Generic objects in topology and functional analysis

Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences and Cardinal Stefan Wyszyński University in Warsaw, Poland

46th Winter School in Abstract Analysis Svratka, 13–20 January 2018

4 10 1 4 10 1

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

13–20 January 2018 2 / 36

2

イロト イヨト イヨト イヨト

Part 1

æ

<ロ> (日) (日) (日) (日) (日)

A category R consists of

• a class of objects Obj(£),

э

A category R consists of

- a class of objects Obj(£),
- a class of arrows $\bigcup_{a,b\in Obj(\Re)} \Re(a,b)$, where $f \in \Re(a,b)$ means *a* is the *domain* of *f* and *b* is the *codomain* of *f*,

A category R consists of

- a class of objects Obj(£),
- a class of arrows $\bigcup_{a,b\in Obj(\Re)} \Re(a,b)$, where $f \in \Re(a,b)$ means *a* is the *domain* of *f* and *b* is the *codomain* of *f*,
- a partial associative composition operation ∘ defined on arrows, where *f* ∘ *g* is defined ⇔ the domain of *g* coincides with the domain of *f*.

4 3 5 4 3 5 5

A category R consists of

- a class of objects Obj(£),
- a class of arrows $\bigcup_{a,b\in Obj(\Re)} \Re(a,b)$, where $f \in \Re(a,b)$ means *a* is the *domain* of *f* and *b* is the *codomain* of *f*,
- a partial associative composition operation ∘ defined on arrows, where *f* ∘ *g* is defined ⇐⇒ the domain of *g* coincides with the domain of *f*.

Furthermore, for each $a \in \text{Obj}(\mathfrak{K})$ there is an *identity* $id_a \in \mathfrak{K}(a, a)$ satisfying $id_a \circ g = g$ and $f \circ id_a = f$ for $f \in \mathfrak{K}(a, x), g \in \mathfrak{K}(y, a), x, y \in \text{Obj}(\mathfrak{K}).$

Definition

A sequence in \mathfrak{K} is a functor \vec{x} from \mathbb{N} into \mathfrak{K} .

э

Definition

A sequence in \Re is a functor \vec{x} from \mathbb{N} into \Re .

$$x_0 \xrightarrow{x_0^1} x_1 \xrightarrow{x_1^2} x_2 \xrightarrow{x_2^3} \cdots$$

э

Definition

A sequence in \Re is a functor \vec{x} from \mathbb{N} into \Re .

$$x_0 \xrightarrow{x_0^1} x_1 \xrightarrow{x_1^2} x_2 \xrightarrow{x_2^3} \cdots$$

Definition

Let \vec{x} be a sequence in \mathfrak{K} . The colimit of \vec{x} is a pair $\langle X, \{x_n^{\infty}\}_{n \in \mathbb{N}} \rangle$ with $x_n^{\infty} : x_n \to X$ satisfying:

$$\ \, \textbf{x}_n^\infty = x_m^\infty \circ x_n^m \text{ for every } n < m.$$

If ⟨Y, {y_n[∞]}_{n∈N}⟩ with y_n[∞]: x_n → Y satisfies y_n[∞] = y_m[∞] ∘ y_n^m for every n < m then there is a unique arrow f: X → Y satisfying f ∘ x_n[∞] = y_n[∞] for every n ∈ N.

Definition

The Banach-Mazur game $BM(\mathfrak{K})$ played on \mathfrak{K} is described as follows.

Definition

The Banach-Mazur game BM (\Re) played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $a_0 \in \text{Obj}(\Re)$.

< ロ > < 同 > < 回 > < 回 >

Definition

The Banach-Mazur game BM (\Re) played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $a_0 \in \text{Obj}(\Re)$. Then Odd chooses $a_1 \in \text{Obj}(\Re)$ together with a \Re -arrow $a_0^1 \colon a_0 \to a_1$.

A B F A B F

Definition

The Banach-Mazur game BM (\Re) played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $a_0 \in \text{Obj}(\Re)$.

