Some open problems in Banach Space Theory II

A. J. Guirao¹, V. Montesinos¹, V. Zizler²

¹Instituto de Matemática Pura y Aplicada, Universitat Politècnica de València, Spain MICINN and FEDER Projects MTM2014-57838-C2-1-P, MTM2014-57838-C2-2-P, 19368/PI/14 ²University of Alberta, Edmonton, Alberta, Canada

45th Winter School in Abstract Analysis Czech Republic

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Outline

- Biorthogonal systems
- 4 SSD norms
- 5 Norm attaining operators
- 6 Support sets
 - Polyhedral spaces

Aproximation

$C \subset X$ Chebyshev $\forall \in X \exists ! p_C(x) \in C$ at minimum distance from x.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Aproximation

 $C \subset X$ Chebyshev $\forall \in X \exists ! p_C(x) \in C$ at minimum distance from x.

Note that Chebyshev \Rightarrow closed.

Aproximation

 $C \subset X$ Chebyshev $\forall \in X \exists ! p_C(x) \in C$ at minimum distance from x.

Note that Chebyshev \Rightarrow closed.

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev \Leftrightarrow closed convex (and P_C is continuous).

Approximation (infinite-dimensional)

 $C \subset X$ Chebyshev $\forall \in X \exists ! p_C(x) \in C$ at minimum distance from x.

Easy: *X* (R) and reflexive \Leftrightarrow every closed convex set $C \subset X$ is Chebyshev.

Approximation (infinite-dimensional)

 $C \subset X$ Chebyshev $\forall \in X \exists ! p_C(x) \in C$ at minimum distance from x.

Easy: *X* (R) and reflexive \Leftrightarrow every closed convex set $C \subset X$ is Chebyshev.

Efimov–Stechkin'1958–1962: approximately compact (in Hilbert and L_p , p > 1).

Approximation (infinite-dimensional)

 $X \text{ MLUR } \forall x_n, y_n \in B_X, (1/2)(x_n + y_n) \rightarrow x_0 \in S_X$, then $x_n - y_n \rightarrow 0$.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Approximation (infinite-dimensional)

 $X \text{ MLUR } \forall x_n, y_n \in B_X, (1/2)(x_n + y_n) \rightarrow x_0 \in S_X$, then $x_n - y_n \rightarrow 0$.

Theorem (2008)

X MLUR, $\emptyset \neq C \subset X$ closed convex. TFAE (1) C Chebyshev, p_C continuous.

Approximation (infinite-dimensional)

 $X \text{ MLUR } \forall x_n, y_n \in B_X, (1/2)(x_n + y_n) \rightarrow x_0 \in S_X$, then $x_n - y_n \rightarrow 0$.

Theorem (2008)

X MLUR, $\emptyset \neq C \subset X$ closed convex. TFAE (1) *C* Chebyshev, p_C continuous. (2) *C* approximately compact.

Approximation (infinite-dimensional)

 $X \text{ MLUR } \forall x_n, y_n \in B_X, (1/2)(x_n + y_n) \rightarrow x_0 \in S_X$, then $x_n - y_n \rightarrow 0$.

Theorem (2008)

X MLUR, $\emptyset \neq C \subset X$ closed convex. TFAE (1) *C* Chebyshev, p_C continuous. (2) *C* approximately compact.

Note (2) \Rightarrow (1) trivial.

Approximation (infinite-dimensional)

 $X \text{ MLUR } \forall x_n, y_n \in B_X, (1/2)(x_n + y_n) \rightarrow x_0 \in S_X$, then $x_n - y_n \rightarrow 0$.

Theorem (2008)

X MLUR, $\emptyset \neq C \subset X$ closed convex. TFAE (1) C Chebyshev, p_C continuous. (2) C approximately compact.

Note (2) \Rightarrow (1) trivial.

[Guirao, M.'2014] (1) \Rightarrow (2) wrong.

Approximation (infinite-dimensional)

 $X \text{ MLUR } \forall x_n, y_n \in B_X, (1/2)(x_n + y_n) \rightarrow x_0 \in S_X$, then $x_n - y_n \rightarrow 0$.

