characterized by the property that every map $A \longrightarrow X$ extends to a unique morphism $\operatorname{Free}_{\mathscr{C}}(A) \longrightarrow X$

Independence and free generation

Categorical characterization of free generation

Free $_{\mathscr{C}}(A)$ is characterized by the property that every map $A \longrightarrow X$ extends to a unique morphism $\operatorname{Free}_{\mathscr{C}}(A) \longrightarrow X$

Free Banach space generated by a set A
It is the unique Banach space F with $A \subset B_{F}$ and every boundedmap $A \longrightarrow X$ extends to a unique operator $F \longrightarrow X$ of the same norm.

Independence and free generation

Categorical characterization of free generation

Free $_{\mathscr{C}}(A)$ is characterized by the property that every map $A \longrightarrow X$ extends to a unique morphism $\operatorname{Free}_{\mathscr{C}}(A) \longrightarrow X$

Free Banach space generated by a set A
It is the unique Banach space F with $A \subset B_{F}$ and every boundedmap $A \longrightarrow X$ extends to a unique operator $F \longrightarrow X$ of the same norm.

This is just $\ell_{1}(A)$.

Independence and free generation

Categorical characterization of free generation

Free $_{\mathscr{C}}(A)$ is characterized by the property that every map $A \longrightarrow X$ extends to a unique morphism $\operatorname{Free}_{\mathscr{C}}(A) \longrightarrow X$

Free Banach space generated by a set A
It is the unique Banach space F with $A \subset B_{F}$ and every boundedmap $A \longrightarrow X$ extends to a unique operator $F \longrightarrow X$ of the same norm.

This is just $\ell_{1}(A)$. Because this is the free vector space generated by A completed with the largest possible norm.

The free Banach lattice generated by a set A

Definition (de Pagter, Wickstead 2015)

We say that $F=F B L(A)$ if there is an inclusion map $A \longrightarrow B_{F}$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $F B L(A) \longrightarrow X$ of the same norm.

The free Banach lattice generated by a set A

Definition (de Pagter, Wickstead 2015)

We say that $F=F B L(A)$ if there is an inclusion map $A \longrightarrow B_{F}$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $\operatorname{FBL}(A) \longrightarrow X$ of the same norm.

- It exists and is unique up to isomorphism.

Definition (de Pagter, Wickstead 2015)

We say that $F=F B L(A)$ if there is an inclusion map $A \longrightarrow B_{F}$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $\operatorname{FBL}(A) \longrightarrow X$ of the same norm.

- It exists and is unique up to isomorphism.
- Uniqueness is easy, how to construct it?

The free Banach lattice generated by a set A

Definition (de Pagter, Wickstead 2015)

We say that $F=F B L(A)$ if there is an inclusion map $A \longrightarrow B_{F}$ such that every bounded map $A \longrightarrow X$ extends to a unique Banach lattice homomorphism $\operatorname{FBL}(A) \longrightarrow X$ of the same norm.

- It exists and is unique up to isomorphism.
- Uniqueness is easy, how to construct it?
- Similarly as before, we first construct the free vector lattice $F V L(A)$ generated by A, and later we complete it with the largest possible norm.

Free vector lattice

- For every $a \in A$, take the evaluation $\delta_{a}: \mathbb{R}^{A} \longrightarrow \mathbb{R}$.
- For every $a \in A$, take the evaluation $\delta_{a}: \mathbb{R}^{A} \longrightarrow \mathbb{R}$.
- The family $\left\{\delta_{a}: a \in A\right\}$ is vector lattice independent in $\mathbb{R}^{\mathbb{R}^{A}}$.
- For every $a \in A$, take the evaluation $\delta_{a}: \mathbb{R}^{A} \longrightarrow \mathbb{R}$.
- The family $\left\{\delta_{a}: a \in A\right\}$ is vector lattice independent in $\mathbb{R}^{\mathbb{R}^{A}}$.
- Hence, the free vector lattice generated by A, is the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ inside $\mathbb{R}^{\mathbb{R}^{A}}$.

$$
F V L(A)=\left\langle\delta_{a}: a \in A\right\rangle_{V L} \subset \mathbb{R}^{\mathbb{R}^{A}}
$$

- For every $a \in A$, take the evaluation $\delta_{a}: \mathbb{R}^{A} \longrightarrow \mathbb{R}$.
- The family $\left\{\delta_{a}: a \in A\right\}$ is vector lattice independent in $\mathbb{R}^{\mathbb{R}^{A}}$.
- Hence, the free vector lattice generated by A, is the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ inside $\mathbb{R}^{\mathbb{R}^{A}}$.