Then Odd chooses $a_1 \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon a_0 \to a_1$. More generally, after Odd's move finishing with an object a_{2k-1} , Eve chooses $a_{2k} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon a_{2k-1} \to a_{2k}$.

A B F A B F

Definition

The Banach-Mazur game BM (\mathfrak{K}) played on \mathfrak{K} is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $a_0 \in \text{Obj}(\mathfrak{K})$.

Then Odd chooses $a_1 \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon a_0 \to a_1$. More generally, after Odd's move finishing with an object a_{2k-1} , Eve chooses $a_{2k} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon a_{2k-1} \to a_{2k}$. Next, Odd chooses $a_{2k+1} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k}^{2k+1} \colon a_{2k} \to a_{2k+1}$. And so on...

Definition

The Banach-Mazur game BM (\mathfrak{K}) played on \mathfrak{K} is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $a_0 \in \text{Obj}(\mathfrak{K})$.

Then Odd chooses $a_1 \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon a_0 \to a_1$. More generally, after Odd's move finishing with an object a_{2k-1} , Eve chooses $a_{2k} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon a_{2k-1} \to a_{2k}$. Next, Odd chooses $a_{2k+1} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k}^{2k} \colon a_{2k-1} \to a_{2k}$. The result of a play is a sequence \vec{a} :

$$a_0 \xrightarrow{a_0^1} a_1 \longrightarrow \cdots \longrightarrow a_{2k-1} \xrightarrow{a_{2k-1}^{2k}} a_{2k} \longrightarrow \cdots$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

General assumption: $\mathfrak{K} \subseteq \mathfrak{L}$.

э

イロト イヨト イヨト イヨト

General assumption: $\mathfrak{K} \subseteq \mathfrak{L}$.

Definition

We say that $U \in \text{Obj}(\mathfrak{L})$ is \mathfrak{K} -generic if Odd has a strategy in the Banach-Mazur game BM (\mathfrak{K}) such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

General assumption: $\mathfrak{K} \subseteq \mathfrak{L}$.

Definition

We say that $U \in \text{Obj}(\mathfrak{L})$ is \mathfrak{K} -generic if Odd has a strategy in the Banach-Mazur game BM (\mathfrak{K}) such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

Proposition

A f.-generic object, if exists, is unique up to isomorphism.

General assumption: $\mathfrak{K} \subseteq \mathfrak{L}$.

Definition

We say that $U \in \text{Obj}(\mathfrak{L})$ is \mathfrak{K} -generic if Odd has a strategy in the Banach-Mazur game BM (\mathfrak{K}) such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

Proposition

A f.-generic object, if exists, is unique up to isomorphism.

Proof.

The rules for Eve and Odd are the same.

Part 2

æ

<ロ> (日) (日) (日) (日) (日)

Example 1

Let \mathfrak{K} be the category of all finite linearly ordered sets. Then $\langle \mathbb{Q}, < \rangle$ is \mathfrak{K} -generic.

Example 1

Let \mathfrak{K} be the category of all finite linearly ordered sets. Then $\langle \mathbb{Q}, < \rangle$ is \mathfrak{K} -generic.

Example 2

Let \mathfrak{M}_{fin} be the category of finite metric spaces with isometric embeddings. Then the Urysohn space \mathbb{U} is \mathfrak{M}_{fin} -generic.

The Gurarii space

æ

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property.

 (G) For every ε > 0, for every finite-dimensional normed spaces E ⊆ F, for every linear isometric embedding e: E → G there exists a linear ε-isometric embedding f: F → G such that f ↾ E = e.

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property.

 (G) For every ε > 0, for every finite-dimensional normed spaces E ⊆ F, for every linear isometric embedding e: E → G there exists a linear ε-isometric embedding f: F → G such that f ↾ E = e.

Theorem (Lusky 1976)

Among separable spaces, property (G) determines the space \mathbb{G} uniquely up to linear isometries.

