Extension operators and twisted sums III

Witold Marciszewski and Grzegorz Plebanek

University of Warsaw University of Wrocław

Winter School in Abstract Analysis Section Analysis January 14–21, 2017

Extension operators

For a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the sup norm).

For a closed $L \subset K$, $C(K|L) = \{f \in C(K) : f|L \equiv 0\}$, a bounded linear operator $E : C(L) \rightarrow C(K)$ is called an extension operator if, for every $f \in C(L)$, *Ef* is an extension of *f*.

Fact

For a closed subset L of a compact space K, there exists an extension operator $E : C(L) \to C(K)$, if and only if, for some r > 0, there exists a continuous map $\varphi : K \to rM_1(L)$ such that $\varphi(x) = \delta_x$ for every $x \in L$.

Twisted sums

A twisted sum of Banach spaces Y and Z is a short exact sequence

$$0 \to Y \to X \to Z \to 0$$

where X is a Banach space and the maps are bounded linear operators.

Such twisted sum is called trivial if the exact sequence splits, i.e., if the map $Y \rightarrow X$ admits a left inverse (equivalently, if the map $X \rightarrow Z$ admits a right inverse).

The twisted sum is trivial iff the range of the map $Y \rightarrow X$ is complemented in *X*; in this case, $X \cong Y \oplus Z$.

For a closed subset L of a compact space K, the twisted sum

$$0
ightarrow C(K|L)
ightarrow C(K)
ightarrow C(L)
ightarrow 0$$

is trivial iff there exists an extension operator $E: C(L) \rightarrow C(K)$

Problem (Cabello, Castillo, Kalton, Yost)

Let *K* be a nonmetrizable compact space. Does there exist a nontrivial twisted sum of c_0 and C(K)?

A compactification $\gamma\omega$ of the space of natural numbers ω is tame if there is an extension operator $E : C(\gamma\omega \setminus \omega) \to C(\gamma\omega)$, i.e., the twisted sum

$$\mathbf{0} \to \boldsymbol{C}(\gamma \omega | \gamma \omega \setminus \omega) \to \boldsymbol{C}(\gamma \omega) \to \boldsymbol{C}(\gamma \omega \setminus \omega) \to \mathbf{0}$$

is trivial.

If $\gamma \omega$ is non-tame, then $C(\gamma \omega)$ is a nontrivial twisted sum of c_0 and $C(\gamma \omega \setminus \omega)$.

Problem (Castillo, Koszmider, Kubiś) Characterize tame compactifications $\gamma\omega$. A compact space K supports a measure if there is $\mu \in P(K)$ such that $\mu(U) > 0$ for each nonempty open subset U of K.

Theorem (Kubiś)

If a compactification $\gamma \omega$ is tame then the remainder $\gamma \omega \setminus \omega$ supports a measure.

Corollary

For every compact space K of weight ω_1 which does not support a measure, there is a non-tame compactification $\gamma \omega$ of ω with the remainder $\gamma \omega \setminus \omega$ homeomorphic to K. Hence there is a nontrivial twisted sum of c_0 and C(K).

Twisted sums of C(K) for separable K

Example (Drygier and Plebanek)

There exists a non-tame compactification $\gamma \omega$ of ω with separable remainder $\gamma \omega \setminus \omega$.

Theorem (Plebanek and M.)

Let *K* be a separable linearly ordered compact space of weight κ such that $2^{\kappa} > 2^{\omega}$. Then there is a nontrivial twisted sum of c_0 and C(K).

Corollary

If *K* is a separable linearly ordered compact space of weight 2^{ω} , then there is a nontrivial twisted sum of c_0 and C(K).

Corollary

(CH) If *K* is a nonmetrizable linearly ordered compact space, then there is a nontrivial twisted sum of c_0 and C(K).

Let A be a subset of a closed subset K of the unit interval I = [0, 1]. Put

$$\boldsymbol{K}_{\boldsymbol{A}} = (\boldsymbol{K} \times \{0\}) \cup (\boldsymbol{A} \times \{1\})$$

and equip this set with the order topology given by the lexicographical order (i.e., $(s, i) \prec (t, j)$ if either s < t, or s = t and i < j).