$$
F V L(A)=\left\langle\delta_{a}: a \in A\right\rangle_{V L} \subset \mathbb{R}^{\mathbb{R}^{A}}
$$

- All the functions of $F V L(A)$ are positively homogeneous on \mathbb{R}^{A} and continuous on $[-1,1]^{A}$.
- Now, we take $f \in F V L(A)=\left\langle\delta_{a}: a \in A\right\rangle_{\text {veclat }} \subset \mathbb{R}^{\mathbb{R}^{A}}$
- Now, we take $f \in F V L(A)=\left\langle\delta_{a}: a \in A\right\rangle_{\text {veclat }} \subset \mathbb{R}^{\mathbb{R}^{A}}$
- How to define norm $\|f\|$ having the free extension property?
- Now, we take $f \in F V L(A)=\left\langle\delta_{a}: a \in A\right\rangle_{\text {veclat }} \subset \mathbb{R}^{\mathbb{R}^{A}}$
- How to define norm $\|f\|$ having the free extension property?
- Focus on extending $T: A \longrightarrow(-1,1)$ to norm-one homomorphisms $\tilde{T}: F B L(A) \longrightarrow \ell_{1}^{n}$
- Now, we take $f \in F V L(A)=\left\langle\delta_{a}: a \in A\right\rangle_{\text {veclat }} \subset \mathbb{R}^{\mathbb{R}^{A}}$
- How to define norm $\|f\|$ having the free extension property?
- Focus on extending $T: A \longrightarrow(-1,1)$ to norm-one homomorphisms $\tilde{T}: F B L(A) \longrightarrow \ell_{1}^{n}$ when T is a linear combinations of evaluations $T(a)=\sum_{i=1}^{m} z_{i}(a) e_{i}$,
- Now, we take $f \in F V L(A)=\left\langle\delta_{a}: a \in A\right\rangle_{\text {veclat }} \subset \mathbb{R}^{\mathbb{R}^{A}}$
- How to define norm $\|f\|$ having the free extension property?
- Focus on extending $T: A \longrightarrow(-1,1)$ to norm-one homomorphisms $\tilde{T}: F B L(A) \longrightarrow \ell_{1}^{n}$ when T is a linear combinations of evaluations $T(a)=\sum_{i=1}^{m} z_{i}(a) e_{i}$, and we get

$$
\|f\| \geq\|\tilde{T} f\|=\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right| \text { whenever } \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1
$$

- Now, we take $f \in F V L(A)=\left\langle\delta_{a}: a \in A\right\rangle_{\text {veclat }} \subset \mathbb{R}^{\mathbb{R}^{A}}$
- How to define norm $\|f\|$ having the free extension property?
- Focus on extending $T: A \longrightarrow(-1,1)$ to norm-one homomorphisms $\tilde{T}: F B L(A) \longrightarrow \ell_{1}^{n}$ when T is a linear combinations of evaluations $T(a)=\sum_{i=1}^{m} z_{i}(a) e_{i}$, and we get

$$
\|f\| \geq\|\tilde{T} f\|=\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right| \text { whenever } \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1
$$

And this happen to be enough...

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)
The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ in $\mathbb{R}^{\mathbb{R}^{A}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right|: \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1\right\}
$$

Free Banach lattice generated by a set A

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ in $\mathbb{R}^{\mathbb{R}^{A}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right|: \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1\right\}
$$

- The proof requires some extra work because the homomorphisms onto \mathbb{R} do not give all the information.

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)
The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ in $\mathbb{R}^{\mathbb{R}^{A}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right|: \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1\right\}
$$

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)
The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ in $\mathbb{R}^{\mathbb{R}^{A}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right|: \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1\right\}
$$

- Notice that $\|f\| \geq\left\|\left.f\right|_{[-1,1]^{A}}\right\|_{\infty}$

Free Banach lattice generated by a set A

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ in $\mathbb{R}^{\mathbb{R}^{A}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right|: \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1\right\}
$$

- Notice that $\|f\| \geq\left\|\left.f\right|_{[-1,1]^{A}}\right\|_{\infty}$
- $\operatorname{FBL}(A)$ can be viewed as a subset of the Banach lattice of continuous and positively homogeneous functions on $[-1,1]^{A}$.

