Extension operators and twisted sums II

Witold Marciszewski and Grzegorz Plebanek

University of Warsaw University of Wrocław

Winter School in Abstract Analysis Section Analysis January 14–21, 2017

Extension operators

For a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the sup norm).

For a closed $L \subset K$, $C(K|L) = \{f \in C(K) : f|L \equiv 0\}$, a bounded linear operator $E : C(L) \rightarrow C(K)$ is called an extension operator if, for every $f \in C(L)$, *Ef* is an extension of *f*.

Such *E* exists iff the restriction operator $R : C(K) \to C(L)$, defined by Rf = f|L has a right inverse iff C(K|L) is complemented in C(K). Then C(K) is isomorphic to $C(L) \oplus C(K|L)$

Twisted sums

A twisted sum of Banach spaces Y and Z is a short exact sequence

$$0 \to Y \to X \to Z \to 0$$

where X is a Banach space and the maps are bounded linear operators.

Such twisted sum is called trivial if the exact sequence splits, i.e., if the map $Y \rightarrow X$ admits a left inverse (equivalently, if the map $X \rightarrow Z$ admits a right inverse).

The twisted sum is trivial iff the range of the map $Y \rightarrow X$ is complemented in *X*; in this case, $X \cong Y \oplus Z$.

For a closed subset L of a compact space K, the twisted sum

$$0
ightarrow C(K|L)
ightarrow C(K)
ightarrow C(L)
ightarrow 0$$

is trivial iff there exists an extension operator $E: C(L) \rightarrow C(K)$

Problem (Cabello, Castillo, Kalton, Yost)

Let *K* be a nonmetrizable compact space. Does there exist a nontrivial twisted sum of c_0 and C(K)?

Theorem (Plebanek and M.)

(MA + \neg **CH)** The spaces c_0 and $C(2^{\omega_1})$ do not have a nontrivial twisted sum.

Theorem (Correa-Tausk)

If a compact space K contains a copy of 2^c , then there exists a nontrivial twisted sum of c_0 and C(K)

Corollary

The existence of a nontrivial twisted sum of c_0 and $C(2^{\omega_1})$ is independent of **ZFC**.

If *L* is a compact space then a compact superspace $L' \supseteq L$ will be called a countable discrete extension of *L* if $L' \setminus L$ is infinite countable and discrete.

We shall write $L' \in CDE(L)$ to say that L' is such an extension of L. Typically, when $L' \setminus L$ is dense in L', L' is a compactification of ω such that its remainder is homeomorphic to L.

If $L' \in CDE(L)$ then we usually identify $L' \setminus L$ with the set of natural numbers ω .

Remark

If $L' \in CDE(L)$ and there is no extension operator $E : C(L) \to C(L')$ then C(L') is a nontrivial twisted sum of c_0 and C(L).

$$0
ightarrow C(L'|L)
ightarrow C(L')
ightarrow C(L)
ightarrow 0$$

For a compact space K, by M(K) denote the space of all Radon measures on K, which can be identified with the dual space $C(K)^*$.

 $M_1(K)$ stands for the unit ball of M(K), equipped with the *weak*^{*} topology inherited from $C(K)^*$.

P(K) is the subspace of $M_1(K)$ consisting of probability measures.

A compact space *K* has the property (#) if for every $L' \in CDE(M_1(K))$ there is a bounded operator $E : C(K) \to C(L')$ such that $Eg(\nu) = \nu(g)$ for every $g \in C(K)$ and $\nu \in M_1(K)$.

Theorem (Plebanek and M.)

If a compact space K has the property (#) then every twisted sum of c_0 and C(K) is trivial.

Lemma

Given K and $L' \in CDE(M_1(K))$, the following are equivalent

- (i) there is $E : C(K) \to C(L')$ such that $Eg(\nu) = \nu(g)$ for every $g \in C(K)$ and $\nu \in M_1(K)$;
- (ii) there is a bounded sequence $(\nu_n)_n$ in M(K) such that for every $g \in C(K)$, if $\widehat{g} \in C(L')$ is any function extending g on $M_1(K)$ then $\lim_{n}(\nu_n(g) \widehat{g}(n)) = 0$.

Proof of (*K* has $(\#) \Rightarrow$ no notrivial twisted sum)

Take any short exact sequence $0 \rightarrow c_0 \stackrel{i}{\rightarrow} X \stackrel{T}{\rightarrow} C(K) \rightarrow 0$ Put $Z = i(c_0)$, $e_n \in c_0, e_n^* \in (c_0)^*, x_n = i(e_n)$ take $x_n^* \in X^*, n \in \omega, i^*x_n^* = e_n^*$ and $||x_n^*|| \leq r_0$ the set $\{x_n^* : n \in \omega\}$ is *weak*^{*} is discrete Let

$$L = T^*[r \cdot M_1(K)] \subset X^*,$$

where r > 0 is such that *L* contains $\{x^* \in Z^{\perp} : ||x^*|| \le r_0\}$. Put $L' = L \cup \{x_n^* : n \in \omega\}$ and equip *L'* with the *weak*^{*} topology $L' \in \text{CDE}(L)$ Consider a mapping

$$h: L'' = M_1(K) \cup \omega \to L' = T^*[M_r(K)] \cup \{x_n^* : n \in \omega\},$$

defined by $h(\nu) = T^*(r\nu)$ for $\nu \in M_1(K)$ and $h(n) = x_n^*$ for $n \in \omega$. *h* is a bijection and we topologize L'' so that *h* becomes a homeomorphism

Since *K* has property (#), by Lemma there is a bounded sequence $(\nu_n)_n$ in M(K) satisfying condition (ii) Let $z_n^* = T^*(r\nu_n)$ for $n \in \omega$. $(z_n^*)_n$ is a bounded sequence in X^* and the following holds $z_n^* - x_n^* \to 0$ in the *weak** topology of X^* Define

$$P: X \rightarrow X, \quad Px = \sum_n \left(x_n^*(x) - z_n^*(x) \right) \cdot x_n.$$

Note that $Px_k = x_k$ since $x_n^*(x_k) = 1$ if n = k and is 0 otherwise; moreover, $z_n^*(x_k) = 0$ for every n and k. P is a projection onto Z

Spaces of measures and absolute retracts

Remark

For every $L' \in CDE(P(2^{\omega_1}))$ there is an extension operator $E: C(P(2^{\omega_1})) \rightarrow C(L')$, since $P(2^{\omega_1})$ is an absolute retract.

A compact space K is an absolute retract f K is a retract of any compact space L containing K (equivalently, of any completely regular space X containing K).

K is a Dugundji space if for every compact space *L* containing *K* there exists a regular extension operator $E : C(K) \to C(L)$, i.e. an extension operator of the norm 1 preserving constant functions.

A convex compact space K is a Dugundji space if and only if it is an absolute retract.

Theorem (Ditor and Haydon)

P(K) is an absolute retract if and only if K is a Dugundji space of weight at most ω_1 .

Theorem (Plebanek and M.)

If K is a nonmetrizable compact space, then the space $M_1(K)$ is not a Dugundji space, in particular, it is not an absolute retract.

For a surjection $\varphi : L \to K$ between compact spaces K, L, $\varphi^* : M_1(L) \to M_1(K)$ denotes the canonical surjection associated with φ , i.e., the surjection given by the operator conjugate to the isometrical embedding of C(K) into C(L) induced by φ .

Proposition

Let $\varphi : L \to K$ be a surjection of a compact space L onto an infinite space K. If φ is not injective, then the map $\varphi^* : M_1(L) \to M_1(K)$ is not open.