Theorem (2008)

X MLUR, $\emptyset \neq C \subset X$ closed convex. TFAE (1) C Chebyshev, p_C continuous. (2) C approximately compact.

Note (2) \Rightarrow (1) trivial.

[Guirao, M.'2014] (1) \Rightarrow (2) wrong.

Theorem (Guirao, M.'2014)

 $\exists X \text{ MLUR}, \exists H \text{ Chebyshev, } p_H \text{ continuous, } H \text{ not approximately compact}$

DQC

Approximation (infinite-dimensional)

 $X \text{ MLUR } \forall x_n, y_n \in B_X, (1/2)(x_n + y_n) \rightarrow x_0 \in S_X$, then $x_n - y_n \rightarrow 0$.

Theorem (2008)

X MLUR, $\emptyset \neq C \subset X$ closed convex. TFAE (1) C Chebyshev, p_C continuous. (2) C approximately compact.

Note (2) \Rightarrow (1) trivial.

[Guirao, M.'2014] (1) \Rightarrow (2) wrong.

Theorem (Guirao, M.'2014)

 $\exists X \text{ MLUR}, \exists H \text{ Chebyshev, } p_H \text{ continuous, } H \text{ not approximately compact (H is a closed proximinal hyperplane).}$

Convexity of Chebyshev sets

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

Convexity of Chebyshev sets

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

Convexity of Chebyshev sets

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

Remark The centers form a (nonconvex) Chebyshev set.

Convexity of Chebyshev sets

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

Remark The centers form a (nonconvex) Chebyshev set.

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

Convexity of Chebyshev sets

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

Remark The centers form a (nonconvex) Chebyshev set.

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

[V. Klee'1961] $C \subset \ell_2$ w-closed Chebyshev, then C convex (true for X uniformly convex and uniformly smooth).

Convexity of Chebyshev sets

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Convexity of Chebyshev sets

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

Equivalent problem

 $\exists S \text{ not singleton } S \subset \ell_2 \text{ st every } x \in \ell_2 \text{ has farthest point in } S?$

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Convexity of Chebyshev sets

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

Equivalent problem

 $\exists S \text{ not singleton } S \subset \ell_2 \text{ st every } x \in \ell_2 \text{ has farthest point in } S?$

Theorem (Lau'1975)

 $S \subset X$ w-compact. Then $\{x \in X : x \text{ has farthest in } S\} \supset G_{\delta}$ dense.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Convexity of Chebyshev sets

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

Equivalent problem

 $\exists S \text{ not singleton } S \subset \ell_2 \text{ st every } x \in \ell_2 \text{ has farthest point in } S?$

Theorem (Lau'1975)

 $S \subset X$ w-compact. Then $\{x \in X : x \text{ has farthest in } S\} \supset G_{\delta}$ dense.

We gave (with P. and V. Zizler) an alternative, much easier, proof in 2011.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Chebyshev sets

X smooth (i.e., Gâteaux differentiable) finite-dimensional. Then C Chebyshev implies convex, and p_C continuous.

Chebyshev sets

X smooth (i.e., Gâteaux differentiable) finite-dimensional. Then C Chebyshev implies convex, and p_C continuous.

Problem

C Chebyshev in X smooth \Rightarrow C convex?

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Chebyshev sets

X smooth (i.e., Gâteaux differentiable) finite-dimensional. Then C Chebyshev implies convex, and p_C continuous.

Problem

C Chebyshev in *X* smooth \Rightarrow *C* convex?

Theorem (Vlasov'1970)

X such that X^* rotund. C Chebyshev, p_C continuous. Then C convex.