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property.

(G) For every ε > 0, for every finite-dimensional normed spaces E ⊆ F, for every linear isometric embedding e: E → G there exists a linear ε-isometric embedding f: F → G such that f ↾ E = e.

Theorem (Lusky 1976)

Among separable spaces, property (G) determines the space \mathbb{G} uniquely up to linear isometries.

Elementary proof: Solecki & K. 2013.

Theorem (K. 2018)

The Gurarii space \mathbb{G} is generic over the category $\mathfrak{B}_{\mathsf{fd}}$ of finite-dimensional normed spaces with linear isometric embeddings.

Theorem (K. 2018)

The Gurarii space \mathbb{G} is generic over the category $\mathfrak{B}_{\mathsf{fd}}$ of finite-dimensional normed spaces with linear isometric embeddings.

Key Lemma (Solecki & K.)

Let *X*, *Y* be finite-dimensional normed spaces, let $f: X \to Y$ be an ε -isometry with $0 < \varepsilon < 1$. Then there exist a finite-dimensional normed space *Z* and isometric embeddings $i: X \to Z, j: Y \to Z$ such that

$$\|i-j\circ f\|\leqslant \varepsilon.$$

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

13–20 January 2018 13 / 36

æ

<ロ> (日) (日) (日) (日) (日)

The amalgamation property

Definition

We say that \Re has amalgamations at $z \in Obj(\Re)$ if for every \Re -arrows $f: z \to x, g: z \to y$ there exist \Re -arrows $f': x \to w, g': y \to w$ such that $f' \circ f = g' \circ g$.

The amalgamation property

Definition

We say that \Re has amalgamations at $z \in Obj(\Re)$ if for every \Re -arrows $f: z \to x, g: z \to y$ there exist \Re -arrows $f': x \to w, g': y \to w$ such that $f' \circ f = g' \circ g$.

We say that \Re has the amalgamation property (AP) if it has amalgamations at every $z \in Obj(\Re)$.

3

Theorem (Universality)

Assume \Re has the AP and $X = \lim \vec{x}$, where \vec{x} is a sequence in \Re . Assume U is \Re -generic.

< ロ > < 同 > < 回 > < 回 >

Theorem (Universality)

Assume \Re has the AP and $X = \lim \vec{x}$, where \vec{x} is a sequence in \Re . Assume U is \Re -generic. Then there exists an arrow $e: X \to U$.

< 回 > < 三 > < 三 >

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

13–20 January 2018 16 / 36

æ

<ロ> (日) (日) (日) (日) (日)

References

- V.I. Gurarii, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces (in Russian), Sibirsk. Mat. Ž. 7 (1966) 1002–1013
- W. Lusky, *The Gurarij spaces are unique*, Archiv der Mathematik 27 (1976) 627–635
- W. Kubiś, S. Solecki, *A proof of uniqueness of the Gurarii space*, Israel Journal of Mathematics 195 (2013) 449–456
- F. Cabello Sánchez, J. Garbulińska-Wegrzyn, W. Kubiś, Quasi-Banach spaces of almost universal disposition, Journal of Functional Analysis 267 (2014) 744–771
- W. Kubiś, *Game-theoretic characterization of the Gurarii space*, Archiv der Mathematik 110 (2018) 53–59

3

Part 3

æ

<ロ> (日) (日) (日) (日) (日)

The generic linear operator

W.Kubiś (http://www.math.cas.cz/kubis/)

2

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The generic linear operator

Theorem (Cabello Sánchez, Garbulińska-Wegrzyn, K. 2014) There exists a norm-one linear operator $\Omega : \mathbb{G} \to \mathbb{G}$ satisfying the following condition.

(E) For every ε > 0, for every finite-dimensional Banach spaces E ⊆ F, for every non-expansive linear operator T: F → G, for every linear isometric embedding e: E → G with Ω ∘ e = T ↾ E, there exists an ε-isometric embedding f: F → G such that

$$f \upharpoonright E = e$$
 and $\Omega \circ f = T$.

