Extension operators and twisted sums

Witold Marciszewski and Grzegorz Plebanek

University of Warsaw University of Wrocław

Winter School in Abstract Analysis Section Analysis January 14–21, 2017

Extension operators

For a compact space K, C(K) is the Banach space of real-valued continuous functions on K (with the sup norm).

For a closed $L \subset K$, $C(K|L) = \{f \in C(K) : f|L \equiv 0\}$, a bounded linear operator $E : C(L) \rightarrow C(K)$ is called an extension operator if, for every $f \in C(L)$, *Ef* is an extension of *f*.

Such *E* exists iff the restriction operator $R : C(K) \to C(L)$, defined by Rf = f|L has a right inverse iff C(K|L) is complemented in C(K). Then C(K) is isomorphic to $C(L) \oplus C(K|L)$

Twisted sums

A twisted sum of Banach spaces Y and Z is a short exact sequence

$$0 \to Y \to X \to Z \to 0$$

where X is a Banach space and the maps are bounded linear operators.

Such twisted sum is called trivial if the exact sequence splits, i.e., if the map $Y \rightarrow X$ admits a left inverse (equivalently, if the map $X \rightarrow Z$ admits a right inverse).

The twisted sum is trivial iff the range of the map $Y \rightarrow X$ is complemented in *X*; in this case, $X \cong Y \oplus Z$.

For a closed subset L of a compact space K, the twisted sum

$$0
ightarrow C(K|L)
ightarrow C(K)
ightarrow C(L)
ightarrow 0$$

is trivial iff there exists an extension operator $E: C(L) \rightarrow C(K)$

Example

$$0
ightarrow c_0
ightarrow \ell_\infty
ightarrow \ell_\infty / c_0
ightarrow 0$$

Phillips: c_0 is not complemented in I_{∞}

 $\beta \omega$ is the Čech-Stone compactification of the space of natural numbers ω $\omega^* = \beta \omega \setminus \omega$

In the sequence

$$0
ightarrow c_0
ightarrow \ell_\infty
ightarrow \ell_\infty / c_0
ightarrow 0$$

we can replace all spaces by isometric function spaces obtaining

$$\mathbf{0} o oldsymbol{C}(eta \omega | \omega^*) o oldsymbol{C}(eta \omega) o oldsymbol{C}(\omega^*) o \mathbf{0}$$

This twisted sum is nontrivial because there is no extension operator $E: C(\omega^*) \rightarrow C(\beta \omega).$

A topological space X satisfies the countable chain condition (ccc) if every family of nonempty pairwise disjoint open subsets of X is countable.

Fact

Let L be a closed subset of a separable compact space K, such that L does not satisfy the countable chain condition (ccc). Then C(L) is not isomorphic to a subspace of C(K), hence there is no extension operator $E : C(L) \rightarrow C(K)$.

Problem (Cabello, Castillo, Kalton, Yost)

Let *K* be a nonmetrizable compact space. Does there exist a nontrivial twisted sum of c_0 and C(K)?

Remark

If *K* is a metrizable compact space, then by Sobczyk's theorem, every twisted sum of c_0 and C(K) is trivial.

Known results on twisted sums of c_0 and C(K)

(Castillo, Correa-Tausk) For a non-metrizable K, there exists a nontrivial twisted sum of c_0 and C(K) in any of the following cases:

- K is a Gul'ko compact space, in particular if K is an Eberlein compact space;
- (MA) K is a Corson compact space;
- K is a Valdivia compact space which does not satisfy ccc;
- the weight w(K) of K is equal to ω₁ and ((C(K))*, w*) is not separable;
- K has an extension property and does not have ccc;
- C(K) contains an isomorphic copy of ℓ_{∞} ;
- (CH) K is a scattered space of finite height; •
- K contains a copy of [0, ω] × [0, c], in particular if K contains a copy of 2^c;
- *K* is an ordinal space, i.e., $K = [0, \kappa]$ for some cardinal κ .

Definitions

A compact space K is an Eberlein compact space if it is homeomorphic to a weakly compact subset of a Banach space.

K is a Gul'ko compact space if C(K) is weakly countably determined, i.e., for some separable metrizable space *X*, there is an upper semicontinuous map φ from *X* into the family of compact subsets of (C(K), w) such that the union of all values of φ covers C(K).

For a set Γ , $\Sigma(\Gamma)$ is the Σ -product of real lines indexed by Γ , i.e., the subspace of \mathbb{R}^{Γ} constisting of functions with countable supports.

A compact space *K* is a Corson compact space if, for some set Γ , there exists an embedding *i* : $K \rightarrow \Sigma(\Gamma)$.

K is a Valdivia compact space if, for some set Γ, there exists an embedding $i : K \to \mathbb{R}^{\Gamma}$ such that the intersection $i(K) \cap \Sigma(\Gamma)$ is dense in i(K).

 $\text{metrizable} \Rightarrow \text{Eberlein} \Rightarrow \text{Gul'ko} \Rightarrow \text{Corson} \Rightarrow \text{Valdivia}$

Definitions

A compact space *K* has the extension property if, for every closed subset *L* of *K* there exists an extension operator $E : C(L) \rightarrow C(K)$.

A space X is scattered if no nonempty subset $A \subseteq X$ is dense-in-itself. For an ordinal α , $X^{(\alpha)}$ is the α th Cantor-Bendixson derivative of the space X. For a scattered space X, the scattered height

$$ht(X) = \min\{lpha : X^{(lpha)} = \emptyset\}$$
 .

Remark

Let L be a closed subset of a compact space K, such that there is an extension operator $E : C(L) \to C(K)$. If there is a nontrivial twisted sum of c_0 and C(L), then also c_0 and C(K) have a nontrivial twisted sum.

Theorem (Parovičenko)

For every compact space K of weight ω_1 there is a compactification $\gamma \omega$ of ω with the reminder $\gamma \omega \setminus \omega$ homeomorphic to K.

Corollary

For every compact space K with $w(K) = \omega_1$ and without ccc, there is a nontrivial twisted sum of c_0 and C(K).

Fact

Every Valdivia compact space K which does not satisfy ccc has a retract L of of weight ω_1 and without ccc.

Theorem (Plebanek and M.)

(MA + \neg **CH)** The spaces c_0 and $C(2^{\omega_1})$ do not have a nontrivial twisted sum.

Corollary

The existence of a nontrivial twisted sum of c_0 and $C(2^{\omega_1})$ is independent of **ZFC**.