Measurable equidecompositions

based on joint work with Lukasz Grabowski and Oleg Pikhurko

Dissecting polygons and polyhedra

Wallace-Bolyai-Gerwien theorem

Given any two polygons of the same area, it is possible to cut the first into finitely many polygons which can be reassembled to yield the second.

[^0]
Dissecting polygons and polyhedra

Wallace-Bolyai-Gerwien theorem

Given any two polygons of the same area, it is possible to cut the first into finitely many polygons which can be reassembled to yield the second.

http://en.wikipedia.org/wiki/Wallace-Bolyai-Gerwien_theorem\#/media/File:Triangledissection.svg

Hilbert's third problem

Given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second?

Dissecting polygons and polyhedra

Wallace-Bolyai-Gerwien theorem

Given any two polygons of the same area, it is possible to cut the first into finitely many polygons which can be reassembled to yield the second.

http://en.wikipedia.org/wiki/Wallace-Bolyai-Gerwien_theorem\#/media/File:Triangledissection.svg

Hilbert's third problem

Given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second?

Theorem (Dehn)

No.
Dehn invariant. For example, cube and regular tetrahedron.

Banach-Tarski paradox (1924)

The unit ball in \mathbb{R}^{3} can be divided into finitely many pieces, which can be rearranged to obtain the union of two disjoint unit balls.

Banach-Tarski paradox (1924)

The unit ball in \mathbb{R}^{3} can be divided into finitely many pieces, which can be rearranged to obtain the union of two disjoint unit balls.

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$
$B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$
where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Banach-Tarski paradox (1924)

The unit ball in \mathbb{R}^{3} can be divided into finitely many pieces, which can be rearranged to obtain the union of two disjoint unit balls.

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$
$B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$
where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Banach-Tarski paradox

Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with non-empty interiors are equidecomposable.

Banach-Tarski paradox (1924)

The unit ball in \mathbb{R}^{3} can be divided into finitely many pieces, which can be rearranged to obtain the union of two disjoint unit balls.

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$
$B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$
where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Banach-Tarski paradox

Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with non-empty interiors are equidecomposable.

Remark

Not true in \mathbb{R}^{2}.

Hausdorff paradox (1914)

Hausdorff paradox

The unit sphere S^{2} is equidecomposable to the disjoint union of two unit spheres modulo countable sets.

Hausdorff paradox (1914)

Hausdorff paradox

The unit sphere S^{2} is equidecomposable to the disjoint union of two unit spheres modulo countable sets.

Banach-Tarski paradox (1924)

The unit ball in \mathbb{R}^{3} can be divided into finitely many pieces, which can be rearranged to obtain the union of two disjoint unit balls.

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$
$B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$
where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Banach-Tarski paradox

Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with non-empty interiors are equidecomposable.

Remark

Not true in \mathbb{R}^{2}.

Banach-Tarski paradox (1924)

The unit ball in \mathbb{R}^{3} can be divided into finitely many pieces, which can be rearranged to obtain the union of two disjoint unit balls.

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$
$B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$
where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Banach-Tarski paradox

Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with non-empty interiors are equidecomposable.

Remark

Not true in \mathbb{R}^{2}.
Isometries of \mathbb{R}^{3} : non-amenable group (there are rotations generating a free subgroup).
Isometries of \mathbb{R}^{2} : amenable (solvable).

Banach-Tarski paradox (1924)

The unit ball in \mathbb{R}^{3} can be divided into finitely many pieces, which can be rearranged to obtain the union of two disjoint unit balls.

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$
$B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$
where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Banach-Tarski paradox

Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with non-empty interiors are equidecomposable.

Remark

Not true in \mathbb{R}^{2}.
Isometries of \mathbb{R}^{3} : non-amenable group
(there are rotations generating a free subgroup).
Isometries of \mathbb{R}^{2} : amenable (solvable).
von Neumann \rightarrow amenable groups

Equidecompositions in the plane

Banach-Tarski paradox does not hold because...
Isometry group of \mathbb{R}^{2} is solvable

Equidecompositions in the plane

Banach-Tarski paradox does not hold because...
Isometry group of \mathbb{R}^{2} is solvable
\Downarrow
There exists an isometry invariant finitely additive measure defined on all subsets of \mathbb{R}^{2} extending Lebesgue measure.

Equidecompositions in the plane

Banach-Tarski paradox does not hold because...
Isometry group of \mathbb{R}^{2} is solvable
\Downarrow
There exists an isometry invariant finitely additive measure defined on all subsets of \mathbb{R}^{2} extending Lebesgue measure.
\Downarrow
If two measurable sets $A, B \subset \mathbb{R}^{2}$ are equidecomposable (with non-measurable pieces) then A and B have the same Lebesgue measure.

Tarski's circle squaring problem (1920s)

Question

Is it possible to cut a disc into finitely many pieces and rearrange them to obtain a square of the same area?
(Is the disc equidecomposable to a square?)

Tarski's circle squaring problem (1920s)

Question

Is it possible to cut a disc into finitely many pieces and rearrange them to obtain a square of the same area?
(Is the disc equidecomposable to a square?)

Answer (Laczkovich, 1990)

Yes.
It is even possible using translations only.

Tarski's circle squaring problem (1920s)

Question

Is it possible to cut a disc into finitely many pieces and rearrange them to obtain a square of the same area?
(Is the disc equidecomposable to a square?)

Answer (Laczkovich, 1990)

Yes.
It is even possible using translations only.

Theorem (Laczkovich, 1991)

Let $A, B \in \mathbb{R}^{d}, d \geq 1$, be bounded measurable sets with $\lambda(A)=\lambda(B)>0$ and $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A is equidecomposable to B, using translations only.

Theorem (Laczkovich, 1991)

Let $A, B \in \mathbb{R}^{d}, d \geq 1$, be bounded measurable sets with $\lambda(A)=\lambda(B)>0$ and $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A is equidecomposable to B, using translations only.
$\exists n \exists A=A_{1} \cup^{*} \ldots \cup^{*} A_{n} \exists t_{1}, \ldots, t_{n} \in \mathbb{R}^{d}$ such that
$B=\left(A_{1}+t_{1}\right) \cup^{*} \ldots \cup^{*}\left(A_{n}+t_{n}\right)$

Theorem (Laczkovich, 1991)

Let $A, B \in \mathbb{R}^{d}, d \geq 1$, be bounded measurable sets with $\lambda(A)=\lambda(B)>0$ and $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A is equidecomposable to B, using translations only.
$\exists n \exists A=A_{1} \cup^{*} \ldots \cup^{*} A_{n} \exists t_{1}, \ldots, t_{n} \in \mathbb{R}^{d}$ such that
$B=\left(A_{1}+t_{1}\right) \cup^{*} \ldots \cup^{*}\left(A_{n}+t_{n}\right)$

Remark

- The interiors of A and B are automatically non-empty.

Theorem (Laczkovich, 1991)

Let $A, B \in \mathbb{R}^{d}, d \geq 1$, be bounded measurable sets with $\lambda(A)=\lambda(B)>0$ and $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A is equidecomposable to B, using translations only.
$\exists n \exists A=A_{1} \cup^{*} \ldots \cup^{*} A_{n} \exists t_{1}, \ldots, t_{n} \in \mathbb{R}^{d}$ such that
$B=\left(A_{1}+t_{1}\right) \cup^{*} \ldots \cup^{*}\left(A_{n}+t_{n}\right)$

Remark

- The interiors of A and B are automatically non-empty.
- The condition on the box dimension of the boundary is necessary in the theorem.

Theorem (Laczkovich, 1991)

Let $A, B \in \mathbb{R}^{d}, d \geq 1$, be bounded measurable sets with $\lambda(A)=\lambda(B)>0$ and $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A is equidecomposable to B, using translations only.
$\exists n \exists A=A_{1} \cup^{*} \ldots \cup^{*} A_{n} \exists t_{1}, \ldots, t_{n} \in \mathbb{R}^{d}$ such that
$B=\left(A_{1}+t_{1}\right) \cup^{*} \ldots \cup^{*}\left(A_{n}+t_{n}\right)$

Remark

- The interiors of A and B are automatically non-empty.
- The condition on the box dimension of the boundary is necessary in the theorem.
- Requiring $\lambda(A)=\lambda(B)$ is necessary if we want to use only translations.

Theorem (Laczkovich, 1991)

Let $A, B \in \mathbb{R}^{d}, d \geq 1$, be bounded measurable sets with $\lambda(A)=\lambda(B)>0$ and $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A is equidecomposable to B, using translations only.
$\exists n \exists A=A_{1} \cup^{*} \ldots \cup^{*} A_{n} \exists t_{1}, \ldots, t_{n} \in \mathbb{R}^{d}$ such that
$B=\left(A_{1}+t_{1}\right) \cup^{*} \ldots \cup^{*}\left(A_{n}+t_{n}\right)$

Remark

- The interiors of A and B are automatically non-empty.
- The condition on the box dimension of the boundary is necessary in the theorem.
- Requiring $\lambda(A)=\lambda(B)$ is necessary if we want to use only translations.

Corollary

The disc is equidecomposable to the square of the same area.

