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1 Introduction
The method of elementary submodels is a set-theoretical method which can
be used in various branches of mathematics. A. Dow in [1] illustrated the use
of this method in topology, P. Koszmider in [5] used it in functional analy-
sis. Later, inspired by [5], W. Kubiś in [6] used it to construct retractional
(resp. projectional) skeleton in certain compact (resp. Banach) spaces. The
notion of monotone assignment, considered along this text, is implicit in the
use of elementary submodels technique and appears naturally in several con-
texts. This concept is very simple, natural, and at the same time strength
considerably some topological structures.

The purpose of this work is to show some applications of the use of ω-
monotone assignments. We will deal with monotone ω-stability, a concept
which result to be useful to study retractional skeletons in general and in
function spaces. These assignments also are used to provide a proof of the
characterisations of Corson and Valdivia compact spaces by some special
retractional skeletons. Finally, ω-monotone assignments are used to define c-
skeletons, which results to be an useful tool to detect Corson compact spaces
inside function spaces.

2 Monotone assignments
Recall that a partially ordered set Γ is up-directed if for every s0, s1 ∈ Γ
there is t ∈ Γ such that s0 ≤ t and s1 ≤ t. Γ is σ-complete if every sequence
s0 < s1 < · · · has the least upper bound in Γ.
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In what follows, Γ and Σ will always be used to denote up-directed σ-
closed posets. The following definition come from [9].

Definition 2.1. A function φ : Σ→ Γ is ω-monotone if satisfy:

1. s ≤ t ∈ Σ imply φ(s) ≤ φ(t);
2. if {sn}n∈ω ⊂ Σ is increasing, then φ(supn<ω sn) = supn<ω φ(sn).

Remark 2.2. A function φ : [X]≤ω → [Y ]≤ω is ω-monotone if and only if
φ(A) =

⋃
F∈[A]<ω φ(F ) for all A ∈ [X]≤ω.

Consider an ω-monotone function φ : [X]≤ω → [X]≤ω. Say that C ⊂ X is
closed under φ whenever φ([C]≤ω) ⊂ [C]≤ω. For each A ∈ [X]≤ω, the closure
φ(A) of A under φ is the smallest, with respect to inclusion, set C ⊂ X such
that A ⊂ C and C is closed under φ. Note that there is a least C, namely

C =
⋂
{D : A ⊂ D ⊂ X and D is closed under φ}.

Theorem 2.3. If φ : [X]≤ω → [X]≤ω is ω-monotone, then the function
φ : [X]≤ω → [X]≤ω is well defined and ω-monotone.

Proof. Recursively define Cn : [X]≤ω → [X]≤ω as follows. Set C0(A) = A for
each A ∈ [X]≤ω. Besides, let Cn+1(A) = Cn(A) ∪

⋃
F∈[Cn(A)]<ω φ(F ) for all

A ∈ [X]≤ω. By induction on n each function Cn is ω-monotone. The equality
C(A) =

⋃
n∈ω Cn(A) for every A ∈ [X]≤ω follows from Remark 2.2 and implies

that C is well defined and ω-monotone.

The following Lemma is easy to prove and will be an useful tool.

Lemma 2.4. If f : X → Γ is an arbitrary map, then we can construct an
ω-monotone map φ : [X]≤ω → Γ such that φ({x}) = f(x) for each x ∈ X.

3 Monotonically ω-stable spaces
Monotone assignments are naturally associated to some topological struc-
tures. Stable spaces, introduced by Arhangel’skii, proved to be very useful
both for the theory of cardinal invariants and Cp-theory. We will consider a
monotone version of this property which was introduced in [8]. Before let us
recall some notation.

Set N ⊂ P(X). Given C ∈ P(X) we say that N is a network for C in
X if whenever C ∈ C and C ⊂ U with U open, then C ⊂ N ⊂ U for some
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N ∈ N . If A ⊂ X, then N is said to be a network for A in X whenever it
is a network for {{x}}x∈A in X. A network for X in X is called simply a
network for X. Given M ⊂ C(X), we say that N is a network for M in X
if it is a network for X endowed with the weak topology generated by M .
Finally, for f ∈ C(X), a network for f is simply a network for {f}.