Free Banach lattice generated by a set A

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ in $\mathbb{R}^{\mathbb{R}^{A}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right|: \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1\right\}
$$

- Notice that $\|f\| \geq\left\|\left.f\right|_{[-1,1]^{A}}\right\|_{\infty}$
- $\operatorname{FBL}(A)$ can be viewed as a subset of the Banach lattice of continuous and positively homogeneous functions on $[-1,1]^{A}$.
- The inclusion $\operatorname{FBL}(A) \longrightarrow C\left([-1,1]^{A}\right)$ is an injective homomorphism, but not isomorphism onto image. Like $\ell_{1} \subset \ell_{\infty}$.

Free Banach lattice generated by a set A

Theorem (de Pagter, Wickstead; A., Tradacete, Rodríguez)

The free Banach lattice generated by a set A is the closure of the the vector lattice generated by $\left\{\delta_{a}: a \in A\right\}$ in $\mathbb{R}^{\mathbb{R}^{A}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(z_{i}\right)\right|: \sup _{a \in A} \sum_{i=1}^{m}\left|z_{i}(a)\right| \leq 1\right\}
$$

- Notice that $\|f\| \geq\left\|\left.f\right|_{[-1,1]^{A}}\right\|_{\infty}$
- $\operatorname{FBL}(A)$ can be viewed as a subset of the Banach lattice of continuous and positively homogeneous functions on $[-1,1]^{A}$.
- The inclusion $\operatorname{FBL}(A) \longrightarrow C\left([-1,1]^{A}\right)$ is an injective homomorphism, but not isomorphism onto image. Like $\ell_{1} \subset \ell_{\infty}$.
- In the finite case, $\operatorname{FBL}(n)$ is n-isomorphic to $C\left(\mathbb{S}^{n}\right)$.

Other facts and questions from de Pagter and Wickstead

- $\operatorname{FBL}(A)$ is always ccc (there is no uncountable family of pairwise disjoint positive elements).

Other facts and questions from de Pagter and Wickstead

- $\operatorname{FBL}(A)$ is always ccc (there is no uncountable family of pairwise disjoint positive elements).
- Do all intervals of $F B L(A)$ have the same density?

Other facts and questions from de Pagter and Wickstead

- $\operatorname{FBL}(A)$ is always ccc (there is no uncountable family of pairwise disjoint positive elements).
- Do all intervals of $\operatorname{FBL}(A)$ have the same density?
- Does $\operatorname{FBL}(A)$ have the Nakano property?

Other facts and questions from de Pagter and Wickstead

- $\operatorname{FBL}(A)$ is always ccc (there is no uncountable family of pairwise disjoint positive elements).
- Do all intervals of $F B L(A)$ have the same density?
- Does $\operatorname{FBL}(A)$ have the Nakano property?

For every order bounded set \mathscr{F} of positive elements

$$
\sup \left\{\left\|x_{1} \vee \cdots \vee x_{n}\right\|: x_{i} \in \mathscr{F}\right\}=\inf \{\|y\|: y \geq \mathscr{F}\}
$$

Other facts and questions from de Pagter and Wickstead

- $F B L(A)$ is always ccc (there is no uncountable family of pairwise disjoint positive elements).
- Do all intervals of $F B L(A)$ have the same density?
- Does $\operatorname{FBL}(A)$ have the Nakano property? For every order bounded set \mathscr{F} of positive elements

$$
\sup \left\{\left\|x_{1} \vee \cdots \vee x_{n}\right\|: x_{i} \in \mathscr{F}\right\}=\inf \{\|y\|: y \geq \mathscr{F}\}
$$

They also pose a number of problems on projective Banach lattices.

The idea now is to create a Banach lattice $F B L[E]$ that is generated (as a Banach lattice) by a Banach subspace isometric to E in a free way.

Free Banach lattice generated by a Banach space E

The idea now is to create a Banach lattice $F B L[E]$ that is generated (as a Banach lattice) by a Banach subspace isometric to E in a free way.

Definition

$F=F B L[E]$ if there is an inclusion mapping $E \longrightarrow F$ and every operator $E \longrightarrow X$ extends to a unique homomorphism $F B L(E) \longrightarrow X$ of the same norm.

Free Banach lattice generated by a Banach space E

The idea now is to create a Banach lattice $F B L[E]$ that is generated (as a Banach lattice) by a Banach subspace isometric to E in a free way.

Definition

$F=F B L[E]$ if there is an inclusion mapping $E \longrightarrow F$ and every operator $E \longrightarrow X$ extends to a unique homomorphism $F B L(E) \longrightarrow X$ of the same norm.

- The uniqueness of $F B L[E]$ is easy.

Free Banach lattice generated by a Banach space E

The idea now is to create a Banach lattice $F B L[E]$ that is generated (as a Banach lattice) by a Banach subspace isometric to E in a free way.