Measurable version of Banach-Tarski and Hilbert's third problem

Theorem (Grabowski-M-Pikhurko 2014)

Any two bounded measurable sets in $\mathbb{R}^{d}, d \geq 3$, of the same measure with non-empty interiors are equidecomposable using measurable pieces.

Measurable version of Banach-Tarski and Hilbert's third problem

Theorem (Grabowski-M-Pikhurko 2014)

Any two bounded measurable sets in $\mathbb{R}^{d}, d \geq 3$, of the same measure with non-empty interiors are equidecomposable using measurable pieces.

Remark

Without the condition on the interiors even Banach-Tarski fails.
We have to be able to cover A with finitely many copies of B.

Measurable version of Banach-Tarski and Hilbert's third problem

Theorem (Grabowski-M-Pikhurko 2014)

Any two bounded measurable sets in $\mathbb{R}^{d}, d \geq 3$, of the same measure with non-empty interiors are equidecomposable using measurable pieces.

Remark

Without the condition on the interiors even Banach-Tarski fails.
We have to be able to cover A with finitely many copies of B.

Corollary (Grabowski-M-Pikhurko)

The cube and the tetrahedron are equidecomposable using measurable pieces.

Measurable/Borel circle squaring

Theorem (Grabowski-M-Pikhurko 2015)

Let $A, B \subset \mathbb{R}^{d}, d \geq 1$, be measurable sets with the same positive measure. Let $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A and B are equidecomposable with measurable pieces, using translations only.

Measurable/Borel circle squaring

Theorem (Grabowski-M-Pikhurko 2015)

Let $A, B \subset \mathbb{R}^{d}, d \geq 1$, be measurable sets with the same positive measure. Let $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A and B are equidecomposable with measurable pieces, using translations only.

Theorem (Marks-Unger 2016)

Let $A, B \subset \mathbb{R}^{d}, d \geq 1$, be measurable sets with the same positive measure. Let $\operatorname{dim}_{B}(\partial A)<d, \operatorname{dim}_{B}(\partial B)<d$.
Then A and B are equidecomposable with Borel pieces, using translations only.

No picture

Laczkovich needs about 10^{40} pieces to equidecompose the disc to a square. We need a bit more.

How not to look for equidecompositions

Dividing one set into pieces and then trying to reassemble to yield the other usually does not work.

How not to look for equidecompositions

Dividing one set into pieces and then trying to reassemble to yield the other usually does not work.

The right way to find equidecompositions

Take a lot of isometries / translations, then take even more, and then try to find the partitions that work.
"Take even more" usually means to take compositions of the isometries we already have.

Why is this graph theory?

Fix isometries $\gamma_{1}, \ldots, \gamma_{n}$.
We are trying to find an equidecomposition between (disjoint) sets A, B using these isometries.

Why is this graph theory?

Fix isometries $\gamma_{1}, \ldots, \gamma_{n}$.
We are trying to find an equidecomposition between (disjoint) sets A, B using these isometries.

Bi-partite graph G

- Vertices: $A \cup B$.
- Edges: $\quad\left\{(a, b) \in A \times B: \exists i b=\gamma_{i}(a)\right\}$.

Why is this graph theory?

Fix isometries $\gamma_{1}, \ldots, \gamma_{n}$.
We are trying to find an equidecomposition between (disjoint) sets A, B using these isometries.

Bi-partite graph G

- Vertices: $A \cup B$.
- Edges: $\quad\left\{(a, b) \in A \times B: \exists i b=\gamma_{i}(a)\right\}$.

Claim

There exists a perfect matching in $G \Longleftrightarrow$

$$
A \text { is equidecomposable to } B \text { using } \gamma_{1}, \ldots, \gamma_{n} \text {. }
$$

Proof.

Why is this graph theory?

Fix isometries $\gamma_{1}, \ldots, \gamma_{n}$.
We are trying to find an equidecomposition between (disjoint) sets A, B using these isometries.

Bi-partite graph G

- Vertices: $A \cup B$.
- Edges: $\quad\left\{(a, b) \in A \times B: \exists i b=\gamma_{i}(a)\right\}$.

Claim

There exists a perfect matching in G
A is equidecomposable to B using $\gamma_{1}, \ldots, \gamma_{n}$.
Proof. Perfect matching $=$ a function $f: A \rightarrow B$ for which $\forall x(x, f(x))$ is an edge, so $\forall x \exists i f(x)=\gamma_{i}(x)$.

Why is this graph theory?

Fix isometries $\gamma_{1}, \ldots, \gamma_{n}$.
We are trying to find an equidecomposition between (disjoint) sets A, B using these isometries.

Bi-partite graph G

- Vertices: $A \cup B$.
- Edges: $\quad\left\{(a, b) \in A \times B: \exists i b=\gamma_{i}(a)\right\}$.

Claim

There exists a perfect matching in G
A is equidecomposable to B using $\gamma_{1}, \ldots, \gamma_{n}$.
Proof. Perfect matching $=$ a function $f: A \rightarrow B$ for which $\forall x(x, f(x))$ is an edge, so $\forall x \exists i f(x)=\gamma_{i}(x)$.
Let $A_{i}=\left\{x \in A: f(x)=\gamma_{i}(x)\right.$ and there is no smaller i with the same property $\}$.

Measurable version of Banach-Tarski and Hilbert's third problem

Theorem (Grabowski-M-Pikhurko)

Any two bounded measurable sets in $\mathbb{R}^{d}, d \geq 3$, of the same measure with non-empty interiors are equidecomposable using measurable pieces.

Measurable version of Banach-Tarski and Hilbert's third problem

Theorem (Grabowski-M-Pikhurko)

Any two bounded measurable sets in $\mathbb{R}^{d}, d \geq 3$, of the same measure with non-empty interiors are equidecomposable using measurable pieces.

Special (easiest) case

Any two measurable sets on $S^{d-1}, d \geq 3$, of the same measure with non-empty interiors are equidecomposable using measurable pieces.

Measurable version of Banach-Tarski and Hilbert's third problem

Theorem (Grabowski-M-Pikhurko)

Any two bounded measurable sets in $\mathbb{R}^{d}, d \geq 3$, of the same measure with non-empty interiors are equidecomposable using measurable pieces.

Special (easiest) case

Any two measurable sets on $S^{d-1}, d \geq 3$, of the same measure with non-empty interiors are equidecomposable using measurable pieces.

- For Banach-Tarski paradox: we need isometries generating a free group.
- For this theorem: an analytic/quantitative analogue.

Spectral gap of averaging operators

Theorem (Margulis, Sullivan $d \geq 5$, Drinfeld $d \geq 3$)

There exist rotations $\gamma_{1}, \ldots, \gamma_{k} \in S O(d)$ for which we have a spectral gap for the operator

$$
\begin{gathered}
T: L^{2}\left(S^{d-1}\right) \rightarrow L^{2}\left(S^{d-1}\right) \\
T f(x)=\frac{f\left(\gamma_{1}(x)\right)+\ldots+f\left(\gamma_{k}(x)\right)}{k} .
\end{gathered}
$$

That is, $\int(T f)^{2} \leq(1-\varepsilon) \int f^{2}$ whenever $\int f=0$.

Spectral gap of averaging operators

Theorem (Margulis, Sullivan $d \geq 5$, Drinfeld $d \geq 3$)

There exist rotations $\gamma_{1}, \ldots, \gamma_{k} \in S O(d)$ for which we have a spectral gap for the operator

$$
\begin{gathered}
T: L^{2}\left(S^{d-1}\right) \rightarrow L^{2}\left(S^{d-1}\right) \\
T f(x)=\frac{f\left(\gamma_{1}(x)\right)+\ldots+f\left(\gamma_{k}(x)\right)}{k} .
\end{gathered}
$$

That is,
$\int(T f)^{2} \leq(1-\varepsilon) \int f^{2}$ whenever $\int f=0$.

Corollary (expansion property)
For every $\delta>0$ there exists a finite set of rotations Γ such that

$$
\lambda\left(\cup_{\gamma \in \Gamma} \gamma(X)\right) \geq \min (1-\delta, \lambda(X) / \delta) \quad \text { for every } X \subset S^{d-1}
$$

Here λ is the probability Lebesgue measure on S^{d-1}.

Corollary (expansion property)

For every $\delta>0$ there exists a finite set of rotations Γ such that

$$
\lambda\left(\cup_{\gamma \in \Gamma} \gamma(X)\right) \geq \min (1-\delta, \lambda(X) / \delta) \quad \text { for every } X \subset S^{d-1}
$$

Corollary (expansion property)

For every $\delta>0$ there exists a finite set of rotations Γ such that

$$
\lambda\left(\cup_{\gamma \in \Gamma} \gamma(X)\right) \geq \min (1-\delta, \lambda(X) / \delta) \quad \text { for every } X \subset S^{d-1} .
$$

$A, B \subset S^{d-1}$ disjoint measurable sets with non-empty interiors.
We would like to have an equidecomposition between A and B using rotations in Γ.
Bi-partite graph $G=G_{\Gamma}$

- Vertices: $A \cup B$.
- Edges: $\quad\{(a, b) \in A \times B: \exists \gamma \in \Gamma \quad b=\gamma(a)\}$.

Do we have an expansion property in G ?