Chebyshev in noncomplete spaces

Theorem (Fletcher–Moors'2015)

 $\exists X \text{ inner product noncomplete space, } C \subset X \text{ Chebyshev, nonconvex.}$

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Tiling of X: $X = \bigcup S_{\gamma}$, $\emptyset \neq \text{int}S_{\gamma}$ pairwise disjoint.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Tilings

Tiling of X: $X = \bigcup S_{\gamma}$, $\emptyset \neq \text{int}S_{\gamma}$ pairwise disjoint. Recall the construction of Klee:

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Tilings

Tiling of X: $X = \bigcup S_{\gamma}$, $\emptyset \neq \text{int}S_{\gamma}$ pairwise disjoint. Recall the construction of Klee:

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

Problem

[Fonf, Lindenstrauss] \exists reflexive *X* tiled by shifts of a single closed convex *S* with nonempty interior?

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Smooth norm

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Smooth norm

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

The converse is not true (Klee, Troyanski).

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Smooth norm

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

The converse is not true (Klee, Troyanski).

Theorem (Guirao–M–Zizler'2012)

X nonreflexive, $X \subset WCG$, then $\exists ||| \cdot ||| LUR$, Gâteaux, $||| \cdot |||^*$ not rotund. If moreover, *X* Asplund, then $||| \cdot |||$ even Fréchet, and $w = w^*$ on dual sphere.

Smooth norm

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

The converse is not true (Klee, Troyanski).

Theorem (Guirao–M–Zizler'2012)

X nonreflexive, $X \subset WCG$, then $\exists ||| \cdot ||| LUR$, Gâteaux, $||| \cdot |||^*$ not rotund. If moreover, *X* Asplund, then $||| \cdot |||$ even Fréchet, and $w = w^*$ on dual sphere.

Problem

[Troyanski] X (uncountable) unconditional basis and Gâteaux norm. Has X^* dual rotund renorming?

A. J. Guirao, V. Montesinos, V. Zizler

Some open problems in Banach Space Theory II

M-bases

X Banach. $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ biorthogonal, $\{x_{\gamma}\}$ linearly dense, $\{x_{\gamma}^*\}$ *w**-linearly dense is called Markushevich basis (M-basis).

M-bases

X Banach. $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ biorthogonal, $\{x_{\gamma}\}$ linearly dense, $\{x_{\gamma}^*\}$ *w**-linearly dense is called Markushevich basis (M-basis).

Theorem (Markushevich'1943)

Every separable Banach space has an M-basis

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

M-bases

X Banach. $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ biorthogonal, $\{x_{\gamma}\}$ linearly dense, $\{x_{\gamma}^*\}$ *w**-linearly dense is called Markushevich basis (M-basis).

Theorem (Markushevich'1943)

Every separable Banach space has an M-basis (even a norming M-basis).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

M-bases

X Banach. $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ biorthogonal, $\{x_{\gamma}\}$ linearly dense, $\{x_{\gamma}^*\}$ *w**-linearly dense is called Markushevich basis (M-basis).

Theorem (Markushevich'1943)

Every separable Banach space has an M-basis (even a norming M-basis). If X separable Asplund, even a shrinking M-basis.

Bounded M-bases

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $||x_{\gamma}|| \cdot ||x_{\gamma}^*|| \le K$ for all γ .

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Bounded M-bases

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $||x_{\gamma}|| \cdot ||x_{\gamma}^*|| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Bounded M-bases

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $||x_{\gamma}|| \cdot ||x_{\gamma}^*|| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

[Plichko'1979] claimed X with M-basis \Rightarrow has a bounded M-basis.

Bounded M-bases

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $||x_{\gamma}|| \cdot ||x_{\gamma}^*|| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

[Plichko'1979] claimed X with M-basis \Rightarrow has a bounded M-basis. His argument works only for strong M-bases.

Bounded M-bases

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $||x_{\gamma}|| \cdot ||x_{\gamma}^*|| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

[Plichko'1979] claimed X with M-basis \Rightarrow has a bounded M-basis. His argument works only for strong M-bases. For general M-bases we proved:

Theorem (Hájek–M.'2010)

X with *M*-basis, $\varepsilon > 0$, then *X* has a $(2(1 + \sqrt{2}) + \varepsilon)$ -bounded *M*-basis (and keeping the spans).