Definition 3.1. We say that a space X is monotonically ω-stable if there
exists an ω-monotone map N : [Cp(X)]≤ω → [P(X)]≤ω such that N (A) is a
network for A for all A ∈ [Cp(X)]≤ω.

The above property seems to be artificial, however it appears naturally
in a wide class of spaces and will be a useful tool along this work.

Proposition 3.2. Assume that a space X has a cover C by pseudocompact
spaces X and a countable network O for the cover C. Then X is monotoni-
cally ω-stable.

Proof. Fix a countable base BR for the real line R. Given E ∈ [P(X)]≤ω let
F(E) = {

⋃
J : J ∈ [E ]<ω} and C(E) = {O \ E : O ∈ O, E ∈ E}. Clearly

F and C are ω-monotone. For each A ∈ [Cp(X)]≤ω let I(A) = {g−1(B) : g ∈
A,B ∈ BR} and N (A) = C(F(I(A))). Note that N is ω-monotone.

Given A ⊂ X, we shall prove that N (A) is a network for A. Assume that
x ∈ U where U =

⋂
f∈F f

−1(Bf ) for some F ∈ [A]<ω and Bf ∈ BR for each
f ∈ F . Pick P ∈ C containing x. Choose y ∈ P \U . Fix fy ∈ F and By ∈ BR
so that fy(y) ∈ By and fy(x) ∈ Bfy \By. Select gy ∈ A such that gy(y) ∈ By

and gy(x) ∈ Bfy \ By. Let U = {g−1
y (By) : y ∈ P \ U}. Note P \ U ⊂

⋃
U

and x 6∈
⋃
U . Choose V ⊂ [U ]<ω such that P ⊂ U ∪

⋃
V . Select a set O ∈ O

such that P ⊂ O ⊂ U ∪
⋃
V . Observe that if N = O \

⋃
V , then N ∈ N (A)

and x ∈ N ⊂ U .

Corollary 3.3. Every pseudocompact and every Σ-space is monotonically
ω-stable

4 Retractional skeletons
Now we will consider an optimal notion of an indexed system of retractions
introduced in [7].

Definition 4.1. An r-skeleton in a spaceX is a family of retractions {rs}s∈Γ,
satisfying the following conditions:
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1. rs(X) is has a countable network for each s ∈ Γ.
2. s ≤ t implies rs = rs ◦ rt = rt ◦ rs.
3. For every x ∈ X, x = lims∈Γ rs(x).
4. Given s0 < s1 < · · · in Γ, if t = supn∈ω sn, then rt(x) = limn→∞ rsn(x)

for every x ∈ X.

Let {rs}s∈Γ be a family of retractions on X. We say that {rs}s∈Γ is a weak
r-skeleton in X if it only satisfies conditions 1,2 and 4 in the above definition.
Besides, the set

⋃
s∈Γ rs(X) will be called the set induced by {rs}s∈Γ.

Theorem 4.2. Let X be monotonically ω-stable and let Y be the set induced
by a weak r-skeleton {rs}s∈Γ in X. If n ∈ ω, F ⊂ Y n and s0 ∈ Γ, then there
exist t ∈ Γ and D ∈ [F ]≤ω such that s0 ≤ t and rnt (F ) ⊂ D.

Proof. LetN be a monotonically stable operator inX. Select an ω-monotone
map E : [Cp(X)]≤ω → [F ]≤ω such that E(A) ∩N 6= ∅ whenever N ∈ N (A)n

and N ∩ F 6= ∅. Using Lemma 2.4 we can construct an ω-monotone map
s : [F ]≤ω → Γ such that s0 ≤ s(P ) and P ⊂ rns(P )(X) for each P ∈ [F ]≤ω.
For each G ∈ [F ]<ω fix a countable dense subset As(G) of r∗s(G)(Cp(rs(G)(X))).
Define M : [F ]≤ω → [Cp(X)]≤ω as M(P ) =

⋃
G∈[P ]<ω As(G). Then M is

ω-monotone. Note that M(P ) is dense in r∗s(P )(Cp(rs(P )(X))). Finally set
A =M◦ E : [Cp(X)]≤ω → [Cp(X)]≤ω the closure ofM◦ E .