Theorem (Ostaszewski)

The space L is a separable compact linearly ordered space iff L is homeomorphic to K_A for some closed set $K \subseteq I$ and a subset $A \subseteq K$.

Lemma

Let L be a separable linearly ordered compact space of uncountable weight κ . Then L contains a topological copy of the space I_B , where B is a dense subset of (0, 1) of the cardinality κ .

Theorem

Let B be a dense subset of (0, 1) of the cardinality κ such that $2^{\kappa} > 2^{\omega}$. Then there is a non-tame compactification $\gamma \omega$ which remainder is homeomorphic to I_B . For a compact space K by Auth(K) we denote the group of autohomeomorphisms of K.

Theorem (Plebanek and M.)

Let $\delta \omega$ be a compactification of ω such that

(a)
$$|M(\delta\omega)| = 2^{\omega}$$
,

(b)
$$|\operatorname{Auth}(\delta\omega\setminus\omega)| > 2^{\omega}$$
.

Then there exists a non-tame compactification $\gamma \omega$ which remainder is homeomorphic to $\delta \omega$. Hence there is a nontrivial twisted sum of c_0 and $C(\delta \omega)$.

A compact space K is called dyadic if it is a continuous image of some Cantor cube 2^{κ} .

Theorem (Correa and Tausk)

If a compact space K contains a copy of 2^c , then there exists a nontrivial twisted sum of c_0 and C(K)

Corollary

(CH) For each nonmetrizable dyadic space K, c_0 and C(K) have a nontrivial twisted sum.

Example

There is a dyadic compactum *L* of weight 2^{ω} and a non-tame compactification $\gamma \omega$ with remainder homeomorphic to *L*.

Remark

Each compactification $\gamma \omega$ with remainder homeomorphic to 2^c is tame.

Theorem (Castillo)

(CH) If K is a nonmetrizable scattered compact space of finite height, then there exists a nontrivial twisted sum of c_0 and C(K)

Conjecture

(MA + \neg CH) If *K* is a separable scattered compact space whose set of accumulation points is the one-point compactification of an discrete space of cardinality ω_1 (*K* is scattered of weight ω_1 and height 3), then there is no nontrivial twisted sum of c_0 and C(K).

Problem

Does there exist in **ZFC** a compact space *K* such that there is no nontrivial twisted sum of c_0 and C(K)?

Question

Does there exist in **ZFC** a separable compact space *K* of weight ω_1 such that there exists a nontrivial twisted sum of c_0 and C(K)?

Question

Does there exist in **ZFC** a dyadic compact space *K* of weight ω_1 with a nontrivial twisted sum of c_0 and C(K)?

Question

Does there exist in **ZFC** a separable linearly ordered compact space *K* of weight ω_1 with a nontrivial twisted sum of c_0 and C(K)?

Theorem (Correa-Tausk)

(MA) For each nonmetrizable Corson compact space K there exists a nontrivial twisted sum of c_0 and C(K).

Question

Can we prove the above theorem in ZFC?

Theorem (Castillo)

For each Valdivia compact space K without ccc there exists a nontrivial twisted sum of c_0 and C(K).

Question

Let *K* be a Valdivia compact space which does not support a measure. Does there exist a nontrivial twisted sum of c_0 and C(K)?

Question

Let *K* be a compact space of weight $> 2^{\omega}$ which does not support a measure. Does there exist a continuous image of *K* of weight 2^{ω} which does not support a measure?

Theorem (Corson-Lindenstrauss)

Let B_H be the unit ball of a nonseparable Hilbert space H, equipped with the weak topology. Then, for any $0 < \lambda < \mu$, the ball λB_H is not a retract of the ball μB_H .

Theorem (Aviles and M.)

Let H be a nonseparable Hilbert space and B_H be the unit ball of H, equipped with the weak topology. Then, for any $0 < \lambda < \mu$, there is no extension operator $T : C(\lambda B_H) \rightarrow C(\mu B_H)$.