Corollary (expansion property)

For every $\delta>0$ there exists a finite set of rotations Γ such that

$$
\lambda\left(\cup_{\gamma \in \Gamma} \gamma(X)\right) \geq \min (1-\delta, \lambda(X) / \delta) \quad \text { for every } X \subset S^{d-1} .
$$

$A, B \subset S^{d-1}$ disjoint measurable sets with non-empty interiors.
We would like to have an equidecomposition between A and B using rotations in Γ.
Bi-partite graph $G=G_{\Gamma}$

- Vertices: $A \cup B$.
- Edges: $\{(a, b) \in A \times B: \exists \gamma \in \Gamma \quad b=\gamma(a)\}$.

Do we have an expansion property in G ?

Lemma (expansion in G)

By adding more isometries (increasing Γ),

$$
\lambda(\underbrace{\cup_{\gamma \in \Gamma} \gamma(X) \cap B}_{N(X)}) \geq \min \left(\frac{2}{3} \lambda(B), 2 \lambda(X)\right) \quad \text { for every } X \subset A .
$$

That is, for every set the set of neighbours is large.

Corollary (expansion property)

For every $\delta>0$ there exists a finite set of rotations Γ such that

$$
\lambda\left(\cup_{\gamma \in \Gamma} \gamma(X)\right) \geq \min (1-\delta, \lambda(X) / \delta) \quad \text { for every } X \subset S^{d-1} .
$$

$A, B \subset S^{d-1}$ disjoint measurable sets with non-empty interiors.
We would like to have an equidecomposition between A and B using rotations in Γ^{\prime}.
Bi-partite graph $G=G_{\Gamma^{\prime}}$

- Vertices: $A \cup B$.
- Edges: $\quad\left\{(a, b) \in A \times B: \exists \gamma \in \Gamma^{\prime} \quad b=\gamma(a)\right\}$.

Do we have an expansion property in G ?

Lemma (expansion in G)

There is a finite set of rotations $\Gamma^{\prime} \subset S O(d)$ such that

$$
\lambda(\underbrace{\cup_{\gamma \in \Gamma^{\prime}} \gamma(X) \cap B}_{N(X)}) \geq \min \left(\frac{2}{3} \lambda(B), 2 \lambda(X)\right) \quad \text { for every } X \subset A .
$$

That is, for every set the set of neighbours is large.

Lemma (expansion in G)

There is a finite set of rotations $\Gamma^{\prime} \subset S O(d)$ such that

$$
\lambda(\underbrace{\cup_{\gamma \in \Gamma^{\prime}} \gamma(X) \cap B}_{N(X)}) \geq \min \left(\frac{2}{3} \lambda(B), 2 \lambda(X)\right) \quad \text { for every } X \subset A \text {. }
$$

That is, for every set the set of neighbours is large.

Theorem (Lyons-Nazarov)

Borel graphs with this expansion property have a Borel perfect matching up to a nullset.

Finding maximum matchings in finite bi-partite graphs

Maximum matching algorithm

- Start with any matching.
- Find an augmenting path.
- Increase the size of the matching using the augmenting path.
- Iterate.
- The algorithm finishes in finite time.

Finding measurable maximum matchings in infinite bi-partite graphs?

- Start with any matching.
- Find a large family of disjoint augmenting paths.
- Increase the size of the matching using these augmenting paths.
- Iterate.
- The algorithm does not finish in finite time. The matchings might or might not converge.

We need short augmenting paths to have convergence.

Putting together the proof

(1) Consider Borel matchings M_{k} which have no augmenting paths of length $\leq 2 k-1$ (Elek-Lippner).

Putting together the proof

(1) Consider Borel matchings M_{k} which have no augmenting paths of length $\leq 2 k-1$ (Elek-Lippner).
(2) Measure of unmatched points for M_{k} is at most $c(1+\varepsilon)^{-k}$.

Putting together the proof

(1) Consider Borel matchings M_{k} which have no augmenting paths of length $\leq 2 k-1$ (Elek-Lippner).
(2) Measure of unmatched points for M_{k} is at most $c(1+\varepsilon)^{-k}$.
(0) M_{k+1} is obtained from M_{k} by changing it on a set of vertices of measure $\leq c^{\prime} k(1+\varepsilon)^{-k}$.

Putting together the proof

(1) Consider Borel matchings M_{k} which have no augmenting paths of length $\leq 2 k-1$ (Elek-Lippner).
(2) Measure of unmatched points for M_{k} is at most $c(1+\varepsilon)^{-k}$.
(0) M_{k+1} is obtained from M_{k} by changing it on a set of vertices of measure $\leq c^{\prime} k(1+\varepsilon)^{-k}$.
(1) Since $\sum_{i} k(1+\varepsilon)^{-k}<\infty$, Borel-Cantelli implies that $\lim _{k} M_{k}$ exists (almost everywhere). This is a Borel perfect matching up to a nullset.

Previously...

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$ $B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$ where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Previously...

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$ $B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$ where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Banach-Tarski paradox

The unit ball is equidecomposable to the disjoint union of two unit balls.
Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with non-empty interiors are equidecomposable.

Previously...

Definition

We say that two sets $A, B \subset \mathbb{R}^{d}$ are equidecomposable if there exist finite partitions $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}$ $B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}$
where $B_{i}=\gamma_{i}\left(A_{i}\right)$ for some isometry γ_{i}.

Banach-Tarski paradox

The unit ball is equidecomposable to the disjoint union of two unit balls.
Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with non-empty interiors are equidecomposable.

Grabowski-M-Pikhurko

The ball is equidecomposable to a cube using measurable pieces.
In $\mathbb{R}^{d}, d \geq 3$, any two bounded measurable sets with non-empty interior of the same measure are equidecomposable using measurable pieces.

Baire equidecompositions

Theorem (Dougherty-Foreman 1992)

Banach-Tarski paradox works with Baire pieces. (Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with the Baire property and having non-empty interiors are equidecomposable using Baire pieces.)

$$
\text { Baire }=\text { open } \triangle \text { meager }=\text { Borel } \triangle \text { meager }
$$

Baire equidecompositions

Theorem (Dougherty-Foreman 1992)

Banach-Tarski paradox works with Baire pieces. (Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with the Baire property and having non-empty interiors are equidecomposable using Baire pieces.)

Baire $=$ open \triangle meager $=$ Borel \triangle meager
The real statement
There are disjoint open sets $V_{1}, \ldots, V_{n} \subset \mathbb{R}^{3}$ and isometries γ_{i} such that

- $V_{1} \cup^{*} \ldots \cup^{*} V_{n}$ is dense in the unit ball;
- $\gamma_{1}\left(V_{1}\right) \cup^{*} \ldots \cup^{*} \gamma_{n}\left(V_{n}\right)$ is dense in the union of two disjoint unit balls.

Baire equidecompositions

Theorem (Dougherty-Foreman 1992)

Banach-Tarski paradox works with Baire pieces. (Any two bounded sets in $\mathbb{R}^{d}, d \geq 3$, with the Baire property and having non-empty interiors are equidecomposable using Baire pieces.)

Baire $=$ open \triangle meager $=$ Borel \triangle meager
The real statement
There are disjoint open sets $V_{1}, \ldots, V_{n} \subset \mathbb{R}^{3}$ and isometries γ_{i} such that

- $V_{1} \cup^{*} \ldots \cup^{*} V_{n}$ is dense in the unit ball;
- $\gamma_{1}\left(V_{1}\right) \cup^{*} \ldots \cup^{*} \gamma_{n}\left(V_{n}\right)$ is dense in the union of two disjoint unit balls.

Tarski's circle squaring problem

Question (Tarski, 1920s)

Is the disc equidecomposable to a square?

Tarski’s circle squaring problem

Question (Tarski, 1920s)

Is the disc equidecomposable to a square?

Theorem (Laczkovich, 1991)
Yes, and it is enough to use translations only.

Tarski's circle squaring problem

Question (Tarski, 1920s)

Is the disc equidecomposable to a square?

Theorem (Laczkovich, 1991)
Yes, and it is enough to use translations only.
Theorem (Grabowski-M-Pikhurko, 2015)
Disc and square are equidecomposable with pieces that are both Baire and Lebesgue measurable.

Tarski's circle squaring problem

Question (Tarski, 1920s)

Is the disc equidecomposable to a square?

Theorem (Laczkovich, 1991)
Yes, and it is enough to use translations only.
Theorem (Grabowski-M-Pikhurko, 2015)
Disc and square are equidecomposable with pieces that are both Baire and Lebesgue measurable.

Theorem (Marks-Unger, 2016)
Disc and square are equidecomposable with Borel pieces.

Negative results

Theorem (Dubins-Hirsch-Karush, 1963)

The square and the disc are not "scissor-congruent". That is, they cannot be "equidecomposed" using pieces whose boundary consist of a single Jordan curve.

Negative results

Theorem (Dubins-Hirsch-Karush, 1963)

The square and the disc are not "scissor-congruent".
That is, they cannot be "equidecomposed" using pieces whose boundary consist of a single Jordan curve.

Theorem (Gardner, 1985)

The square and the disc are not equidecomposable if the pieces are moved by a locally discrete group of isometries.
A and B are equidecomposable using translations if and only if there is a bijection $\varphi: A \rightarrow B$ such that $\{\varphi(x)-x: x \in A\}$ is finite.