Bounded M-bases

Theorem (Hájek–M.'2010)

X with *M*-basis, $\varepsilon > 0$, then *X* has a $(2(1 + \sqrt{2}) + \varepsilon)$ -bounded *M*-basis (and keeping the spans).

Problem

Can the constant be diminished to $2 + \varepsilon$, for all $\varepsilon > 0$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Auerbach bases

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Auerbach bases

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

X Banach, $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ M-basis is Auerbach if $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$ for all $\gamma \in \Gamma$.

Auerbach bases

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

X Banach, $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ M-basis is Auerbach if $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$ for all $\gamma \in \Gamma$.

Theorem (Auerbach)

X finite-dimensional. Then X has an Auerbach basis

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Auerbach bases

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

X Banach, $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ M-basis is Auerbach if $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$ for all $\gamma \in \Gamma$.

Theorem (Auerbach)

X finite-dimensional. Then X has an Auerbach basis

Problem

[Pełczyński] X separable. Does X has an Auerbach basis?

Auerbach bases

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, *i.e.*, $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

X Banach, $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ M-basis is Auerbach if $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$ for all $\gamma \in \Gamma$.

Theorem (Auerbach)

X finite-dimensional. Then X has an Auerbach basis

Problem

[Pełczyński] X separable. Does X has an Auerbach basis? Does C[0, 1] has an Auerbach basis?

A. J. Guirao, V. Montesinos, V. Zizler

Some open problems in Banach Space Theory II

Auerbach bases

Problem

[Pełczyński] X separable. Does X has an Auerbach basis?

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Auerbach bases

Problem

[Pełczyński] X separable. Does X has an Auerbach basis?

Theorem (Day)

Every infinite-dimensional Banach has an infinite-dimensional subspace with Auerbach basis.

Norming subspaces

X Banach. $N \subset X^*$ is norming (1-norming) if $|||x||| := \sup\{\langle x, x^* \rangle : x^* \in N, ||x^*|| \le 1\}$ is an equivalent norm (is the original norm).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Norming subspaces

X Banach. $N \subset X^*$ is norming (1-norming) if $|||x||| := \sup\{\langle x, x^* \rangle : x^* \in N, ||x^*|| \le 1\}$ is an equivalent norm (is the original norm). Natural examples:

Norming subspaces

X Banach. $N \subset X^*$ is norming (1-norming) if $|||x||| := \sup\{\langle x, x^* \rangle : x^* \in N, ||x^*|| \le 1\}$ is an equivalent norm (is the original norm). Natural examples:

•
$$X \subset X^{**}$$
 is 1-norming for X^* .

2 If $x^{**} \in X^{**} \setminus X$ then ker $x^{**} \subset X^*$ is norming.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Norming subspaces

X Banach. $N \subset X^*$ is norming (1-norming) if

 $|||x||| := \sup\{\langle x, x^* \rangle : x^* \in N, ||x^*|| \le 1\}$ is an equivalent norm (is the original norm).

Natural examples:

•
$$X \subset X^{**}$$
 is 1-norming for X^* .

- 2 If $x^{**} \in X^{**} \setminus X$ then ker $x^{**} \subset X^*$ is norming.
- If $\{e_n; e_n^*\}$ is a Schauder basis, then $\overline{\text{span}}\{e_n^*\}$ is norming.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Norming subspaces

A space T is Fréchet–Urysohn (FU) if \overline{S} = sequential closure (S), $\forall S \subset T$.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Norming subspaces

- A space T is Fréchet–Urysohn (FU) if
- \overline{S} = sequential closure (S), $\forall S \subset T$.

A tvs space is Mazur if every sequentially continuous linear functional on it is continuous.

Norming subspaces

- A space T is Fréchet–Urysohn (FU) if
- \overline{S} = sequential closure (S), $\forall S \subset T$.

A tvs space is Mazur if every sequentially continuous linear functional on it is continuous.

Theorem (Guirao–M–Zizler, 2015)

X Banach, $Y \subset X^*$ w^{*}-dense.

Norming subspaces

- A space T is Fréchet–Urysohn (FU) if
- \overline{S} = sequential closure (S), $\forall S \subset T$.