The generic linear operator

Theorem (Cabello Sánchez, Garbulińska-Wegrzyn, K. 2014) There exists a norm-one linear operator $\Omega : \mathbb{G} \to \mathbb{G}$ satisfying the following condition.

(E) For every ε > 0, for every finite-dimensional Banach spaces E ⊆ F, for every non-expansive linear operator T: F → G, for every linear isometric embedding e: E → G with Ω ∘ e = T ↾ E, there exists an ε-isometric embedding f: F → G such that

$$f \upharpoonright E = e$$
 and $\Omega \circ f = T$.

Theorem

For every non-expansive linear operator $S: X \to \mathbb{G}$ with X separable, there exists a linear isometric embedding $e: X \to \mathbb{G}$ such that

 $\Omega \circ \boldsymbol{e} = \boldsymbol{S}.$

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem

The operator Ω is generic.

2

Theorem

The operator Ω is generic.

Theorem (Bargetz, Kakol, K. 2017)

There exists a unique graded separable Fréchet space \mathbb{G}_{∞} satisfying:

(E) For every ε > 0, for every finite-dimensional graded Fréchet spaces E ⊆ F, for every linear isometric embedding e: E → G_∞ there exists an ε-isometric embedding f: F → G_∞ such that f ↾ E = e.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

13–20 January 2018 21 / 36

æ

イロト イヨト イヨト イヨト

Fix a compact 0-dimensional space *K*. Define the category \Re_K as follows.

Fix a compact 0-dimensional space *K*. Define the category \Re_K as follows.

The objects are continuous mappings $f: K \rightarrow S$ with *S* finite.

Fix a compact 0-dimensional space *K*. Define the category \mathfrak{K}_K as follows.

The objects are continuous mappings $f: K \to S$ with S finite. An arrow from $f: K \to S$ to $g: K \to T$ is a surjection $p: T \to S$ satisfying $p \circ g = f$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fix a compact 0-dimensional space *K*. Define the category \mathfrak{K}_K as follows.

The objects are continuous mappings $f: K \to S$ with S finite. An arrow from $f: K \to S$ to $g: K \to T$ is a surjection $p: T \to S$ satisfying $p \circ g = f$.

The Sec. 74

Let \mathfrak{L}_K be the category whose objects are continuous mappings $f \colon K \to X$ with X metrizable compact 0-dimensional.

Let \mathfrak{L}_K be the category whose objects are continuous mappings $f \colon K \to X$ with X metrizable compact 0-dimensional. An \mathfrak{L}_K -arrow from $f \colon K \to X$ to $g \colon K \to Y$ is a continuous surjection $p \colon Y \to X$ satisfying $p \circ g = f$.

Let \mathfrak{L}_K be the category whose objects are continuous mappings $f \colon K \to X$ with X metrizable compact 0-dimensional. An \mathfrak{L}_K -arrow from $f \colon K \to X$ to $g \colon K \to Y$ is a continuous surjection $p \colon Y \to X$ satisfying $p \circ g = f$.

Theorem (Bielas, Walczyńska, K.)

Let 2^{ω} denote the Cantor set. A continuous mapping $\eta: K \to 2^{\omega}$ is \mathfrak{K}_{K} -generic $\iff \eta$ is a topological embedding and $\eta[K]$ is nowhere dense in 2^{ω} .

3

イロト 不得 トイヨト イヨト

Theorem (Bielas, Walczyńska, K.)

Let 2^{ω} denote the Cantor set. A continuous mapping $\eta: K \to 2^{\omega}$ is \mathfrak{K}_{K} -generic $\iff \eta$ is a topological embedding and $\eta[K]$ is nowhere dense in 2^{ω} .