Definition

$F=F B L[E]$ if there is an inclusion mapping $E \longrightarrow F$ and every operator $E \longrightarrow X$ extends to a unique homomorphism $F B L(E) \longrightarrow X$ of the same norm.

- The uniqueness of $F B L[E]$ is easy.
- For the existence one can take the quotient of $\operatorname{FBL}(E)$ by the ideal generated by all linear combinations of E which are zero.

More explicit description of $F B L[E]$

For $x \in E$, take $\delta_{x}: E^{*} \longrightarrow \mathbb{R}$ the evaluation.

More explicit description of $F B L[E]$

For $x \in E$, take $\delta_{x}: E^{*} \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

The free Banach lattice generated by E is the closure of the the vector lattice generated by $\left\{\delta_{e}: e \in E\right\}$ in $\mathbb{R}^{E^{*}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{m}\left|x_{i}^{*}(x)\right| \leq 1\right\}
$$

More explicit description of $F B L[E]$

For $x \in E$, take $\delta_{x}: E^{*} \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

The free Banach lattice generated by E is the closure of the the vector lattice generated by $\left\{\delta_{e}: e \in E\right\}$ in $\mathbb{R}^{E^{*}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{m}\left|x_{i}^{*}(x)\right| \leq 1\right\}
$$

The difficulty here is, again, that we cannot reduce to homomorphisms onto \mathbb{R} or onto ℓ_{1}^{n}.

More explicit description of $F B L[E]$

For $x \in E$, take $\delta_{x}: E^{*} \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

The free Banach lattice generated by E is the closure of the the vector lattice generated by $\left\{\delta_{e}: e \in E\right\}$ in $\mathbb{R}^{E^{*}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{m}\left|x_{i}^{*}(x)\right| \leq 1\right\}
$$

We used that each $f \in F V L(A)$ is the difference of suprema of linear combinations in A,

More explicit description of $F B L[E]$

For $x \in E$, take $\delta_{x}: E^{*} \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

The free Banach lattice generated by E is the closure of the the vector lattice generated by $\left\{\delta_{e}: e \in E\right\}$ in $\mathbb{R}^{E^{*}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{m}\left|x_{i}^{*}(x)\right| \leq 1\right\}
$$

We used that each $f \in F V L(A)$ is the difference of suprema of linear combinations in A, and the Riesz-Kantorovich formula:

$$
y^{*}\left(\bigvee_{k=1}^{m} u_{k}\right)=\sup \left\{\sum_{k=1}^{m} y_{k}^{*}\left(u_{k}\right): y_{k}^{*} \geq 0, \sum_{k=1}^{m} y_{k}^{*}=y^{*}\right\}
$$

More explicit description of $F B L[E]$

For $x \in E$, take $\delta_{x}: E^{*} \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Tradacete, Rodríguez)

The free Banach lattice generated by E is the closure of the the vector lattice generated by $\left\{\delta_{e}: e \in E\right\}$ in $\mathbb{R}^{E^{*}}$ under the norm

$$
\begin{aligned}
& \|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{m}\left|x_{i}^{*}(x)\right| \leq 1\right\} \\
& \|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(x_{i}^{*}\right)\right|: \sup \left\|\sum_{i=1}^{m} \pm x_{i}^{*}\right\| \leq 1\right\}
\end{aligned}
$$

Proposition

The free Banach lattice generated by the Banach space $\ell_{1}(A)$ coincides with the free Banach lattice generated by a set A.

$$
F B L\left[\ell_{1}(A)\right]=F B L(A)
$$

Proposition (A., Rodríguez, Tradacete)

In $F B L\left[\ell_{2}\right],\left\{\left|e_{n}\right|: n \in \mathbb{N}\right\}$ is equivalent to the basis of ℓ_{1}.

Proposition (A., Rodríguez, Tradacete)
In $F B L\left[\ell_{2}\right],\left\{\left|e_{n}\right|: n \in \mathbb{N}\right\}$ is equivalent to the basis of ℓ_{1}.
Proof:

Proposition (A., Rodríguez, Tradacete)

In $F B L\left[\ell_{2}\right],\left\{\left|e_{n}\right|: n \in \mathbb{N}\right\}$ is equivalent to the basis of ℓ_{1}.
Proof: By Khintchine inequality, we have an operator $T: \ell_{2} \longrightarrow L_{1}[0,1]$ such that $T e_{n}=r_{n}$ are the Rademacher functions,

Proposition (A., Rodríguez, Tradacete)

In $F B L\left[\ell_{2}\right],\left\{\left|e_{n}\right|: n \in \mathbb{N}\right\}$ is equivalent to the basis of ℓ_{1}.
Proof: By Khintchine inequality, we have an operator $T: \ell_{2} \longrightarrow L_{1}[0,1]$ such that $T e_{n}=r_{n}$ are the Rademacher functions, and $\left|T e_{n}\right|$ is the constant 1 function.