A tvs space is Mazur if every sequentially continuous linear functional on it is continuous.

Theorem (Guirao–M–Zizler, 2015)

X Banach, $Y \subset X^*$ w^{*}-dense. (i) If every compact abs.convex in (B_Y, w^*) is FU, and $(X, \mu(X, Y))$ complete, then (Y, w^*) Mazur.

Norming subspaces

- A space T is Fréchet–Urysohn (FU) if
- \overline{S} = sequential closure (S), $\forall S \subset T$.

A tvs space is Mazur if every sequentially continuous linear functional on it is continuous.

Theorem (Guirao–M–Zizler, 2015)

X Banach, $Y \subset X^*$ w^{*}-dense. (i) If every compact abs.convex in (B_Y, w^*) is FU, and $(X, \mu(X, Y))$ complete, then (Y, w^*) Mazur. (ii) If Y closed and (Y, w^*) Mazur, then $(X, \mu(X, Y))$ complete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Norming subspaces

A space T is Fréchet–Urysohn (FU) if

 \overline{S} = sequential closure (S), $\forall S \subset T$.

A tvs space is Mazur if every sequentially continuous linear functional on it is continuous.

Theorem (Guirao–M–Zizler, 2015)

X Banach, $Y \subset X^*$ w^{*}-dense. (i) If every compact abs.convex in (B_Y, w^*) is FU, and $(X, \mu(X, Y))$ complete, then (Y, w^*) Mazur. (ii) If Y closed and (Y, w^*) Mazur, then $(X, \mu(X, Y))$ complete.

Example [Bonet–Cascales (answering Kunze–Arendt)]: $X := \ell_1[0, 1], Y := C[0, 1]. \mu(X, Y)$ non-complete.

= 200

Norming subspaces

A space T is angelic if all RNK \subset T are RK and \overline{RNK} = sequential closure (*RNK*).

Norming subspaces

A space T is angelic if all $RNK \subset T$ are RK and \overline{RNK} = sequential closure (*RNK*).

Theorem (Guirao–M–Zizler, 2015)

X Banach (B_{X^*}, w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE:

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Norming subspaces

A space T is angelic if all $RNK \subset T$ are RK and \overline{RNK} = sequential closure (*RNK*).

Theorem (Guirao–M–Zizler, 2015)

X Banach (B_{X^*} , w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE: (*i*) (X, $\mu(X, Y)$) complete.

Norming subspaces

A space T is angelic if all $RNK \subset T$ are RK and \overline{RNK} = sequential closure (*RNK*).

Theorem (Guirao–M–Zizler, 2015)

X Banach (B_{X^*}, w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE: (i) $(X, \mu(X, Y))$ complete. (ii) (Y, w^*) Mazur.

Norming subspaces

A space T is angelic if all $RNK \subset T$ are RK and \overline{RNK} = sequential closure (*RNK*).

Theorem (Guirao–M–Zizler, 2015)

X Banach (B_{X^*}, w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE: (i) $(X, \mu(X, Y))$ complete. (ii) (Y, w^*) Mazur. (iii) Y norming.

Norming subspaces

A space T is angelic if all RNK \subset T are RK and \overline{RNK} = sequential closure (*RNK*).

Theorem (Guirao–M–Zizler, 2015)

X Banach (B_{X^*}, w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE: (i) $(X, \mu(X, Y))$ complete. (ii) (Y, w^*) Mazur. (iii) Y norming.

[Davis–Lindenstrauss'72] If X^{**}/X infinite-dimensional, then $\exists w^*$ -dense non-norming subspace.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Norming subspaces

Problem [Godefroy-Kalton]

X Asplund non-separable. $\exists \| \cdot \|$ with no proper closed 1-norming subspace?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Norming subspaces

Problem [Godefroy-Kalton]

X Asplund non-separable. $\exists \| \cdot \|$ with no proper closed 1-norming subspace?

X separable YES (any Fréchet norm).