Proof.
A and B are equidecomposable using translations if and only if there is a bijection $\varphi: A \rightarrow B$ such that $\{\varphi(x)-x: x \in A\}$ is finite.

Proof.
If $A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}, B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}, \quad B_{i}=A_{i}+t_{i}$, then let $\varphi(x)=x+a_{i}\left(x \in A_{i}\right)$.

If $\{\varphi(x)-x: x \in A\}=\left\{t_{1}, \ldots, t_{n}\right\}$, then let $A_{i}=\left\{x \in A: \varphi(x)-x=t_{i}\right\}$.

Sketch of Laczkovich's proof

Assume A (disc) and B (square) are disjoint subsets of the torus $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.

Sketch of Laczkovich's proof

Assume A (disc) and B (square) are disjoint subsets of the torus $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Fix (random) translation vectors $v_{1}, \ldots, v_{d} \in \mathbb{T}$.

Sketch of Laczkovich's proof

Assume A (disc) and B (square) are disjoint subsets of the torus $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Fix (random) translation vectors $v_{1}, \ldots, v_{d} \in \mathbb{T}$.
The translations used in the equidecomposition will be $\left\{\sum_{i} n_{i} v_{i}:\left|n_{i}\right| \leq C\right\}$ for some large C.

Sketch of Laczkovich's proof

Assume A (disc) and B (square) are disjoint subsets of the torus $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Fix (random) translation vectors $v_{1}, \ldots, v_{d} \in \mathbb{T}$.
The translations used in the equidecomposition will be $\left\{\sum_{i} n_{i} v_{i}:\left|n_{i}\right| \leq C\right\}$ for some large C.
Look at the associated \mathbb{Z}^{d} action. Look at the orbits / cosets.

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*} \quad B
\end{aligned}
$$

Sketch of Laczkovich's proof

Assume A (disc) and B (square) are disjoint subsets of the torus $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Fix (random) translation vectors $v_{1}, \ldots, v_{d} \in \mathbb{T}$.
The translations used in the equidecomposition will be $\left\{\sum_{i} n_{i} v_{i}:\left|n_{i}\right| \leq C\right\}$ for some large C.
Look at the associated \mathbb{Z}^{d} action. Look at the orbits / cosets.

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*} \quad B
\end{aligned}
$$

Equidecomposition of A and B using translations
$\left\{\sum_{i} n_{i} v_{i}:\left|n_{i}\right| \leq C\right\}$

Existence of bijections
$f_{x}: A_{x}^{*} \rightarrow B_{x}^{*}$ for every x such that $\forall n \in \mathbb{Z}^{d}\left\|f_{x}(n)-n\right\|_{\infty} \leq C$.

Sketch of Laczkovich's proof

Assume A (disc) and B (square) are disjoint subsets of the torus $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Fix (random) translation vectors $v_{1}, \ldots, v_{d} \in \mathbb{T}$.
The translations used in the equidecomposition will be $\left\{\sum_{i} n_{i} v_{i}:\left|n_{i}\right| \leq C\right\}$ for some large C.
Look at the associated \mathbb{Z}^{d} action. Look at the orbits / cosets.

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*} \quad B
\end{aligned}
$$

Equidecomposition of A and B using translations
$\left\{\sum_{i} n_{i} v_{i}:\left|n_{i}\right| \leq C\right\}$

Existence of bijections
$f_{x}: A_{x}^{*} \rightarrow B_{x}^{*}$ for every x such that $\forall n \in \mathbb{Z}^{d}\left\|f_{x}(n)-n\right\|_{\infty} \leq C$.

Axiom of choice.

Sketch of Laczkovich's proof

Assume A (disc) and B (square) are disjoint subsets of the torus $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Fix (random) translation vectors $v_{1}, \ldots, v_{d} \in \mathbb{T}$.
The translations used in the equidecomposition will be $\left\{\sum_{i} n_{i} v_{i}:\left|n_{i}\right| \leq C\right\}$ for some large C.
Look at the associated \mathbb{Z}^{d} action. Look at the orbits / cosets.

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*} \quad B
\end{aligned}
$$

Equidecomposition of A and B using translations
$\left\{\sum_{i} n_{i} v_{i}:\left|n_{i}\right| \leq C\right\}$

Existence of bijections
$f_{x}: A_{x}^{*} \rightarrow B_{x}^{*}$ for every x such that $\forall n \in \mathbb{Z}^{d}\left\|f_{x}(n)-n\right\|_{\infty} \leq C$.

Axiom of choice.
Aim:

- $\forall x$ the density of A_{x}^{*} and B_{x}^{*} is $\lambda(A)$ (which is $=\lambda(B)$)
- these sets are "uniformly spread" in \mathbb{Z}^{d}.

$$
\begin{gathered}
A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
B_{x}^{*}
\end{gathered}
$$

$$
\begin{gathered}
A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
B_{x}^{*}
\end{gathered}
$$

Step 1

If A is a rectangle, then A_{x}^{*} is known to be 'uniformly spread': $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c \log ^{c} N$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N. (Application of the Erdős-Turán-Koksma inequality.)

$$
\begin{gathered}
A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
B_{x}^{*}
\end{gathered}
$$

Step 1

If A is a rectangle, then A_{x}^{*} is known to be 'uniformly spread': $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c \log ^{c} N$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N. (Application of the Erdős-Turán-Koksma inequality.)

Erdős-Turán inequality

(Quantitative result implying Weyl's ciretrion for equidistribution.) For every probability measure μ on the unit circle,

$$
\sup _{A}|\mu(A)-\lambda(A)| \leq C\left(\frac{1}{n}+\sum_{k=1}^{n} \frac{\hat{\mu}(k)}{k}\right)
$$

supremum taken over $\operatorname{arcs} A \subset[0,1)=\mathbb{R} / \mathbb{Z}$.

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*}
\end{aligned}
$$

$$
\begin{gathered}
A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
B_{x}^{*}
\end{gathered}
$$

Step 1

If A is a rectangle, then A_{x}^{*} is known to be 'uniformly spread': $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c \log ^{c} N$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N. (Application of the Erdős-Turán-Koksma inequality.)

$$
\begin{gathered}
A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
B_{x}^{*}
\end{gathered}
$$

Step 1

If A is a rectangle, then A_{x}^{*} is known to be 'uniformly spread': $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c \log ^{c} N$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N. (Application of the Erdős-Turán-Koksma inequality.)

Step 2

Approximate the set A with rectangles. Efficient if ∂A is small.

$$
\begin{gathered}
A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
B_{x}^{*}
\end{gathered}
$$

Step 1

If A is a rectangle, then A_{x}^{*} is known to be 'uniformly spread': $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c \log ^{c} N$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N. (Application of the Erdős-Turán-Koksma inequality.)

Step 2

Approximate the set A with rectangles. Efficient if ∂A is small.

Step 1

If A is a rectangle, then A_{x}^{*} is known to be 'uniformly spread':
$\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c \log ^{c} N$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N. (Application of the Erdős-Turán-Koksma inequality.)

Step 2

Approximate the set A with rectangles. Efficient if ∂A is small.

Step 1

If A is a rectangle, then A_{x}^{*} is known to be 'uniformly spread':
$\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c \log ^{c} N$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N.
(Application of the Erdős-Turán-Koksma inequality.)
Step 2
Approximate the set A with rectangles. Efficient if ∂A is small.

Let $\operatorname{dim}_{B} \partial A<(1-\varepsilon) \cdot 2$.
Then $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c N^{d(1-\varepsilon)}$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N.
(Niederreiter-Wills)

Step 1

If A is a rectangle, then A_{x}^{*} is known to be 'uniformly spread':
$\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c \log ^{c} N$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N. (Application of the Erdős-Turán-Koksma inequality.)

Step 2

Approximate the set A with rectangles. Efficient if ∂A is small.

Let $\operatorname{dim}_{B} \partial A<(1-\varepsilon) \cdot 2$.
Then $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c N^{d(1-\varepsilon)}$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N.
(Niederreiter-Wills)
Crucial: for large cubes, error term $c N^{d(1-\varepsilon)}$ is less than the size of boundary of the cube if we choose d to be large enough.

Step 2

Approximate the set A with rectangles. Efficient if ∂A is small. Let $\operatorname{dim}_{B} \partial A<(1-\varepsilon) \cdot 2$. Then $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c N^{d(1-\varepsilon)}$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N.

Step 2

Approximate the set A with rectangles. Efficient if ∂A is small. Let $\operatorname{dim}_{B} \partial A<(1-\varepsilon) \cdot 2$.
Then $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c N^{d(1-\varepsilon)}$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N.

Step 3 - most difficult part in Laczkovich's proof

Assume that $A^{*} \subset \mathbb{Z}^{d}, B^{*} \subset \mathbb{Z}^{d}$ satisfy

$$
\begin{aligned}
& \left|\left|A^{*} \cap Q\right|-\alpha\right| Q\left|\mid \leq c N^{d-1-\delta}\right. \\
& \left|\left|B^{*} \cap Q\right|-\alpha\right| Q\left|\mid \leq c N^{d-1-\delta}\right.
\end{aligned}
$$

for every dyadic cube $Q \subset \mathbb{Z}^{d}$ of side length N.