Proposition (A., Rodríguez, Tradacete)

In $F B L\left[\ell_{2}\right],\left\{\left|e_{n}\right|: n \in \mathbb{N}\right\}$ is equivalent to the basis of ℓ_{1}.
Proof: By Khintchine inequality, we have an operator $T: \ell_{2} \longrightarrow L_{1}[0,1]$ such that $T e_{n}=r_{n}$ are the Rademacher functions, and $\left|T e_{n}\right|$ is the constant 1 function. There is a Banach lattice homomorphism of the same norm $\tilde{T}: F B L\left(\ell_{2}\right) \longrightarrow L_{1}[0,1]$ that extends T.

Proposition (A., Rodríguez, Tradacete)

In $F B L\left[\ell_{2}\right],\left\{\left|e_{n}\right|: n \in \mathbb{N}\right\}$ is equivalent to the basis of ℓ_{1}.
Proof: By Khintchine inequality, we have an operator $T: \ell_{2} \longrightarrow L_{1}[0,1]$ such that $T e_{n}=r_{n}$ are the Rademacher functions, and $\left|T e_{n}\right|$ is the constant 1 function. There is a Banach lattice homomorphism of the same norm $\tilde{T}: F B L\left(\ell_{2}\right) \longrightarrow L_{1}[0,1]$ that extends T. Then $\tilde{T}\left|e_{n}\right|=\left|T e_{n}\right|$,

Proposition (A., Rodríguez, Tradacete)

In $F B L\left[\ell_{2}\right],\left\{\left|e_{n}\right|: n \in \mathbb{N}\right\}$ is equivalent to the basis of ℓ_{1}.
Proof: By Khintchine inequality, we have an operator $T: \ell_{2} \longrightarrow L_{1}[0,1]$ such that $T e_{n}=r_{n}$ are the Rademacher functions, and $\left|T e_{n}\right|$ is the constant 1 function. There is a Banach lattice homomorphism of the same norm $\tilde{T}: F B L\left(\ell_{2}\right) \longrightarrow L_{1}[0,1]$ that extends T. Then $\tilde{T}\left|e_{n}\right|=\left|T e_{n}\right|$, and

$$
\|T\| \cdot\left\|\sum r_{i}\left|e_{i}\right|\right\| \geq\left\|\tilde{T}\left(\sum r_{i}\left|e_{i}\right|\right)\right\|=\left|\sum r_{i}\right|
$$

Solution to Diestel's question

Corollary (A., Rodríguez, Tradacete)
In $F B L\left[\ell_{2}(\Gamma)\right],\left\{\left|e_{\gamma}\right|: \gamma \in \Gamma\right\}$ is equivalent to the basis of $\ell_{1}(\Gamma)$.

Solution to Diestel's question

Corollary (A., Rodríguez, Tradacete)
In $F B L\left[\ell_{2}(\Gamma)\right],\left\{\left|e_{\gamma}\right|: \gamma \in \Gamma\right\}$ is equivalent to the basis of $\ell_{1}(\Gamma)$.

Therefore $F B L\left[\ell_{2}(\Gamma)\right]$ is LWCG but not WCG.

Solution to Diestel's question

Corollary (A., Rodríguez, Tradacete)
In $F B L\left[\ell_{2}(\Gamma)\right],\left\{\left|e_{\gamma}\right|: \gamma \in \Gamma\right\}$ is equivalent to the basis of $\ell_{1}(\Gamma)$.

Therefore $F B L\left[\ell_{2}(\Gamma)\right]$ is LWCG but not WCG.
We do not know if $F B L\left[c_{0}(\Gamma)\right]$ is WCG...

Solution to Diestel's question

Corollary (A., Rodríguez, Tradacete)
In $F B L\left[\ell_{2}(\Gamma)\right],\left\{\left|e_{\gamma}\right|: \gamma \in \Gamma\right\}$ is equivalent to the basis of $\ell_{1}(\Gamma)$.

Therefore $F B L\left[\ell_{2}(\Gamma)\right]$ is LWCG but not WCG.
We do not know if $F B L\left[c_{0}(\Gamma)\right]$ is WCG... but we do know now that in this case $\left\{\left|e_{\gamma}\right|: \gamma \in \Gamma\right\}$ is weakly null.