Norming subspaces

Problem [Godefroy-Kalton]

X Asplund non-separable. $\exists \| \cdot \|$ with no proper closed 1-norming subspace?

X separable YES (any Fréchet norm). Every non-reflexive space has a proper closed norming subspace.

Norming M-bases

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\text{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Norming M-bases

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\text{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming. Every separable *X* has a norming M-basis.

Norming M-bases

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\text{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

Every separable X has a norming M-basis.

Problem [K. John]

X WCG. Does it has a norming M-basis?

Norming M-bases

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\text{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

Every separable X has a norming M-basis.

Problem [K. John]

X WCG. Does it has a norming M-basis?

Theorem (Troyanski)

∃ WCG without 1-norming M-basis.

・ロト < 同ト < 目ト < 目ト < 目と のQQ

Norming M-bases

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\text{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

Every separable X has a norming M-basis.

Problem [K. John]

X WCG. Does it has a norming M-basis?

Theorem (Troyanski)

∃ WCG without 1-norming M-basis.

Problem [Godefroy]

X Asplund with norming M-basis. Is X WCG?

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

On WCG Banach spaces

Problem

X** WCG. Is X WCG?

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

On WCG Banach spaces

Problem

X** WCG. Is X WCG?

Theorem (Rosenthal'1974)

WCG is not hereditary.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

On WCG Banach spaces

Problem

X** WCG. Is X WCG?

Theorem (Rosenthal'1974)

WCG is not hereditary.

Problem [Fabian]

Characterize K compact st C(K) hereditary WCG.

・ロト < 同ト < 目ト < 目ト < 目と のQQ

SSD norms

 $\|\cdot\|$ is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h \in S_X$.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

SSD norms

 $\|\cdot\|$ is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h \in S_X$.

Theorem (Godefroy)

 $X SSD \Rightarrow Asplund.$

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

SSD norms

 $\|\cdot\|$ is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h \in S_X$.

Theorem (Godefroy)

 $X SSD \Rightarrow Asplund.$

Theorem (Jiménez–Moreno'97)

Under CH, 3 Asplund X without Mazur Intersection Property

SSD norms

 $\|\cdot\|$ is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h \in S_X$.

Theorem (Godefroy)

 $X SSD \Rightarrow Asplund.$

Theorem (Jiménez–Moreno'97)

Under CH, \exists Asplund X without Mazur Intersection Property (Godefroy: with no SSD norm).

SSD norms

 $\|\cdot\|$ is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h \in S_X$.

Theorem (Godefroy)

 $X SSD \Rightarrow Asplund.$

Theorem (Jiménez–Moreno'97)

Under CH, \exists Asplund X without Mazur Intersection Property (Godefroy: with no SSD norm).

Problem [Godefroy]

In ZFC, \exists Asplund with no SSD norm?

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Theorem (Godefroy-M-Zizler'94)

X separable. *X* non-Asplund $\Rightarrow \exists \| \cdot \|$ nowhere SSD.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Theorem (Godefroy-M-Zizler'94)

X separable. *X* non-Asplund $\Rightarrow \exists \| \cdot \|$ nowhere SSD.

Problem

X nonseparable non-Asplund. $\exists \| \cdot \|$ nowhere SSD?

Norm attaining operators

Theorem (Lindenstrauss'1963)

 $\{T: X \rightarrow Y: T^{**} \text{ attains the norm}\}\ dense in L(X, Y).$

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Norm attaining operators

Theorem (Lindenstrauss'1963)

 $\{T: X \rightarrow Y: T^{**} \text{ attains the norm}\}\ dense in L(X, Y).$

Theorem (Zizler'1973)

 $\{T: X \rightarrow Y: T^* \text{ attains the norm}\}\ dense in L(X, Y).$

Norm attaining operators

Theorem (Lindenstrauss'1963)

 $\{T: X \rightarrow Y: T^{**} \text{ attains the norm}\}\ dense in L(X, Y).$

Theorem (Zizler'1973)

 $\{T: X \rightarrow Y: T^* \text{ attains the norm}\}\ dense in L(X, Y).$

Problem

[Ostrovski] Does there exists X infinite-dimensional separable such that every $T : X \to X$ bounded attains its norm?