Set A = A(As(∅)), D = E(A) and t = s(D). Clearly s0 ≤ t. By continuity
it is enough to show that rnt (F ) ⊂ D. Assume on the contrary that rnt (x) 6∈ D
for some x ∈ F . Choose B ∈ τ(X)n such that rnt (x) ∈ U =

∏
i∈nB(i) ⊂ Xn\

D. Choose f ∈ Cp(rnt (X)) such that f(rnt (x)) = 0 and f(D ∩ rnt (X)) ⊂ {1}.
We know that r∗t (Cp(rt(X))) ⊂ M(D) = M(E(A)) ⊂ A. Since N (A) is a
network for A, it is a network for r∗t (Cp(rt(X))). It follows that N (A) is a
network for rt. Then we can find N ∈ N (A)n such that x ∈ N ⊂ (rnt )−1(U).
Then there exists y ∈ D such that y ∈ N ∩F . We know that y ∈ rnt (X). We
then have that y = rnt (y) ∈ U ∩D, which is not possible.

Corollary 4.3. Let X be monotonically ω-stable and let Y be a set induced
by a weak r-skeleton {rs}s∈Γ in X. Then:

1. t(Y ) ≤ ω.
2. x = lims∈Γ rs(x) for each x ∈ Y .
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Proof. 1. Set A ⊂ Y and x ∈ A. Choose s0 ∈ Γ so that rs0(x) = x.
By Theorem 4.2, we can find D ∈ [A]≤ω and s ∈ Γ such that s0 ≤ s and
rs(A) = D. This implies that x = rs(x) ∈ rs(A) ⊂ D.

2. Fix x ∈ Y . Let U be an open neighborhood of x. Choose an open set
V in X such that x ∈ V ⊂ V ⊂ U . Set F1 = V ∩ Y and F2 = (X \ U) ∩ Y .
From Theorem 4.2 and condition 4, we can find s ∈ Γ such that rs(F i)) ⊂ F i

for i = 1, 2. Then rs(x) ∈ F 1. Choose t ∈ Γ such that s ≤ t. If rt(x) 6∈ U ,
then rt(x) ∈ F2 and so rs(x) = rs(rt(x)) ∈ F 2, which is not possible.

5 r-skeletons and Σ-subsets
Different characterisations of Corson and Valdivia compacta have appeared
in the literature. In [7], it is proved that a compact K is Valdivia if and only
if it admits a commutative r-skeleton. Here we present a proof of this fact.

We say that an r-skeleton {rs}s∈Γ in X is full if X =
⋃
s∈Γ rs(X), and

commutative if rs ◦ rt = rt ◦ rs whenever s, t ∈ Γ.

Lemma 5.1. Let Y be induced by an r-skeleton {rs}s∈Γ in a compact X.
Then there is a family of retractions {rA}A∈P(Y ) in X such that for every
A ∈ P(Y ) we have:

1. {rB �rA(X)}B∈[A]≤ω is an r-skeleton on rA(X) and induces rA(X) ∩ Y ;
2. A ⊂ rA(X) and d(rA(X) ∩ Y ) ≤ |A|+ ω;
3. rB ◦ rA = rA ◦ rB = rB whenever B ⊂ A;
4. If A =

⋃
α<γ Aα for some increasing family {Aα}α<γ, then rA(x) =

limα<γ rAα(x) for every x ∈ X.

If in addition the r-skeleton {rs}s∈Γ is commutative, then we also can get
rB ◦ rA = rA ◦ rB for every A,B ∈ P(Y ).

Proof. Using Lemma 2.4 we can construct an ω-monotone map s : [Y ]≤ω → Γ
such that A ⊂ rs(A)(Y ) for each A ∈ [Y ]≤ω. For each F ∈ [Y ]<ω fix a
countable dense subset Ds(F ) of rs(F )(X) containing F . For each A ∈ [Y ]≤ω

set rA = rs(A) and DA =
⋃
F∈[A]<ω Ds(F ). Then rA(X) = DA for each A ∈

[Y ]≤ω.
Now, choose an arbitrary A ⊂ Y . Let ΓA = [A]≤ω and DA =

⋃
B∈ΓA

DB.
It is easy to verify, using Corollary 4.3, that {rB �DA}B∈ΓA is an r-skeleton
on DA. The countable tightness of Y implies that the set induced by that
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r-skeleton is
⋃
B∈ΓA

rB(X) =
⋃
B∈ΓA

DB = DA ∩ Y . Consider the retrac-
tion rA : X → DA which assign to each x ∈ X the only point in DA ∩⋂
B∈ΓA

r−1
B (rB(x)). Note that rB ◦ rA = rB holds for every B ∈ ΓA. Be-

sides rA(x) = limB∈ΓA rB(rA(x)) = limB∈ΓA rB(x) for every x ∈ X. We have
finished the construction.