Solution to Diestel's question

Corollary (A., Rodríguez, Tradacete)

In $F B L\left[\ell_{2}(\Gamma)\right],\left\{\left|e_{\gamma}\right|: \gamma \in \Gamma\right\}$ is equivalent to the basis of $\ell_{1}(\Gamma)$.

Therefore $F B L\left[\ell_{2}(\Gamma)\right]$ is LWCG but not WCG.
We do not know if $F B L\left[c_{0}(\Gamma)\right]$ is WCG... but we do know now that in this case $\left\{\left|e_{\gamma}\right|: \gamma \in \Gamma\right\}$ is weakly null. Therefore, also

Corollary

If $\left\{e_{n}: n<\omega\right\}$ is a sequence equivalent to c_{0} in any Banach lattice, then $\left\{\left|e_{n}\right|: n<\omega\right\}$ is weakly null.

Density of intervals

Theorem (A., Rodríguez, Tradacete)

All intervals of $F B L[E]$ have the same density as E.

Density of intervals

Theorem (A., Rodríguez, Tradacete)

All intervals of $F B L[E]$ have the same density as E.
Sketch of proof for $\operatorname{FBL}(A)$.

Density of intervals

Theorem (A., Rodríguez, Tradacete)

All intervals of $F B L[E]$ have the same density as E.
Sketch of proof for $\operatorname{FBL}(A)$. Take $f<g$.

Density of intervals

Theorem (A., Rodríguez, Tradacete)

All intervals of $F B L[E]$ have the same density as E.
Sketch of proof for $\operatorname{FBL}(A)$. Take $f<g$. There exists $A_{0} \subset A$ countable such that $f, g \in F B L\left(A_{0}\right) \subset F B L(A)$.

Density of intervals

Theorem (A., Rodríguez, Tradacete)

All intervals of $F B L[E]$ have the same density as E.
Sketch of proof for $\operatorname{FBL}(A)$. Take $f<g$. There exists $A_{0} \subset A$ countable such that $f, g \in F B L\left(A_{0}\right) \subset F B L(A)$. Consider

$$
D=\left\{d_{b}=(f \vee b) \wedge g: b \in A \backslash A_{0}\right\}
$$

Density of intervals

Theorem (A., Rodríguez, Tradacete)

All intervals of $F B L[E]$ have the same density as E.
Sketch of proof for $F B L(A)$. Take $f<g$. There exists $A_{0} \subset A$ countable such that $f, g \in F B L\left(A_{0}\right) \subset F B L(A)$. Consider

$$
D=\left\{d_{b}=(f \vee b) \wedge g: b \in A \backslash A_{0}\right\}
$$

Given $b, c \in A \backslash A_{0}$, extend $T: A \rightarrow F B L(A)$ that is identity on A_{0} and $T b=f$ and $T c=g$.

Density of intervals

Theorem (A., Rodríguez, Tradacete)

All intervals of $F B L[E]$ have the same density as E.
Sketch of proof for $\operatorname{FBL}(A)$. Take $f<g$. There exists $A_{0} \subset A$ countable such that $f, g \in F B L\left(A_{0}\right) \subset F B L(A)$. Consider

$$
D=\left\{d_{b}=(f \vee b) \wedge g: b \in A \backslash A_{0}\right\}
$$

Given $b, c \in A \backslash A_{0}$, extend $T: A \rightarrow F B L(A)$ that is identity on A_{0} and $T b=f$ and $T c=g$.

$$
\|f-g\|=\left\|T d_{b}-T d_{c}\right\| \leq\left\|d_{b}-d_{c}\right\|
$$

The Nakano property
Theorem (A., Rodríguez, Tradacete)
$F B L(A)=F B L\left[\ell_{1}(A)\right]$ has the strong Nakano property.

The Nakano property

Theorem (A., Rodríguez, Tradacete)
$F B L(A)=F B L\left[\ell_{1}(A)\right]$ has the strong Nakano property.
Strong Nakano: If $\mathscr{F} \subset X_{+}$is norm-bounded and closed under \vee, then it has an upper bound y with

$$
\|y\|=\sup \{\|x\|: x \in \mathscr{F}\}
$$

The Nakano property

Theorem (A., Rodríguez, Tradacete)

$F B L(A)=F B L\left[\ell_{1}(A)\right]$ has the strong Nakano property.
Strong Nakano: If $\mathscr{F} \subset X_{+}$is norm-bounded and closed under \vee, then it has an upper bound y with

$$
\|y\|=\sup \{\|x\|: x \in \mathscr{F}\}
$$

Example: $C(K)$, we can take y a constant function.