Norm attaining (multilinear)

 $A: X_1 \times \ldots \times X_n \to Y.$

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Norm attaining (multilinear)

 $\begin{array}{l} A: X_1 \times \ldots \times X_n \to Y. \\ \tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n}) \end{array}$

Norm attaining (multilinear)

 $\begin{array}{l} A: X_1 \times \ldots \times X_n \to Y. \\ \tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n}) \end{array}$

Theorem (Acosta–García–Maestre'2006)

{A : \tilde{A} attains the norm} dense in $L(X_1, \ldots, X_n; Y)$.

Norm attaining (multilinear)

 $\begin{array}{l} A: X_1 \times \ldots \times X_n \to Y. \\ \tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n}) \end{array}$

Theorem (Acosta–García–Maestre'2006)

{A : \tilde{A} attains the norm} dense in $L(X_1, \ldots, X_n; Y)$.

$$\tilde{P}(z) = \tilde{A}(z,\ldots,z).$$

Norm attaining (multilinear)

 $\begin{array}{l} A: X_1 \times \ldots \times X_n \to Y. \\ \tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n}) \end{array}$

Theorem (Acosta–García–Maestre'2006)

{A : \tilde{A} attains the norm} dense in $L(X_1, \ldots, X_n; Y)$.

$$\tilde{P}(z) = \tilde{A}(z,\ldots,z).$$

Theorem (Aron–García–Maestre'2002)

 $\{P: \tilde{P} \text{ attains the norm}\}\ dense in \mathcal{P}(^2X).$

Norm attaining (multilinear)

 $\begin{array}{l} A: X_1 \times \ldots \times X_n \to Y. \\ \tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n}) \end{array}$

Theorem (Acosta–García–Maestre'2006)

 $\{A: \tilde{A} \text{ attains the norm}\}\ dense\ in\ L(X_1, \ldots, X_n; Y).$

$$\tilde{P}(z) = \tilde{A}(z,\ldots,z).$$

Theorem (Aron–García–Maestre'2002)

 $\{P: \tilde{P} \text{ attains the norm}\}\ dense in \mathcal{P}(^2X).$

Problem

What if n > 2?

Support sets

 $C \subset X$ convex, closed, is a support set whenever $\forall x_0 \in C, x_0$ is proper support point, i.e., $\exists f \in X^*$ $f(x_0) = \inf\{f(x) : x \in C\} < \sup\{f(x) : x \in C\}.$

Support sets

 $C \subset X$ convex, closed, is a support set whenever $\forall x_0 \in C, x_0$ is proper support point, i.e., $\exists f \in X^*$ $f(x_0) = \inf\{f(x) : x \in C\} < \sup\{f(x) : x \in C\}.$

Theorem (Rolewicz'1978)

If X separable, then there are no (bounded) support sets.

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

Support sets

 $C \subset X$ convex, closed, is a support set whenever $\forall x_0 \in C, x_0$ is proper support point, i.e., $\exists f \in X^*$ $f(x_0) = \inf\{f(x) : x \in C\} < \sup\{f(x) : x \in C\}.$

Theorem (Rolewicz'1978)

If X separable, then there are no (bounded) support sets.

Problem

[Rolewicz] X nonseparable Banach. Do there exist support sets?

・ロト < 同ト < 目ト < 目ト < 目と のQQ

Support sets

Theorem (M.'1985)

 $C[0, 1]^*$ has support sets. For Γ infinite, $\ell_{\infty}(\Gamma)$ has support sets. $\ell_1(\Gamma) \subset X$, then X^* has support sets.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Support sets

Theorem (M.'1985)

 $C[0, 1]^*$ has support sets. For Γ infinite, $\ell_{\infty}(\Gamma)$ has support sets. $\ell_1(\Gamma) \subset X$, then X^* has support sets.

Theorem (Kutzarova, Lazar, M., Borwein, Vanderwerff)

X has an uncountable biorthogonal system, then *X* has support sets.