Step 2

Approximate the set A with rectangles. Efficient if ∂A is small. Let $\operatorname{dim}_{B} \partial A<(1-\varepsilon) \cdot 2$.
Then $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c N^{d(1-\varepsilon)}$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N.

Step 3 - most difficult part in Laczkovich's proof

Assume that $A^{*} \subset \mathbb{Z}^{d}, B^{*} \subset \mathbb{Z}^{d}$ satisfy

$$
\begin{aligned}
& \left\|A^{*} \cap Q|-\alpha| Q\right\| \leq c N^{d-1-\delta} \\
& \left|\left|B^{*} \cap Q\right|-\alpha\right| Q\left|\mid \leq c N^{d-1-\delta}\right.
\end{aligned}
$$

for every dyadic cube $Q \subset \mathbb{Z}^{d}$ of side length N.
Then there is a bijection $f: A^{*} \rightarrow B^{*}$ for which $\forall n\|f(n)-n\|_{\infty} \leq C(c, d, \delta)$.

Step 2

Approximate the set A with rectangles. Efficient if ∂A is small. Let $\operatorname{dim}_{B} \partial A<(1-\varepsilon) \cdot 2$.
Then $\left|A_{x}^{*} \cap Q\right|=\lambda(A)|Q| \pm c N^{d(1-\varepsilon)}$ for every cube $Q \subset \mathbb{Z}^{d}$ of side length N.

Step 3 - most difficult part in Laczkovich's proof

Assume that $A^{*} \subset \mathbb{Z}^{d}, B^{*} \subset \mathbb{Z}^{d}$ satisfy

$$
\begin{aligned}
& \left\|A^{*} \cap Q|-\alpha| Q\right\| \leq c N^{d-1-\delta} \\
& \left|\left|B^{*} \cap Q\right|-\alpha\right| Q\left|\mid \leq c N^{d-1-\delta}\right.
\end{aligned}
$$

for every dyadic cube $Q \subset \mathbb{Z}^{d}$ of side length N.
Then there is a bijection $f: A^{*} \rightarrow B^{*}$ for which $\forall n\|f(n)-n\|_{\infty} \leq C(c, d, \delta)$.
The existence of the bijection is obtained by checking Hall's condition:
$|N(X)| \geq|X| \quad$ for every set of vertices X.
That is,

To obtain a measurable circle squaring

Cosets: $\left\{x+\sum_{i=1}^{d} n_{i} v_{i} \in \mathbb{T}:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$

$$
\begin{array}{rl}
A_{x}^{*} & =\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
B_{x}^{*} & B
\end{array}
$$

To obtain a measurable circle squaring

Cosets: $\left\{x+\sum_{i=1}^{d} n_{i} v_{i} \in \mathbb{T}:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*}
\end{aligned}
$$

Problems

- We cannot use axiom of choice: we cannot rely on Hall's condition.

To obtain a measurable circle squaring

Cosets: $\left\{x+\sum_{i=1}^{d} n_{i} v_{i} \in \mathbb{T}:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*}
\end{aligned}
$$

Problems

- We cannot use axiom of choice: we cannot rely on Hall's condition.
- We have to find perfect matchings in (almost) all cosets of \mathbb{Z}^{d} in a Borel way.

To obtain a measurable circle squaring

Cosets: $\left\{x+\sum_{i=1}^{d} n_{i} v_{i} \in \mathbb{T}:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*}
\end{aligned}
$$

Problems

- We cannot use axiom of choice: we cannot rely on Hall's condition.
- We have to find perfect matchings in (almost) all cosets of \mathbb{Z}^{d} in a Borel way.
- There is no distinguished origin in these cosets. (There is no Borel set E which intersects every coset in exactly 1 point.)

To obtain a measurable circle squaring

Cosets: $\left\{x+\sum_{i=1}^{d} n_{i} v_{i} \in \mathbb{T}:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*}
\end{aligned}
$$

Problems

- We cannot use axiom of choice: we cannot rely on Hall's condition.
- We have to find perfect matchings in (almost) all cosets of \mathbb{Z}^{d} in a Borel way.
- There is no distinguished origin in these cosets. (There is no Borel set E which intersects every coset in exactly 1 point.)

Solution

- We use augmenting paths to build up a sequence of matchings.

To obtain a measurable circle squaring

Cosets: $\left\{x+\sum_{i=1}^{d} n_{i} v_{i} \in \mathbb{T}:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*}
\end{aligned}
$$

Problems

- We cannot use axiom of choice: we cannot rely on Hall's condition.
- We have to find perfect matchings in (almost) all cosets of \mathbb{Z}^{d} in a Borel way.
- There is no distinguished origin in these cosets. (There is no Borel set E which intersects every coset in exactly 1 point.)

Solution

- We use augmenting paths to build up a sequence of matchings.
- We show that short augmenting paths exist.

To obtain a measurable circle squaring

Cosets: $\left\{x+\sum_{i=1}^{d} n_{i} v_{i} \in \mathbb{T}:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$

$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*}
\end{aligned}
$$

Problems

- We cannot use axiom of choice: we cannot rely on Hall's condition.
- We have to find perfect matchings in (almost) all cosets of \mathbb{Z}^{d} in a Borel way.
- There is no distinguished origin in these cosets. (There is no Borel set E which intersects every coset in exactly 1 point.)

Solution

- We use augmenting paths to build up a sequence of matchings.
- We show that short augmenting paths exist.
- We find Borel sets E_{i} which intersect cosets in sparse sets and use these as "local origins".

To obtain a measurable circle squaring

 Cosets: $\left\{x+\sum_{i=1}^{d} n_{i} v_{i} \in \mathbb{T}:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$$$
\begin{aligned}
& A_{x}^{*}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: x+\sum_{i=1}^{d} n_{i} v_{i} \in A\right\} . \\
& B_{x}^{*}
\end{aligned}
$$

Problems

- We cannot use axiom of choice: we cannot rely on Hall's condition.
- We have to find perfect matchings in (almost) all cosets of \mathbb{Z}^{d} in a Borel way.
- There is no distinguished origin in these cosets. (There is no Borel set E which intersects every coset in exactly 1 point.)

Solution

- We use augmenting paths to build up a sequence of matchings.
- We show that short augmenting paths exist.
- We find Borel sets E_{i} which intersect cosets in sparse sets and use these as "local origins".
- We use a local algorithm to build up the matchings, ensuring that everything is Borel.

Short augmenting paths

For large enough C,
$|N(X)| \geq|X|+|\partial X| \geq|X|+|X|^{(d-1) / d} \quad$ for every set of vertices X.

Short augmenting paths

For large enough C,

$$
|N(X)| \geq|X|+|\partial X| \geq|X|+|X|^{(d-1) / d} \quad \text { for every set of vertices } X .
$$

That is,

$$
\underbrace{X_{C}}_{C \text {-width neighbourhood of } X} \cap B^{*}\left|\geq|X|+|X|^{(d-1) / d} \quad\left(X \subset A^{*}\right) .\right.
$$

Short augmenting paths

For large enough C,

$$
|N(X)| \geq|X|+|\partial X| \geq|X|+|X|^{(d-1) / d} \quad \text { for every set of vertices } X .
$$

That is,

$$
|\underbrace{X_{C}}_{C \text {-width neighbourhood of } X} \cap B^{*}| \geq|X|+|X|^{(d-1) / d} \quad\left(X \subset A^{*}\right)
$$

- $|\partial X|$ can be defined as surface area of $\partial\left(X+[0,1]^{d}\right)$.

Short augmenting paths

For large enough C,

$$
|N(X)| \geq|X|+|\partial X| \geq|X|+|X|^{(d-1) / d} \quad \text { for every set of vertices } X .
$$

That is,

$$
\underbrace{X_{C}}_{C \text {-width neighbourhood of } X} \cap B^{*}\left|\geq|X|+|X|^{(d-1) / d} \quad\left(X \subset A^{*}\right)\right. \text {. }
$$

- $|\partial X|$ can be defined as surface area of $\partial\left(X+[0,1]^{d}\right)$.
- The exponent $(d-1) / d$ is sharp by the isoperimetric inequality.

Short augmenting paths

For large enough C,

$$
|N(X)| \geq|X|+|\partial X| \geq|X|+|X|^{(d-1) / d} \quad \text { for every set of vertices } X .
$$

That is,

$$
\underbrace{X_{C}}_{C \text {-width neighbourhood of } X} \cap B^{*}\left|\geq|X|+|X|^{(d-1) / d} \quad\left(X \subset A^{*}\right)\right. \text {. }
$$

- $|\partial X|$ can be defined as surface area of $\partial\left(X+[0,1]^{d}\right)$.
- The exponent $(d-1) / d$ is sharp by the isoperimetric inequality.

Lemma

Let $Q \subset \mathbb{Z}^{d}$ be a cube and assume we have a matching between $A^{*} \cap Q$ and $B^{*} \cap Q$. If there are unmatched vertices in A^{*} and B^{*} of distance t, then there is an augmenting path of length $c t$.

Algorithm to find perfect matchings

Pretend that there is a Borel set $E \subset \mathbb{T}$ intersecting every coset in exactly 1 point.
(c) Take A^{*} and B^{*}.
(c) Take a sequence $N_{i} \rightarrow \infty . \quad N_{i} \mid N_{i+1}$.