Corollary (Knaster & Reichbach 1953)

Let $h: A \to B$ be a homeomorphism between closed nowhere dense subsets of 2^{ω} . Then there exists a homeomorphism $H: 2^{\omega} \to 2^{\omega}$ such that

$$H \upharpoonright A = h.$$

The pseudo-arc

Let $\ensuremath{\mathfrak{I}}$ be the category of all continuous surjections from the unit interval [0,1] onto itself.

(4) (5) (4) (5)

< 6 b

Let \Im be the category of all continuous surjections from the unit interval [0, 1] onto itself. Let \mathfrak{C} be the category of all chainable continua.

(4) (5) (4) (5)

4 A N

Let \Im be the category of all continuous surjections from the unit interval [0, 1] onto itself. Let \mathfrak{C} be the category of all chainable continua.

Theorem

The pseudo-arc is *J*-generic.

< 回 > < 三 > < 三 >

Amalgamations

Definition

We say that \Re has amalgamations at $z \in Obj(\Re)$ if for every \Re -arrows $f: z \to x, g: z \to y$ there exist \Re -arrows $f': x \to w, g': y \to w$ such that $f' \circ f = g' \circ g$.

3

Amalgamations

Definition

We say that \Re has amalgamations at $z \in Obj(\Re)$ if for every \Re -arrows $f: z \to x, g: z \to y$ there exist \Re -arrows $f': x \to w, g': y \to w$ such that $f' \circ f = g' \circ g$.

We say that \Re has the amalgamation property (AP) if it has amalgamations at every $z \in Obj(\Re)$.

3

Definition

A category \mathfrak{K} is directed if for every $x, y \in Obj(\mathfrak{K})$ there is $z \in Obj(\mathfrak{K})$ such that

 $\mathfrak{K}(x,z) \neq \emptyset$ and $\mathfrak{K}(y,z) \neq \emptyset$.

3

イロト イポト イヨト イヨト

Definition

A category \mathfrak{K} is directed if for every $x, y \in Obj(\mathfrak{K})$ there is $z \in Obj(\mathfrak{K})$ such that

Fraïssé theory

Theorem

Assume \Re is a countable directed category of finitely generated models with embeddings.

If \Re has the AP then there exists a \Re -generic (countably generated) model, called the Fraïssé limit of \Re .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fraïssé theory

Theorem

Assume \Re is a countable directed category of finitely generated models with embeddings.

If \Re has the AP then there exists a \Re -generic (countably generated) model, called the Fraïssé limit of \Re .

Theorem (Fraïssé 1954)

Let \mathfrak{K} be as above, let $U = \bigcup_{n \in \mathbb{N}} u_n$ with $u_n \in \text{Obj}(\mathfrak{K})$ for every $n \in \mathbb{N}$. The following conditions are equivalent.

(a) U is the Fraïssé limit of R.

(b) Every ℜ-object embeds into U and for every embeddings
e: a → b, f: a → U with a, b ∈ Obj(ℜ) there exists an embedding
g: b → U such that f = g ∘ e.

3

æ

ヘロン 人間 とくほど へほど

Fact

Finite graphs of vertex degree \leqslant 2 fail the amalgamation property.

Weakenings of amalgamation

Definition

We say that \Re has the cofinal amalgamation property (CAP) if for every $z \in \text{Obj}(\Re)$ there is a \Re -arrow $e: z \to z'$ such that \Re has amalgamations at z'.

A (10) > A (10) > A (10)

Weakenings of amalgamation

Definition

We say that \Re has the cofinal amalgamation property (CAP) if for every $z \in Obj(\Re)$ there is a \Re -arrow $e: z \to z'$ such that \Re has amalgamations at z'.

Definition (Ivanov, 1999)

We say that \Re has the weak amalgamation property (WAP) if for every $z \in \text{Obj}(\Re)$ there is a \Re -arrow $e: z \to z'$ such that for every \Re -arrows $f: z' \to X, g: z' \to y$ there exist \Re -arrows $f': x \to w, g': y \to w$ such that $f' \circ f \circ e = g' \circ g \circ e$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CAP and WAP

2

イロト イヨト イヨト イヨト

CAP and WAP

Proposition

Finite graphs of vertex degree \leq 2 have the CAP.