Support sets

Theorem (Todorcevic'2006)

Under (MM), X nonseparable has support set.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Support sets

Theorem (Todorcevic'2006)

Under (MM), X nonseparable has support set.

Theorem (Todorcevic, Koszmider'2009)

Under another axiom compatible with ZFC, C(K) with density \aleph_1 may have not support sets.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Support sets

Theorem (Todorcevic'2006)

Under (MM), X nonseparable has support set.

Theorem (Todorcevic, Koszmider'2009)

Under another axiom compatible with ZFC, C(K) with density \aleph_1 may have not support sets.

Theorem (Todorcevic'2006)

If C(K) has density $> \aleph_1$ then C(K) has a support set.

・ロト < 同ト < 目ト < 目ト < 目と のQQ

Support sets

Theorem (Todorcevic'2006)

Under (MM), X nonseparable has support set.

Theorem (Todorcevic, Koszmider'2009)

Under another axiom compatible with ZFC, C(K) with density \aleph_1 may have not support sets.

Theorem (Todorcevic'2006)

If C(K) has density $> \aleph_1$ then C(K) has a support set.

Problem

[Todorcevic] X with density $> \aleph_1$ has a support set?

A. J. Guirao, V. Montesinos, V. Zizler

Some open problems in Banach Space Theory II

Polyhedral spaces

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Polyhedral spaces

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

Theorem (Morris'1983)

X separable $c_0 \subset X$, then $\exists (R) ||| \cdot |||$ st all $x \in S_X$ are unpreserved.

A. J. Guirao, V. Montesinos, V. Zizler Some open problems in Banach Space Theory II

Polyhedral spaces

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

Theorem (Morris'1983)

X separable $c_0 \subset X$, then $\exists (R) ||| \cdot |||$ st all $x \in S_X$ are unpreserved.

Theorem (Guirao–M–Zizler'2013)

X separable polyhedral, then $\exists C^{\infty}$ -smooth (*R*) norm $||| \cdot |||$ all $x \in S_X$ unpreserved.

Polyhedral spaces

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

Theorem (Morris'1983)

X separable $c_0 \subset X$, then $\exists (R) ||| \cdot |||$ st all $x \in S_X$ are unpreserved.

Theorem (Guirao–M–Zizler'2013)

X separable polyhedral, then $\exists C^{\infty}$ -smooth (*R*) norm $||| \cdot |||$ all $x \in S_X$ unpreserved.

Theorem (Guirao–M–Zizler'2014)

X WCG, $c_0 \subset X$. Then $\exists ||| \cdot |||$ all $x \in S_X$ extreme all unpreserved, one-direction-uniformly.

A. J. Guirao, V. Montesinos, V. Zizler

Some open problems in Banach Space Theory II

Polyhedral spaces

Theorem (Fonf'1980-81, Hájek)

X separable polyhedral $\Leftrightarrow \exists \parallel \cdot \parallel$ depending locally of finitely many coordinates.

Polyhedral spaces

Theorem (Fonf'1980-81, Hájek)

X separable polyhedral $\Leftrightarrow \exists \parallel \cdot \parallel$ depending locally of finitely many coordinates.

Problem

X nonseparable. *X* polyhedral $\Leftrightarrow \exists ||| \cdot |||$ depending locally on finitely many coordinates?

Polyhedral spaces

Theorem (Fonf'1980-81, Hájek)

X separable polyhedral $\Leftrightarrow \exists \parallel \cdot \parallel$ depending locally of finitely many coordinates.

Problem

X nonseparable. *X* polyhedral $\Leftrightarrow \exists ||| \cdot |||$ depending locally on finitely many coordinates?

Problem

X separable with a bump that depends locally on finitely many coordinates. Is X polyhedral?

- M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler. Banach Space Theory: the Basis for Linear and Non-Linear Analysis Springer-Verlag, New York, 2011.
- A. J. Guirao, V. Montesinos, and V. Zizler. Open Problems in the Geometry and Analysis of Banach spaces Springer–Verlag, 2016.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>