Fix A ∈ P(Y ). Conditions 1 and 2 are clear from the construction. To
verify 3 note that: if B ⊂ A ∈ [Y ]≤ω, then rB(rA(x)) = limD∈ΓB rD(rA(x)) =
limD∈ΓA rD(x) = rB(x) = rA(rB(x)) for each x ∈ X. Now assume that
A =

⋃
α<γ Aα is as in 4. Fix x ∈ X. Let U be a neighborhood of rA(x).

Choose B ∈ ΓA such that rD(x) ∈ U whenever B ⊂ D ∈ ΓA. If γ has
uncountable cofinality, then select α < γ such that B ⊂ Aα. In this case
rAβ(x) ∈ U whenever α ≤ β < γ. If {αn}n∈ω is a cofinal subset of γ, then
there exists n ∈ ω such that rAβ(x) ∈ U whenever αn ≤ β < γ (otherwise we
can get rD(x) 6∈ U for some D ∈ ΓA containing B). Since U is arbitrary, we
conclude that rA(x) = limα<γ rAα(x).

Finally, assume that {rs}s∈Γ is commutative. Proceeding as in item 3 we
can verify that rB ◦ rA = rA ◦ rB for every A,B ∈ P(Y ).

Recall that a set Y ⊂ X as a Σ-subset of X if there exists an embedding
φ : X → IT , for some set T , such that Y = φ−1(ΣIT ).

Theorem 5.2. Let Y be dense in a compact X. If Y is induced by a com-
mutative or full r-skeleton on X, then Y is a Σ-subset of X.

Proof. By induction on the density of Y . For d(Y ) = ω the result is clear.
Assume that d(Y ) = κ > ω and the result holds for spaces of density smaller
than κ. Choose the family {rA}A∈P(Y ) of retractions on X as in Lemma 5.1.
Let {yα}α<κ be a dense subspace of Y . For each α ≤ κ, set Aα = {yβ}β<α and
rα = rAα . Given α < κ, we may apply the inductive hypothesis to find a set
Tα and an embedding φα : rα(X) → ITα such that Y ∩ rα(X) = φ−1

α (ΣITα).
We can assume that Tα ∩ Tβ = ∅ whenever α < β < κ. Consider the set
T =

⋃
α<κ Tα. We identify IT with

∏
α<κ I

Tα . Define φ : X → IT as follows:

φ(x)(α) =

{
φα+1(rα+1(x))− φα+1(rα(x)) if α > 0;

φ0(r0(x)) if α = 0.

For each x ∈ X and α < κ. To see that φ is an embedding we only need to
show that φ is one-to-one. Fix distinct x, y ∈ X. The fact that {rA}A∈[Y ]≤ω

is an r-skeleton on X implies that rF (x) 6= rF (y) for some F ∈ [Y ]≤ω. Set
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β = min{α < κ : rα(x) 6= rα(y)}. If β = 0, then φ(x)(0) 6= φ(y)(0).
Otherwise, β = α + 1 for some α < κ and so φ(x)(α) 6= φ(y)(α). Hence
φ(x) 6= φ(y). We shall verify that Y = φ−1(ΣIT ). To see that Y ⊂ φ−1(ΣIT ),
fix x ∈ Y . Note that rα(x) ∈ Y for each α < κ (in the commutative case this
allows from rα(r{x}(x)) = r{x}(rα(x))). The countable tightness of Y implies
that {rα(x)}α<κ is countable. Hence φ(x) ⊂ ΣIT . Besides, the countable
tightness of ΣIT and the properties of Y imply that φ−1(ΣIT ) ⊂ Y .

Corollary 5.3. A compact space is Valdivia (Corson) if and only if it admits
a commutative (full) r-skeleton.

Proof. Given a set T , by Corollary 3.3 the space IT (ΣIT ) is monotonically
ω-stable. Besides it is easy to verify that IT (ΣIT ) admits a commutative
(full) r-skeleton. Then we may apply Theorem 4.2 and 4.3 to see that each
Valdivia (Corson) compact space admits a commutative (full) r-skeleton.
The converse follows from Theorem 5.2.