Divide \mathbb{Z}^{d} into the family \mathcal{Q}_{i} of grid cubes of side N_{i}.

- We will define matchings M_{i} (bijection of a subset of A^{*} into B^{*}, every point is moved by at most C)
such that all the edges are inside one of the grid cubes of \mathcal{Q}_{i}.
(- M_{i} is a maximal matching in each of the grid cubes.
(0) The density of unmatched vertices is $\leq N_{i}^{-\varepsilon d}$.
(0) To obtain the matching M_{i+1} from M_{i}
- For each grid cube in \mathcal{Q}_{i+1} take M_{i} and increase it using the shortest possible augmenting paths to a maximal matching.
- The density where the matching is changed is small.
(1) Borel-Cantelli can be used, the limit of the matchings M_{i} exists (almost everywhere).
(3) This gives a Borel algorithm to find a Borel a.e. equidecomposition of A and B provided that E exists (but it does not).

Tarski's circle squaring with Borel pieces

Theorem (Marks-Unger 2016)

Let $A, B \subset \mathbb{R}^{d}, d \geq 1$, be measurable sets with the same positive measure. Let $\operatorname{dim}_{M}(\partial A)<d, \operatorname{dim}_{M}(\partial B)<d$.
Then A and B are equidecomposable with Borel pieces, using translations only.
$A=A_{1} \cup^{*} \ldots \cup^{*} A_{n}, \quad B=B_{1} \cup^{*} \ldots \cup^{*} B_{n}, \quad B_{i}=A_{i}+t_{i}$

Borel circle squaring (Marks-Unger)

Matchings and augmenting paths are replaced by flows.
Let (V, E) be a graph and $f: V \rightarrow \mathbb{R}$. An f-flow is a function φ on the edges with

$$
\varphi(x, y)=-\varphi(y, x) \quad(x y \in E)
$$

such that

$$
f(x)=\sum_{y \in N(x)} \varphi(x, y) \quad(x \in V)
$$

(f replaces the usual source and sink)

Connection to matchings

Let $E \subset A \times B$ be a bi-partite graph, $M \subset E$ a matching. Then

$$
\varphi(x, y)= \begin{cases}1 & \text { if }(x, y) \in M \\ -1 & \text { if }(y, x) \in M \\ 0 & \text { otherwise }\end{cases}
$$

is an f-flow for $f=1_{A}-1_{B}$.

$$
\begin{aligned}
& V=\mathbb{T} \\
& E=\left\{(x, y): y-x=n_{1} v_{1}+\ldots+n_{d} v_{d}, n_{i}=-1,0,1\right\} .
\end{aligned}
$$

Marks-Unger, Step 1

Under Laczkovich's conditions, there exists a bounded Borel f-flow on E with $f=1_{A}-1_{B}$.
$V=\mathbb{T}$
$E=\left\{(x, y): y-x=n_{1} v_{1}+\ldots+n_{d} v_{d}, n_{i}=-1,0,1\right\}$.

Marks-Unger, Step 1

Under Laczkovich's conditions, there exists a bounded Borel f-flow on E with $f=1_{A}-1_{B}$.

Marks-Unger, Step 2
There exists an integer valued bounded Borel f-flow on E with $f=1_{A}-1_{B}$.
$V=\mathbb{T}$
$E=\left\{(x, y): y-x=n_{1} v_{1}+\ldots+n_{d} v_{d}, n_{i}=-1,0,1\right\}$.

Marks-Unger, Step 1

Under Laczkovich's conditions, there exists a bounded Borel f-flow on E with $f=1_{A}-1_{B}$.

Marks-Unger, Step 2

There exists an integer valued bounded Borel f-flow on E with $f=1_{A}-1_{B}$.
Marks-Unger, Step 3
There exists a Borel equidecomposition of A to B.

Hyperfinite Borel equivalence relations

X standard Borel space, $E \subset X \times X$ a Borel equivalence relation.

Hyperfinite Borel equivalence relations
 X standard Borel space, $E \subset X \times X$ a Borel equivalence relation.

E is called finite if each equivalence class is finite.

Hyperfinite Borel equivalence relations
 X standard Borel space, $E \subset X \times X$ a Borel equivalence relation.

E is called finite if each equivalence class is finite.
E is called countable if each equivalence class is countable.

Hyperfinite Borel equivalence relations

X standard Borel space, $E \subset X \times X$ a Borel equivalence relation.
E is called finite if each equivalence class is finite.
E is called countable if each equivalence class is countable.
E is hyperfinite if $E=\cup_{n=1}^{\infty} E_{n}$ where E_{n} is a finite Borel equivalence relation for every n.

Hyperfinite Borel equivalence relations

X standard Borel space, $E \subset X \times X$ a Borel equivalence relation.
E is called finite if each equivalence class is finite.
E is called countable if each equivalence class is countable.
E is hyperfinite if $E=\cup_{n=1}^{\infty} E_{n}$ where E_{n} is a finite Borel equivalence relation for every n.

Theorem (Feldman-Moore, 1977)
E is a countable Borel equivalence relation on X
介
E is a Borel and $E=\{(x, g(x)): x \in X, g \in G\}$ where G is a countable group acting on X.

Hyperfinite Borel equivalence relations

X standard Borel space, $E \subset X \times X$ a Borel equivalence relation.
E is called finite if each equivalence class is finite.
E is called countable if each equivalence class is countable.
E is hyperfinite if $E=\cup_{n=1}^{\infty} E_{n}$ where E_{n} is a finite Borel equivalence relation for every n.

Theorem (Feldman-Moore, 1977)

E is a countable Borel equivalence relation on X
§
E is a Borel and $E=\{(x, g(x)): x \in X, g \in G\}$ where G is a countable group acting on X.

Theorem (Weiss, 1981)
If $G=\mathbb{Z}^{d}$ and $G \curvearrowright X$ is a Borel action, then
$E=\{(x, g(x)): x \in X, g \in G\}$ is hyperfinite.

Theorem (Gao-Jackson 2015)

If G is countable and Abelian and $G \curvearrowright X$ is a Borel action, then $E=\{(x, g(x)): x \in X, g \in G\}$ is hyperfinite.

Theorem (Gao-Jackson 2015)

If G is countable and Abelian and $G \curvearrowright X$ is a Borel action, then $E=\{(x, g(x)): x \in X, g \in G\}$ is hyperfinite.

Theorem (Gao-Jackson-Krohne-Seward)

If $G=\mathbb{Z}^{d}$ and $G \curvearrowright X$ is a free Borel action, then X is the union of a Borel family of finite sets whose \mathbb{Z}^{d}-boundary are disjoint and far away from each other (say, the n-neighbourhood of the boundaries are disjoint too).

Theorem (Gao-Jackson 2015)

If G is countable and Abelian and $G \curvearrowright X$ is a Borel action, then $E=\{(x, g(x)): x \in X, g \in G\}$ is hyperfinite.

Theorem (Gao-Jackson-Krohne-Seward)

If $G=\mathbb{Z}^{d}$ and $G \curvearrowright X$ is a free Borel action, then X is the union of a Borel family of finite sets whose \mathbb{Z}^{d}-boundary are disjoint and far away from each other (say, the n-neighbourhood of the boundaries are disjoint too).

Lemma (Marks-Unger, 2016)

Suppose $G=\mathbb{Z}^{d}, d \geq 2, G \curvearrowright X$ is a free Borel action.
If $f: X \rightarrow \mathbb{Z}$ is Borel, φ is a Borel f-flow, then there is an integer valued Borel f-flow ψ such that $|\varphi-\psi| \leq 3^{d}$.

Theorem (Gao-Jackson 2015)

If G is countable and Abelian and $G \curvearrowright X$ is a Borel action, then $E=\{(x, g(x)): x \in X, g \in G\}$ is hyperfinite.

Theorem (Gao-Jackson-Krohne-Seward)

If $G=\mathbb{Z}^{d}$ and $G \curvearrowright X$ is a free Borel action, then X is the union of a Borel family of finite sets whose \mathbb{Z}^{d}-boundary are disjoint and far away from each other (say, the n-neighbourhood of the boundaries are disjoint too).

Lemma (Marks-Unger, 2016)

Suppose $G=\mathbb{Z}^{d}, d \geq 2, G \curvearrowright X$ is a free Borel action.
If $f: X \rightarrow \mathbb{Z}$ is Borel, φ is a Borel f-flow, then there is an integer valued Borel f-flow ψ such that $|\varphi-\psi| \leq 3^{d}$.

Corollary: Step $1 \Longrightarrow$ Step 2.

Theorem (Gao-Jackson, 2015)

Suppose $G=\mathbb{Z}^{d}$, and $G \curvearrowright X$ is a free Borel action. Then for every $n \geq 1$ there is a Borel partion of X into sets of the form

$$
\left\{g_{n_{1} \ldots n_{d}}(x): 0 \leq n_{i}<n \text { or } n+1\right\} .
$$

That is, there is a Borel tiling of the \mathbb{Z}^{d}-action using boxes (rectangles) each of whose side length are n or $n+1$.

