Extension operators and twisted sums II

Witold Marciszewski and Grzegorz Plebanek

University of Warsaw
University of Wrocław

Winter School in Abstract Analysis Section Analysis January 14-21, 2017

Extension operators

For a compact space $K, C(K)$ is the Banach space of real-valued continuous functions on K (with the sup norm).
For a closed $L \subset K, C(K \mid L)=\{f \in C(K): f \mid L \equiv 0\}$,
a bounded linear operator $E: C(L) \rightarrow C(K)$ is called an extension operator if, for every $f \in C(L)$, $E f$ is an extension of f.
Such E exists iff the restriction operator $R: C(K) \rightarrow C(L)$, defined by $R f=f \mid L$ has a right inverse iff $C(K \mid L)$ is complemented in $C(K)$. Then $C(K)$ is isomorphic to $C(L) \oplus C(K \mid L)$

Twisted sums

A twisted sum of Banach spaces Y and Z is a short exact sequence

$$
0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0
$$

where X is a Banach space and the maps are bounded linear operators.
Such twisted sum is called trivial if the exact sequence splits, i.e., if the map $Y \rightarrow X$ admits a left inverse (equivalently, if the map $X \rightarrow Z$ admits a right inverse).
The twisted sum is trivial iff the range of the map $Y \rightarrow X$ is complemented in X; in this case, $X \cong Y \oplus Z$.
For a closed subset L of a compact space K, the twisted sum

$$
0 \rightarrow C(K \mid L) \rightarrow C(K) \rightarrow C(L) \rightarrow 0
$$

is trivial iff there exists an extension operator $E: C(L) \rightarrow C(K)$

Problem (Cabello, Castillo, Kalton, Yost)
Let K be a nonmetrizable compact space. Does there exist a nontrivial twisted sum of c_{0} and $C(K)$?

Theorem (Plebanek and M.)

(MA $+\neg \mathbf{C H}$) The spaces c_{0} and $C\left(2^{\omega_{1}}\right)$ do not have a nontrivial twisted sum.

Theorem (Correa-Tausk)

If a compact space K contains a copy of 2^{c}, then there exists a nontrivial twisted sum of c_{0} and $C(K)$

Corollary

The existence of a nontrivial twisted sum of c_{0} and $C\left(2^{\omega_{1}}\right)$ is independent of ZFC.

If L is a compact space then a compact superspace $L^{\prime} \supseteq L$ will be called a countable discrete extension of L if $L^{\prime} \backslash L$ is infinite countable and discrete.
We shall write $L^{\prime} \in \operatorname{CDE}(\mathrm{L})$ to say that L^{\prime} is such an extension of L.
Typically, when $L^{\prime} \backslash L$ is dense in L^{\prime}, L^{\prime} is a compactification of ω such that its remainder is homeomorphic to L.
If $L^{\prime} \in \operatorname{CDE}(\mathrm{L})$ then we usually identify $L^{\prime} \backslash L$ with the set of natural numbers ω.

Remark

If $L^{\prime} \in \operatorname{CDE}(\mathrm{L})$ and there is no extension operator $E: C(L) \rightarrow C\left(L^{\prime}\right)$ then $C\left(L^{\prime}\right)$ is a nontrivial twisted sum of c_{0} and $C(L)$.

$$
0 \rightarrow C\left(L^{\prime} \mid L\right) \rightarrow C\left(L^{\prime}\right) \rightarrow C(L) \rightarrow 0
$$

For a compact space K, by $M(K)$ denote the space of all Radon measures on K, which can be identified with the dual space $C(K)^{*}$. $M_{1}(K)$ stands for the unit ball of $M(K)$, equipped with the weak* topology inherited from $C(K)^{*}$.
$P(K)$ is the subspace of $M_{1}(K)$ consisting of probability measures.

A compact space K has the property $(\#)$ if for every $L^{\prime} \in \operatorname{CDE}\left(\mathrm{M}_{1}(K)\right)$ there is a bounded operator $E: C(K) \rightarrow C\left(L^{\prime}\right)$ such that $E g(\nu)=\nu(g)$ for every $g \in C(K)$ and $\nu \in M_{1}(K)$.

Theorem (Plebanek and M.)

If a compact space K has the property (\#) then every twisted sum of c_{0} and $C(K)$ is trivial.

Lemma

Given K and $L^{\prime} \in \operatorname{CDE}\left(\mathrm{M}_{1}(\mathrm{~K})\right)$, the following are equivalent
(i) there is $E: C(K) \rightarrow C\left(L^{\prime}\right)$ such that $E g(\nu)=\nu(g)$ for every $g \in C(K)$ and $\nu \in M_{1}(K)$;
(ii) there is a bounded sequence $\left(\nu_{n}\right)_{n}$ in $M(K)$ such that for every $g \in C(K)$, if $\widehat{g} \in C\left(L^{\prime}\right)$ is any function extending g on $M_{1}(K)$ then $\lim _{n}\left(\nu_{n}(g)-\widehat{g}(n)\right)=0$.