Corollary 5.4. If a countably compact space admits a full commutative re-
tractional skeleton iff X can be embedded in ΣIT for some set T .

Proof. If X admits a a full commutative retractional skeleton, then it is easy
to see that X is induced by a commutative retractional skeleton in βX. It
follows from Theorem 5.2 that X is a Σ-subset of βX and hence X can be
embedded in ΣIT for some set T . Now, ifX can be embedded in ΣIT for some
set T , must be embedded as a closed subspace. Therefore the result follows
from Theorem 4.2 since ΣIT admits a full commutative r-skeleton.

6 Strong r-skeletons in Cp-duality
An r-skeleton {rs}s∈Γ in a space X is said to be strong if whenever s0 ∈ Γ
and F is closed in Xn, for some n ∈ N, there exists s ∈ Γ such that s0 ≤ s
and rns (F ) ⊂ F . It is easy to verify that the property of admit a strong
r-skeleton is invariant under countable topological sums, countable products
and closed subspaces. We will show that this property is also preserved under
the formation of Cp-spaces, and as a consequence by R-quotient maps.

The following fact follows from Theorem 4.2

Corollary 6.1. Let X be a monotonically ω-stable space. Then an r-skeleton
on X is strong if and only if it is full.
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The following Lemma implies that every space which admits a strong r-
skeleton has the Sokolov property and, in particular, is collectionwise normal,
ω-stable, ω-monolithic and has countable extent (see [11]). Besides we also
can verify that these spaces are countably paracompact.

Lemma 6.2. Let {rs}s∈Γ be a strong r-skeleton on X. If s0 ∈ Γ and Fn is
a countably family of closed subsets of Xn for each n ∈ N, then there exists
s ∈ Γ such that s0 ≤ s and rns (F ) ⊂ F whenever F ∈ Fn.

Proof. Let {Nn}n∈N be a partition of N in infinite sets. For each n ∈ N
enumerate Fn as {Fn}n∈Nn , where each element appears infinitely many
times. For each m > 0 choose recursively sm ∈ Γ such that sm−1 ≤ sm and
rnsm(Fm) ⊂ Fm if Fm ∈ Fn. Note that s = sup{sm}m∈ω is as required.

In order to prove our main result related to Cp-spaces, let us introduce
some notation. Fix a countable base BR for the real line R. Let X be a space.
Given n ∈ N, x ∈ Xn and B ∈ BnR, set

Ux,B = {f ∈ C(X) : ∀i ∈ n
(
f(x(i)) ∈ B(i)

)
}.

For each A ⊂ X let B(A) = {Ux,B : x ∈ Xn, B ∈ BnR, n ∈ ω}. Then B(X)
is a base for the topology of Cp(X). It is straightforward to verify that the
assignment A→ B(A), for A ∈ [X]≤ω, is ω-monotone.

Theorem 6.3. A space X has a strong r-skeleton if and only if Cp(X) has
a strong r-skeleton.

Proof. Assume that {rs}s∈Γ is a strong r-skeleton on X. For each s ∈ Γ
consider the retraction r̂s = r∗s ◦ πrs(X) : Cp(X) → Cp(X). It is standard
to verify that {r̂s}s∈Γ is an r-skeleton in Cp(X). In order to prove that this
r-skeleton is strong choose s0 ∈ Γ and a closed subset G of Cp(X)n for some
n ∈ N. Let nX be the disjoint topological union of n copies of X and let nrs
denote the natural retraction induced by rs on nX. It is standard to verify
that {nrs}s∈Γ is a strong r-skeleton on nX. We canonically identify Cp(X)n

with Cp(nX). Pick B ∈ BmR for some m ∈ N. Consider the set

FB = {x ∈ (nX)m : Ux,B ∩G = ∅}.