Theorem (Gao-Jackson, 2015)

Suppose $G=\mathbb{Z}^{d}$, and $G \curvearrowright X$ is a free Borel action. Then for every $n \geq 1$ there is a Borel partion of X into sets of the form

$$
\left\{g_{n_{1} \ldots n_{d}}(x): 0 \leq n_{i}<n \text { or } n+1\right\} .
$$

That is, there is a Borel tiling of the \mathbb{Z}^{d}-action using boxes (rectangles) each of whose side length are n or $n+1$.

This theorem is used to obtain the Borel equidecomposition from the integer valued Borel flow.

Open questions

Question

Is the disc equidecomposable to a square using Jordan measurable pieces?
A set is Jordan measurable if it is bounded and its boundary has measure zero.

Open questions

Question

Is the disc equidecomposable to a square using Jordan measurable pieces?
A set is Jordan measurable if it is bounded and its boundary has measure zero.

Question (Mycielski, Wagon)

Is it possible to divide the sphere into three congruent measurable sets?

$$
S^{2}=A \cup^{*} B \cup^{*} C, \quad A \sim B \sim C
$$

Measurable and Borel local lemma

András Máthé

based on joint work with Endre Csóka, Lukasz Grabowski, Oleg Pikhurko and Kostas Tyros

University of Warwick

46th Winter School in Abstract Analysis, Svratka
17 January 2018

Let $P \subset \mathbb{R}$ be a non-empty perfect set (closed set without isolated points). Is there a (closed) set of Lebesgue measure zero $E \subset \mathbb{R}$ such that $P+E=\mathbb{R}$?

$$
P+E=\{p+e: p \in P, e \in E\}
$$

For any set $S \subset \mathbb{Z}$ with $|S| \geq 100$, there are eight disjoint sets $A_{1}, \ldots, A_{8} \subset \mathbb{Z}$ such that every translate $S+m$ intersects all the eight sets A_{i}.

For any set $S \subset \mathbb{Z}$ with $|S| \geq 100$, there are eight disjoint sets $A_{1}, \ldots, A_{8} \subset \mathbb{Z}$ such that every translate $S+m$ intersects all the eight sets A_{i}.

For any set $S \subset \mathbb{R}$ with $|S| \geq 100$, there are eight disjoint sets $A_{1}, \ldots, A_{8} \subset \mathbb{R}$ such that every translate $S+t$ intersects all the eight sets A_{i}.

For any set $S \subset \mathbb{Z}$ with $|S| \geq 100$, there are eight disjoint sets $A_{1}, \ldots, A_{8} \subset \mathbb{Z}$ such that every translate $S+m$ intersects all the eight sets A_{i}.

For any set $S \subset \mathbb{R}$ with $|S| \geq 100$, there are eight disjoint sets $A_{1}, \ldots, A_{8} \subset \mathbb{R}$ such that every translate $S+t$ intersects all the eight sets A_{i}.

For any set $S \subset \mathbb{R}$ with $|S| \geq 100$, there are eight disjoint Borel sets $A_{1}, \ldots, A_{8} \subset \mathbb{R}$ such that every translate $S+t$ intersects all the eight sets A_{i}.

For any set $S \subset \mathbb{Z}^{d}$ with $|S| \geq 100$, there are eight disjoint sets $A_{1}, \ldots, A_{8} \subset \mathbb{Z}^{d}$ such that every translate $S+m$ intersects all the eight sets A_{i}.

For any set $S \subset \mathbb{R}^{d}$ with $|S| \geq 100$, there are eight disjoint sets $A_{1}, \ldots, A_{8} \subset \mathbb{R}^{d}$ such that every translate $S+t$ intersects all the eight sets A_{i}.

For any set $S \subset \mathbb{R}^{d}$ with $|S| \geq 100$, there are eight disjoint Borel sets $A_{1}, \ldots, A_{8} \subset \mathbb{R}^{d}$ such that every translate $S+t$ intersects all the eight sets A_{i}.

In general,
For every k there is n such that if $S \subset \mathbb{R}^{d},|S| \geq n$, then there are k disjoint sets $A_{i} \in \mathbb{R}^{d}(i=1, \ldots, k)$ such that every translate of S intersects every set A_{i}.

For every k there is n such that if $S \subset \mathbb{R}^{d},|S| \geq n$, then there are k disjoint Borel sets $A_{i} \in \mathbb{R}^{d}(i=1, \ldots, k)$ such that every translate of S intersects every set A_{i}.

The Borel version of this problem is actually not much harder than the non-Borel one partly because we are not interested here about sharp statements.

Cover \mathbb{R}^{3} by open unit balls such that every point is covered at least k times but no point is covered by $c 2^{k / 3}$ balls.

Cover \mathbb{R}^{3} by open unit balls such that every point is covered at least k times but no point is covered by $c 2^{k / 3}$ balls.
Then it is possible to split this family of balls into two families each being a covering of \mathbb{R}^{3}.
(Mani-Levitska-Pach 1988)

Cover \mathbb{R}^{3} by open unit balls such that every point is covered at least k times but no point is covered by $c 2^{k / 3}$ balls.
Then it is possible to split this family of balls into two families each being a covering of \mathbb{R}^{3}.
(Mani-Levitska-Pach 1988)

Let d, k be positive integers and assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many subsets $A_{i} \subset X$ containing at least k elements.

Cover \mathbb{R}^{3} by open unit balls such that every point is covered at least k times but no point is covered by $c 2^{k / 3}$ balls.
Then it is possible to split this family of balls into two families each being a covering of \mathbb{R}^{3}.
(Mani-Levitska-Pach 1988)

Let d, k be positive integers and assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many subsets $A_{i} \subset X$ containing at least k elements. Assume that each A_{i} is disjoint from all but at most d other sets.

Cover \mathbb{R}^{3} by open unit balls such that every point is covered at least k times but no point is covered by $c 2^{k / 3}$ balls.
Then it is possible to split this family of balls into two families each being a covering of \mathbb{R}^{3}.
(Mani-Levitska-Pach 1988)

Let d, k be positive integers and assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many subsets $A_{i} \subset X$ containing at least k elements. Assume that each A_{i} is disjoint from all but at most d other sets.
Then the elements of X can be coloured red and blue such that each set A_{i} contains a red element and a blue element.

Local lemma

These statements are all corollaries of the Lovász Local Lemma (Erdős-Lovász 1975).

Local lemma

These statements are all corollaries of the Lovász Local Lemma (Erdős-Lovász 1975).

Those involving Borel sets also rely on our infinite/measurable/Borel version of this local lemma (Csóka-Grabowski-M-Pikhurko-Tyros).

The probabilistic method

Erdős 1947

$R(k, k)>\left\lfloor 2^{k / 2}\right\rfloor$ (Ramsey number)
That is, the edges of the complete graph on $n=\left\lfloor 2^{k / 2}\right\rfloor$ vertices can be coloured red and blue such that every complete subgraph on k vertices contains both red and blue edges.

Proof.
Colour the edges independently randomly red or blue with equal probability.
For any complete subgraph on k vertices, the probability that it is monochromatic (all its edges are red or all are blue) is

$$
2^{1-\binom{k}{2}} .
$$

There are $\binom{n}{k}$ ways to choose k vertices.
The probability that one of the subgraphs on k vertices is monochromatic is at most

$$
\binom{n}{k} 2^{1-\binom{k}{2}}<1
$$

Hence, with positive probability, all complete subgraphs on k vertices contain both red and blue edges.

Local lemma example

Assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many subsets $A_{i} \subset X$ containing at least k elements. Assume that each A_{i} is disjoint from all but at most d other sets.
Then the elements of X can be coloured red and blue such that each set A_{i} contains a red element and a blue element.

Colour the points of X randomly red or blue. The probability that A_{i} is monocoloured ("bad event") is 2^{1-k}. The "good event" is if A_{i} is multicoloured.

Local lemma example

Assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many subsets $A_{i} \subset X$ containing at least k elements. Assume that each A_{i} is disjoint from all but at most d other sets.
Then the elements of X can be coloured red and blue such that each set A_{i} contains a red element and a blue element.

Colour the points of X randomly red or blue.
The probability that A_{i} is monocoloured ("bad event") is 2^{1-k}. The "good event" is if A_{i} is multicoloured.

If these events were independent (say, the sets A_{i} were pairwise disjoint), then with positive probability, all events were good, each set A_{i} is multicoloured.

Local lemma example

Assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many subsets $A_{i} \subset X$ containing at least k elements. Assume that each A_{i} is disjoint from all but at most d other sets.
Then the elements of X can be coloured red and blue such that each set A_{i} contains a red element and a blue element.

Colour the points of X randomly red or blue.
The probability that A_{i} is monocoloured ("bad event") is 2^{1-k}. The "good event" is if A_{i} is multicoloured.

If these events were independent (say, the sets A_{i} were pairwise disjoint), then with positive probability, all events were good, each set A_{i} is multicoloured.

We (only) know that each of these events is independent from all but d other events.
("mutually")

Local lemma example

Assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many subsets $A_{i} \subset X$ containing at least k elements. Assume that each A_{i} is disjoint from all but at most d other sets.
Then the elements of X can be coloured red and blue such that each set A_{i} contains a red element and a blue element.