The Nakano property

Theorem (A., Rodríguez, Tradacete)

$F B L(A)=F B L\left[\ell_{1}(A)\right]$ has the strong Nakano property.
Strong Nakano: If $\mathscr{F} \subset X_{+}$is norm-bounded and closed under \vee, then it has an upper bound y with

$$
\|y\|=\sup \{\|x\|: x \in \mathscr{F}\}
$$

Example: $C(K)$, we can take y a constant function.
In $\operatorname{FBL}(A)$, we have elements that play analogous role, the elements

$$
\left|\sum_{a \in A} r_{a}\right| \delta_{a}| |
$$

for $\left(r_{a}\right)_{A} \in \ell_{1}(A)$.

The Nakano property

Theorem (A., Rodríguez, Tradacete)
$F B L\left[L_{1}\right]$ fails the Nakano property.

Theorem (A., Rodríguez, Tradacete)

$F B L\left[L_{1}\right]$ fails the Nakano property. There is an increasing sequence of positive elements of norms at most 1 , all of whose upper bounds have norm greater than 2.

$$
f_{n}=g \wedge \sum_{i=1}^{2^{n}}\left|\delta_{u_{k}^{n}}\right|
$$

- g is any positive element with $\|g\|=2$.
- $u_{k}^{n}=1_{\left[(k-1) \cdot 2^{-n}, k \cdot 2^{-n}\right]}$

The countable chain condition

Theorem (A., Plebanek, Rodríguez Abellán)
The Banach lattice $F B L[E]$ has the countable chain condition.

The countable chain condition

Theorem (A., Plebanek, Rodríguez Abellán)
The Banach lattice $F B L[E]$ has the countable chain condition.
The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \wedge g \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice $F B L[E]$ has the countable chain condition.
The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \wedge g \neq 0$.

Remember that $F B L[E] \hookrightarrow C_{+h}\left(B_{E^{*}}\right)$

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice $F B L[E]$ has the countable chain condition.
The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \wedge g \neq 0$.

Remember that $F B L[E] \hookrightarrow C_{+h}\left(B_{E^{*}}\right)$
When $E=\ell_{1}(A)$, it is known that $C\left(B_{E^{*}}\right)=C\left([-1,1]^{A}\right)$ is ccc.

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice $F B L[E]$ has the countable chain condition.
The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \wedge g \neq 0$.

Remember that $F B L[E] \hookrightarrow C_{+h}\left(B_{E^{*}}\right)$
When $E=\ell_{1}(A)$, it is known that $C\left(B_{E^{*}}\right)=C\left([-1,1]^{A}\right)$ is ccc. In fact it is K_{n} : Every uncountable family of positive elements has an uncountable subfamily with $f_{1} \wedge \cdots \wedge f_{n} \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

The Banach lattice $F B L[E]$ has the countable chain condition.
The ccc: Every uncountable family \mathscr{F} of positive elements contains two with $f \wedge g \neq 0$.

Remember that $F B L[E] \hookrightarrow C_{+h}\left(B_{E^{*}}\right)$
When $E=\ell_{1}(A)$, it is known that $C\left(B_{E^{*}}\right)=C\left([-1,1]^{A}\right)$ is ccc. In fact it is K_{n} : Every uncountable family of positive elements has an uncountable subfamily with $f_{1} \wedge \cdots \wedge f_{n} \neq 0$.

For every $N>0$ and every uncountable family $\mathscr{F} \subset C_{+h}\left(B_{E^{*}}\right)_{+}$ has an uncountable subfamily \mathscr{F}^{\prime} such that among every N elements there are two with $f \wedge g \neq 0$.

Chain conditions

K_{n} : Every uncountable family of positive elements has an uncountable subfamily with $f_{1} \wedge \cdots \wedge f_{n} \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

If E is WCG, then $C_{+h}\left(B_{E^{*}}\right)$ has Knaster's property K_{n}.

Chain conditions

K_{n} : Every uncountable family of positive elements has an uncountable subfamily with $f_{1} \wedge \cdots \wedge f_{n} \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

If E is WCG, then $C_{+h}\left(B_{E^{*}}\right)$ has Knaster's property K_{n}.
We do not know if this holds for arbitrary E

Chain conditions

K_{n} : Every uncountable family of positive elements has an uncountable subfamily with $f_{1} \wedge \cdots \wedge f_{n} \neq 0$.

Theorem (A., Plebanek, Rodríguez Abellán)

If E is WCG, then $C_{+h}\left(B_{E^{*}}\right)$ has Knaster's property K_{n}.
We do not know if this holds for arbitrary E (at least for $F B L[E]$)

Now, let \mathbb{L} be a lattice.