Note that FB is closed in (nX)m. By Lemma 6.2 we can find s ∈ Γ such
that s0 ≤ s and (nrs)

m(FB) ⊂ FB for each m ∈ N and B ∈ BmR . We assert
that s is as promised. Assume on the contrary that there exists f ∈ G
such that r̂ns (f) 6∈ G. We identify the maps r̂ns and (nrs)

∗ ◦ πnrs(nX). Then
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f ◦ nrs = r̂ns (f) 6∈ G. Select x ∈ (nX)m and B ∈ BmR , for some m ∈ N,
such that f ◦ nrs ∈ Ux,B and Ux,B ∩G = ∅. Then f ∈ Unrs(x),B and x ∈ FB.
The election of nrs implies that nrs(x) ∈ FB; which is not possible since
f ∈ Unrs(x),B ∩G.

Now assume that Cp(X) admits a strong r-skeleton. By the above,
Cp(Cp(X)) has a strong r-skeleton. Since Cp(Cp(X)) has a closed copy of X,
we conclude that X admits a stron r-skeleton.

7 Networks and Cp-duality
In order to establish some technical duality results for networks in Cp-spaces,
let us introduce some notation. Let X be a space. Given n ∈ N, N ∈ P(X)n

and B ∈ BnR, set

WN,B = {f ∈ Cp(X) : ∀i ∈ n
(
f(N(i)) ⊂ B(i)

)
}.

For each N ⊂ P(X) let W(N ) = {WN,B : N ∈ N n, B ∈ BnR, n ∈ ω}. It is
straightforward to verify that the assignment N → W(N ), from [P(X)]≤ω

to [P(Cp(X))]≤ω, is ω-monotone.

Theorem 7.1. Let N be a family of subsets of X.

1. If f : X → Y and N is a network for f , then W(N ) is a network for
f ∗(Cp(Y )) in Cp(X).

2. If A ⊂ X and N is a network for A in X, then the family W(N ) is a
network for πA on Cp(X).

Proof. 1. Take f ∗(g) ∈ Cp(Y ) and assume that f ∗(g) = g ◦ f ∈ Ux,B for
some Ux,B ∈ B(X). Then x ∈ Xn and B ∈ BnR for some n ∈ ω. Since
x(i) ∈ f−1(g−1(B(i))) for each i ∈ n, there exists N ∈ N n satisfying x(i) ∈
N(i) ⊂ f−1(g−1(B(i))) for every i ∈ n. Note that WN,B ∈ W(N ) and
f ∗(g) ∈ WN,B ⊂ Ux,B.

2. Let f ∈ Cp(X) and assume that f ∈ π−1
A (Ux,B) for some Ux,B ∈ B(A).

Then x ∈ Xn and B ∈ BnR for some n ∈ ω. Since x(i) ∈ f−1(B(i)) for each
i ∈ n, we can find N ∈ N n such that x(i) ∈ N(i) ⊂ f−1(B(i)) for each i ∈ n.
Observe that WN,B ∈ W(N ) and f ∈ WN,B ⊂ π−1

A (Ux,B).
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8 Monotone stability and Cp-duality
It happens that stability has a two way Cp-dual property. Monolithic spaces
introduced by Arhangelskii satisfy that: monolithicity of either X or Cp(X)
is equivalent to stability of the other. In this section we establish a monotone
version of these results.

Monotonically ω-monolithic spaces were introduced by Tkachuk [10] in
order to study the D-property in spaces of continuous functions Cp(X).

Definition 8.1. We say that a space X is monotonically ω-monolithic if
there exists an ω-monotone assignment N : [X]≤ω → [P(X)]≤ω such that
N (A) is a network for A in X for all A ∈ [X]≤ω.

The next lemma is easy to prove.

Lemma 8.2. If X is monotonically ω-stable, Y ⊂ X and there exists Z ⊂
Cp(Z) such that πY �Z : Z → Cp(Y ) is closed and onto, then Cp(Y ) is mono-
tonically ω-stable.

Theorem 8.3. A space X is monotonically ω-monolithic (ω-stable) if and
only if the space Cp(X) is monotonically ω-stable (ω-monolithic).

Proof. First, suppose that X is a monotonically ω-monolithic space. Take
an assignment N that witnesses this fact. By the factorisation theorem,
for each f ∈ [Cp(Cp(X))]<ω we can fix fix Sf ∈ [X]≤ω such that f ∈
π∗Sf (Cp(πSf (Cp(X)))). For each A ∈ [Cp(Cp(X))]<ω let S(A) =

⋃
f∈A S(A).