Colour the points of X randomly red or blue.
The probability that A_{i} is monocoloured ("bad event") is 2^{1-k}. The "good event" is if A_{i} is multicoloured.

If these events were independent (say, the sets A_{i} were pairwise disjoint), then with positive probability, all events were good, each set A_{i} is multicoloured.

We (only) know that each of these events is independent from all but d other events.
("mutually")

Lovász Local Lemma: If $e p(d+1) \leq 1$, then with positive probability, all events are good.

Lovász Local Lemma (Erdős-Lovász 1975)

Let A_{1}, \ldots, A_{m} be events in an arbitrary probability space. Suppose that each event A_{i} is mutually independent of a set of all the other events A_{j} but at most d, and that $\operatorname{Pr}\left(A_{i}\right) \leq p$ for all i. If

$$
e p(d+1) \leq 1
$$

then $\operatorname{Pr}\left(\wedge_{i} \overline{A_{i}}\right)>0$.

Multicoloured translates

Multicoloured translates 1

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{Z},|S| \geq n$, then \mathbb{Z} can be coloured by k colours such that every translate of S contains all k colours.

Proof.

Multicoloured translates

Multicoloured translates 1

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{Z},|S| \geq n$, then \mathbb{Z} can be coloured by k colours such that every translate of S contains all k colours.

Proof. Lovász Local Lemma for finitely many translates $S+m(m=-M, \ldots, M)$. Then diagonal argument.

Multicoloured translates

Multicoloured translates 1

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{Z},|S| \geq n$, then \mathbb{Z} can be coloured by k colours such that every translate of S contains all k colours.

Proof. Lovász Local Lemma for finitely many translates $S+m(m=-M, \ldots, M)$. Then diagonal argument.

Multicoloured translates 2

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{R},|S| \geq n$, then \mathbb{R} can be coloured by k colours such that every translate of S contains all k colours.

Proof.

Multicoloured translates

Multicoloured translates 1

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{Z},|S| \geq n$, then \mathbb{Z} can be coloured by k colours such that every translate of S contains all k colours.

Proof. Lovász Local Lemma for finitely many translates $S+m(m=-M, \ldots, M)$. Then diagonal argument.

Multicoloured translates 2

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{R},|S| \geq n$, then \mathbb{R} can be coloured by k colours such that every translate of S contains all k colours.

Proof. Lovász Local Lemma for finitely many translates.
Then Tikhonov.

Multicoloured translates

Multicoloured translates 1

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{Z},|S| \geq n$, then \mathbb{Z} can be coloured by k colours such that every translate of S contains all k colours.

Proof. Lovász Local Lemma for finitely many translates $S+m(m=-M, \ldots, M)$. Then diagonal argument.

Multicoloured translates 2

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{R},|S| \geq n$, then \mathbb{R} can be coloured by k colours such that every translate of S contains all k colours.

Proof. Lovász Local Lemma for finitely many translates.
Then Tikhonov.

Multicoloured translates 3 (Csóka-Grabowski-M-Pikhurko-Tyros)

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{R},|S| \geq n$, then \mathbb{R} can be coloured by k colours in a Borel way such that every translate of S contains all k colours.

Proof.

Multicoloured translates

Multicoloured translates 1

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{Z},|S| \geq n$, then \mathbb{Z} can be coloured by k colours such that every translate of S contains all k colours.

Proof. Lovász Local Lemma for finitely many translates $S+m(m=-M, \ldots, M)$. Then diagonal argument.

Multicoloured translates 2

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{R},|S| \geq n$, then \mathbb{R} can be coloured by k colours such that every translate of S contains all k colours.

Proof. Lovász Local Lemma for finitely many translates.
Then Tikhonov.

Multicoloured translates 3 (Csóka-Grabowski-M-Pikhurko-Tyros)

For every k there is $n=L L L(k)$ such that if $S \subset \mathbb{R},|S| \geq n$, then \mathbb{R} can be coloured by k colours in a Borel way such that every translate of S contains all k colours.

Proof. Borel version of the Lovász Local Lemma.

Proof of Local Lemma

Original proof: Induction.

Proof of Local Lemma

Original proof: Induction.
Algorithmic versions. Beck 1991, Alon 1991, Molloy-Reed 1998, Czumaj. Scheideder 2000, STinivasam 2009, Moese 2008, Moser 2009, ... Moser-Tardos 2010.

Proof of Local Lemma

Original proof: Induction.
Algorithmic versions. Beck 1991, Alon 1991, Molloy-Reed 1998, Czumai-Scheideler 2000, Srinivasan 2009, Moser 2008, Moser 2009, ... Moser-Tardos 2010.

Assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many (m) subsets $A_{i} \subset X$ containing at least k elements.
Assume that each A_{i} is disjoint from all but at most d other sets.
Then the elements of X can be coloured red and blue such that each set A_{i} contains a red element and a blue element.

Algorithm.
Colour elements of X randomly (independently).

Proof of Local Lemma

Original proof: Induction.
Algorithmic versions. Beck 1991, Alon 1991, Molloy-Reed 1998, Cummaj-Scheidelerr 2000, Sininivasan 2009, Moser 2008, Moser 200, .. Moser-Tardos 2010.

Assume $e(d+1) \leq 2^{k-1}$.
Consider a finite set X and finitely many (m) subsets $A_{i} \subset X$ containing at least k elements.
Assume that each A_{i} is disjoint from all but at most d other sets.
Then the elements of X can be coloured red and blue such that each set A_{i} contains a red element and a blue element.

Algorithm.
Colour elements of X randomly (independently).
If there are sets A_{i} that are monocoloured, choose one arbitrarily, and colour its elements randomly.
Repeat.
(It is possible that a set was multicoloured but becomes monocoloured in this process.)
Claim: this algorithm finishes in finite time (almost surely).
In fact, the expected running time is at most

$$
\frac{m}{d-1}
$$

Borel Local Lemma (through multicoloured translates)

We would like to use/modify the (parallel) Moser-Tardos algorithm to prove that there is a Borel colouring of \mathbb{R} such that every translate of S is multicoloured.

Borel Local Lemma (through multicoloured translates)

We would like to use/modify the (parallel) Moser-Tardos algorithm to prove that there is a Borel colouring of \mathbb{R} such that every translate of S is multicoloured.

Issues to overcome:

Borel Local Lemma (through multicoloured translates)

We would like to use/modify the (parallel) Moser-Tardos algorithm to prove that there is a Borel colouring of \mathbb{R} such that every translate of S is multicoloured.

Issues to overcome:
(1) Colouring randomly the points of \mathbb{R} independently red or blue with probability $1 / 2$? (No such probability measure.)

Borel Local Lemma (through multicoloured translates)

We would like to use/modify the (parallel) Moser-Tardos algorithm to prove that there is a Borel colouring of \mathbb{R} such that every translate of S is multicoloured.

Issues to overcome:
(1) Colouring randomly the points of \mathbb{R} independently red or blue with probability $1 / 2$? (No such probability measure.)
(3) Even if we could do this, the estimate for the expected running time of the algorithm depends on the number of events $m=|\mathbb{R}|$.

Borel Local Lemma (through multicoloured translates)

We would like to use/modify the (parallel) Moser-Tardos algorithm to prove that there is a Borel colouring of \mathbb{R} such that every translate of S is multicoloured.

Issues to overcome:
(1) Colouring randomly the points of \mathbb{R} independently red or blue with probability $1 / 2$? (No such probability measure.)
(3) Even if we could do this, the estimate for the expected running time of the algorithm depends on the number of events $m=|\mathbb{R}|$.

Modified Moser-Tardos algorithm with limited randomness (GLMPT)

Assume a subexponentiality condition.
There is $K>0$ such that it is enough to assume that random bits of "distance" at most K are independent. The algorithm still finishes almost surely. The output is a good Borel colouring.

For multicoloured translates of S, this "distance" of $x, y \in \mathbb{R}$ is actually the minimal d such that $x-y \in \underbrace{(S-S)+(S-S)+\ldots+(S-S)}_{d \text { times }}$.

The size of this set is polynomial (thus subexponential) in d.

Related results

Gábor Kun 2013+ Infinite countable graph Bernoulli shift $\Gamma \curvearrowright\left(\{0,1\}^{\mathbb{N}}\right)^{\Gamma}$

Anton Bernshteyn 2016+

Open questions

Borel or measurable local lemma in the general (not subexponential) case.

Question

(X, \mathcal{B}, μ) standard Borel probability space.
Let n be large compared to k.
Let $T_{i}: X \rightarrow X(i=1, \ldots, n)$ be measure preserving Borel bijections.
Is there a measurable colouring of X with k colours such that for almost every $x \in X$,

$$
\left\{T_{i}(x): i=1, \ldots, n\right\}
$$

is multicoloured (includes all k colours)?
If the transformations are commuting, we have polynomial (subexponential) growth rate, so the answer is positive. Is it still true if an amenable group acts preserving the measure μ ? (\rightarrow hyperfinite)

On the other hand, if there is no measure:

Marks 2016

There is an action of $\mathbb{F}_{2 n}$ and a colouring problem for which LLL inequality holds but there is no Borel colouring.

[^0]: http://en.wikipedia.org/wiki/Wallace-Bolyai-Gerwien_theorem\#/media/File:Triangledissection.svg