Now, let \mathbb{L} be a lattice. A lattice-morphism means that $f(x \wedge y)=f(x) \wedge f(y)$ and $f(x \vee y)=f(x) \vee f(y)$.

Free Banach lattice generated by a lattice

Now, let \mathbb{L} be a lattice. A lattice-morphism means that $f(x \wedge y)=f(x) \wedge f(y)$ and $f(x \vee y)=f(x) \vee f(y)$.

Definition

We say that $F=F B L[\mathbb{L}]$ if there is an inclusion map $\mathbb{L} \longrightarrow B_{F}$ such that every bounded lattice-morphism $\mathbb{L} \longrightarrow X$ extends to a unique Banach lattice homomorphism $F B L[\mathbb{L}] \longrightarrow X$ of the same norm.

Free Banach lattice generated by a lattice

Now, let \mathbb{L} be a lattice. A lattice-morphism means that $f(x \wedge y)=f(x) \wedge f(y)$ and $f(x \vee y)=f(x) \vee f(y)$.

Definition

We say that $F=F B L[\mathbb{L}]$ if there is an inclusion map $\mathbb{L} \longrightarrow B_{F}$ such that every bounded lattice-morphism $\mathbb{L} \longrightarrow X$ extends to a unique Banach lattice homomorphism $F B L[\mathbb{L}] \longrightarrow X$ of the same norm.

Again, we can always construct this by making a suitable quotient of $F B L(\mathbb{L})$.

$$
\mathbb{L}^{*}=\left\{x^{*}: \mathbb{L} \longrightarrow[-1,1] \text { lattice morphism }\right\}
$$

$\mathbb{L}^{*}=\left\{x^{*}: \mathbb{L} \longrightarrow[-1,1]\right.$ lattice morphism $\}$.
For $x \in \mathbb{L}$, take $\delta_{x}: \mathbb{L}^{*} \longrightarrow \mathbb{R}$ the evaluation.
$\mathbb{L}^{*}=\left\{x^{*}: \mathbb{L} \longrightarrow[-1,1]\right.$ lattice morphism $\}$.
For $x \in \mathbb{L}$, take $\delta_{x}: \mathbb{L}^{*} \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Rodríguez Abellán)

The free Banach lattice generated by linear order \mathbb{L} is the closure of the the vector lattice generated by $\left\{\delta_{x}: x \in \mathbb{L}\right\}$ in $\mathbb{R}^{\mathbb{L}^{*}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in \mathbb{L}} \sum_{i=1}^{m}\left|x_{i}^{*}(x)\right| \leq 1\right\}
$$

Free Banach lattice generated by a line

$\mathbb{L}^{*}=\left\{x^{*}: \mathbb{L} \longrightarrow[-1,1]\right.$ lattice morphism $\}$.
For $x \in \mathbb{L}$, take $\delta_{x}: \mathbb{L}^{*} \longrightarrow \mathbb{R}$ the evaluation.

Theorem (A., Rodríguez Abellán)

The free Banach lattice generated by linear order \mathbb{L} is the closure of the the vector lattice generated by $\left\{\delta_{x}: x \in \mathbb{L}\right\}$ in $\mathbb{R}^{\mathbb{L}^{*}}$ under the norm

$$
\|f\|=\sup \left\{\sum_{i=1}^{m}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in \mathbb{L}} \sum_{i=1}^{m}\left|x_{i}^{*}(x)\right| \leq 1\right\}
$$

It seems to us that this description may not be valid for an arbitrary lattice \mathbb{L}.

Theorem (A., Rodríguez Abellán)
For a linear order \mathbb{L}, the following are equivalent:

Theorem (A., Rodríguez Abellán)
For a linear order \mathbb{L}, the following are equivalent:
(1) $F B L[\mathbb{L}]$ is ccc

Theorem (A., Rodríguez Abellán)
For a linear order \mathbb{L}, the following are equivalent:
(1) $F B L[\mathbb{L}]$ is ccc
(2) \mathbb{L} is order-isomorphic to a subset of \mathbb{R}.

- B. de Pagter and A. W. Wickstead, Free and projective Banach lattices, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 1, 105-143.
- A. Avilés, J. Rodríguez, P. Tradacete, The free Banach lattice generated by a Banach space, arXiv:1706.08147 +work in progress
- A. Avilés, G. Plebanek, J. D. Rodríguez Abellán, Chain conditions in free Banach lattices. To be available soon.
- A. Avilés, J. D. Rodríguez Abellán, The free Banach lattice generated by a linear order, in preparation.