Proof of (K has $(\#) \Rightarrow$ no notrivial twisted sum)

Take any short exact sequence $0 \rightarrow c_{0} \xrightarrow{i} X \xrightarrow{T} C(K) \rightarrow 0$
Put $Z=i\left(c_{0}\right)$,
$e_{n} \in c_{0}, e_{n}^{*} \in\left(c_{0}\right)^{*}, x_{n}=i\left(e_{n}\right)$
take $x_{n}^{*} \in X^{*}, n \in \omega, i^{*} X_{n}^{*}=e_{n}^{*}$ and $\left\|x_{n}^{*}\right\| \leq r_{0}$
the set $\left\{x_{n}^{*}: n \in \omega\right\}$ is weak* is discrete
Let

$$
L=T^{*}\left[r \cdot M_{1}(K)\right] \subset X^{*},
$$

where $r>0$ is such that L contains $\left\{x^{*} \in Z^{\perp}:\left\|x^{*}\right\| \leq r_{0}\right\}$. Put $L^{\prime}=L \cup\left\{x_{n}^{*}: n \in \omega\right\}$ and equip L^{\prime} with the weak* topology $L^{\prime} \in \operatorname{CDE}(\mathrm{L})$
Consider a mapping

$$
h: L^{\prime \prime}=M_{1}(K) \cup \omega \rightarrow L^{\prime}=T^{*}\left[M_{r}(K)\right] \cup\left\{x_{n}^{*}: n \in \omega\right\},
$$

defined by $h(\nu)=T^{*}(r \nu)$ for $\nu \in M_{1}(K)$ and $h(n)=x_{n}^{*}$ for $n \in \omega$. h is a bijection and we topologize $L^{\prime \prime}$ so that h becomes a homeomorphism

Since K has property (\#), by Lemma there is a bounded sequence $\left(\nu_{n}\right)_{n}$ in $M(K)$ satisfying condition (ii) Let $z_{n}^{*}=T^{*}\left(r \nu_{n}\right)$ for $n \in \omega$. $\left(z_{n}^{*}\right)_{n}$ is a bounded sequence in X^{*} and the following holds $z_{n}^{*}-x_{n}^{*} \rightarrow 0$ in the weak* topology of X^{*}
Define

$$
P: X \rightarrow X, \quad P x=\sum_{n}\left(x_{n}^{*}(x)-z_{n}^{*}(x)\right) \cdot x_{n}
$$

Note that $P x_{k}=x_{k}$ since $x_{n}^{*}\left(x_{k}\right)=1$ if $n=k$ and is 0 otherwise; moreover, $z_{n}^{*}\left(x_{k}\right)=0$ for every n and k. P is a projection onto Z

Spaces of measures and absolute retracts

Remark

For every $L^{\prime} \in \operatorname{CDE}\left(\mathrm{P}\left(2^{\omega_{1}}\right)\right)$ there is an extension operator $E: C\left(P\left(2^{\omega_{1}}\right)\right) \rightarrow C\left(L^{\prime}\right)$, since $P\left(2^{\omega_{1}}\right)$ is an absolute retract.

A compact space K is an absolute retract $\mathrm{f} K$ is a retract of any compact space L containing K (equivalently, of any completely regular space X containing K).
K is a Dugundji space if for every compact space L containing K there exists a regular extension operator $E: C(K) \rightarrow C(L)$, i.e. an extension operator of the norm 1 preserving constant functions.
A convex compact space K is a Dugundji space if and only if it is an absolute retract.

Theorem (Ditor and Haydon)

$P(K)$ is an absolute retract if and only if K is a Dugundji space of weight at most ω_{1}.

Theorem (Plebanek and M.)

If K is a nonmetrizable compact space, then the space $M_{1}(K)$ is not a Dugundji space, in particular, it is not an absolute retract.

For a surjection $\varphi: L \rightarrow K$ between compact spaces K, L, $\varphi^{*}: M_{1}(L) \rightarrow M_{1}(K)$ denotes the canonical surjection associated with φ, i.e., the surjection given by the operator conjugate to the isometrical embedding of $C(K)$ into $C(L)$ induced by φ.

Proposition

Let $\varphi: L \rightarrow K$ be a surjection of a compact space L onto an infinite space K. If φ is not injective, then the map $\varphi^{*}: M_{1}(L) \rightarrow M_{1}(K)$ is not open.