Let \Re be a countable directed category of finitely generated models with embeddings.

3

Let \Re be a countable directed category of finitely generated models with embeddings. The following conditions are equivalent:

(a) There exists a *A*-generic model.

Let \Re be a countable directed category of finitely generated models with embeddings. The following conditions are equivalent:

- (a) There exists a *A*-generic model.
- (b) R has the WAP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \Re be a countable directed category of finitely generated models with embeddings. The following conditions are equivalent:

- (a) There exists a *A*-generic model.
- (b) R has the WAP.

Theorem (Krawczyk & K. 2016)

Let \Re be as above and let U be a countably generated model. The following properties are equivalent:

- (a) U is *R*-generic.
- (b) Eve does not have a winning strategy in BM (\mathfrak{K}, U) .

3

A more concrete setup

We assume that \mathfrak{K} is a full subcategory of \mathfrak{L} and the following conditions are satisfied.

- (L0) All £-arrows are monic.
- (L1) Every \mathfrak{L} -object is the co-limit of a sequence in \mathfrak{K} .
- (L2) Every sequence in \Re has a co-limit in \mathfrak{L} .
- (L3) Every \Re -object is ω -small in \mathfrak{L} .

< 回 > < 三 > < 三 >

Weak injectivity

Definition

An object $V \in Obj(\mathfrak{L})$ is weakly \mathfrak{K} -injective if

- every \Re -object has an \mathfrak{L} -arrow into V, and
- for every L-arrow e: a → V there exists a R-arrow i: a → b such that for every R-arrow f: b → y there is an L-arrow g: y → V satisfying g ∘ f ∘ i = e.

4 D K 4 B K 4 B K 4 B K

Weak injectivity

Definition

An object $V \in Obj(\mathfrak{L})$ is weakly \mathfrak{K} -injective if

- every \Re -object has an \mathfrak{L} -arrow into V, and
- for every L-arrow e: a → V there exists a A-arrow i: a → b such that for every A-arrow f: b → y there is an L-arrow g: y → V satisfying g ∘ f ∘ i = e.

4 3 5 4 3

Theorem (K. 2017)

Assume $\Re \subseteq \mathfrak{L}$ satisfy (L0)–(L3) and \Re is locally countable. Given $V \in Obj(\mathfrak{L})$, the following conditions are equivalent.

Theorem (K. 2017)

Assume $\Re \subseteq \mathfrak{L}$ satisfy (L0)–(L3) and \Re is locally countable. Given $V \in Obj(\mathfrak{L})$, the following conditions are equivalent.

- (a) V is weakly *R*-injective.
- (b) V is *R*-generic.
- (c) Eve does not have a winning strategy in BM (\mathfrak{K}, V) .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (K. 2017)

Assume $\Re \subseteq \mathfrak{L}$ satisfy (L0)–(L3) and \Re is locally countable. Given $V \in Obj(\mathfrak{L})$, the following conditions are equivalent.

- (a) V is weakly *R*-injective.
- (b) V is *R*-generic.
- (c) Eve does not have a winning strategy in BM (\mathfrak{K}, V) .

Remark

If there exists a weakly $\mathfrak{K}\text{-injective}$ object then \mathfrak{K} is directed and has the WAP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- C. Bargetz, J. Kakol, W. Kubiś, A separable Fréchet space of almost universal disposition, Journal of Functional Analysis 272 (2017) 1876–1891
- A. Krawczyk, W. Kubiś, *Games on finitely generated structures*, preprint, arXiv:1701.05756
- W. Kubiś, *Weak Fraïssé categories*, preprint, arXiv:1712.03300
- W. Kubiś, *Metric-enriched categories and approximate Fraïssé limits*, preprint, arXiv:1210.6506

THE END

A B b 4 B b