Then the assignment A → S(A) is ω-monotone. Consider the ω-monotone
map O = W ◦ N ◦ S. Since N (S(A)) is a network for FA = S(A) in
X, Theorem 7.1 implies that O(A) is a network for the open map πFA .
Hence O(A) is a network for the family of maps π∗FACp(πFA(Cp(X))). Since
A ⊂ π∗FACp(πFA(Cp(X))) and the last set is closed, we conclude that O(A)

is a network for A. In this way Cp(X) is monotonically ω-stable.
Secondly, assume that X is monotonically ω-stable and take an assign-

ment N that witnesses this fact. Consider the ω-monotone map O =W◦N .
Select A ∈ [Cp(X)]<ω. Let YA = ∆A(X). Since N (A) is a network for ∆A

in X, Theorem 7.1 implies that W(N (A)) is a network for (∆A)∗(Cp(YA)).
Observe that A ⊂ (∆A)∗(Cp(YA)) and hence W(N (A)) is a network for A.
Thus Cp(X) is monotonically ω-monolithic.

Now, assume that Cp(X) is monotonically ω-stable (ω-monolithic). By
the above Cp(Cp(X)) is monotonically ω-monolithic (ω-stable). Since the
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space Cp(Cp(X)) contains a copy of X (satisfying the conditions in Lemma
8.2), the space X is is monotonically ω-monolithic (ω-stable).

Theorem 8.3 let us deduce properties of monotonically ω-stable spaces
from monotonically monotonically ω-monolithic spaces and vice versa.

9 Strong r-skeletons and D-spaces
The notion of D-space introduced in [2] have been intensively studied in
many topological contexts (see [3]).

A neighborhood assignment for a space (X, τ) is a function φ : X → τ
with x ∈ φ(x) for every x ∈ X. A kernel for φ is a subset D ⊂ X such that
φ(D) :=

⋃
x∈D φ(x) = X. X is said to be a D-space if every neighborhood

assignment φ for X has a closed discrete kernel.

Theorem 9.1. If X is has a strong r-skeleton and is monotonically ω-
monolithic, then X is a Lindelöf D-space.

Proof. It is enough to show that every neighborhood assignment has a count-
able closed discrete kernel. Let {rs}s∈Γ be a strong r-skeleton in X and fix
an operator N which witnesses monotone ω-monolithicity of X. Given s ∈ Γ
fix a countable dense subset As of rs(X). For each A ∈ [X]≤ω let

C(A) = {x ∈ X : x ∈ N ⊂ φ(x) for some N ∈ N (A)}.

Note that C satisfies conditions in Definition 2.1.
Let {Ωn}n∈ω be a partition of ω in infinite sets. Choose x0 ∈ X and

s0 ∈ Γ. Assume that xi ∈ X and si ∈ Γ have been constructed and that if
Ai =

⋃
j<iAsj then the family N (Ai) has been enumerated as {Nk : k ∈ Ωi},

for i < n. Set An =
⋃
i<nAsi , Dn = {xi}i<n and enumerate N (An) as

{Nk : k ∈ Ωn}. If φ(Dn) = X take D = Dn and stop the construction. In
the other case, look at

Xn = C(An) \ φ(Dn)

If Xn 6= ∅, choose xn ∈ Xn such that the corresponding N ∈ N (An) is
the least possible in the above enumeration. Otherwise select a point xn ∈
X \ φ(Dn) arbitrarily. After that, choose sn ∈ Γ such that sn−1 ≤ sn and
rsn(X \ φ(xi)) ⊂ X \ φ(xi) for each i < n.

If the process does not finish in any finite step, let us show that D = {xn :
n ∈ ω} works. Clearly D is closed discrete in φ(D). So, it is enough to verify
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that φ(D) = X. Fix x ∈ X. Set s = supn∈ω sn and A =
⋃
n∈ω An. Note

that rs(x) = limn→∞ rsn(x) ∈ A ⊂ C(A). If rs(x) 6∈ φ(D), the properties of
C imply that rs(x) ∈ Xn for sufficiently large n. Fix k ∈ ω and O ∈ N (Ak)
such that rs(x) ∈ O ⊂ φ(rs(x)). Since φ(xn) always contains the least N
corresponding to some y ∈ Xn, eventually we choose xn with xn ∈ O ⊂ φ(xn),
which puts rs(x) ∈ φ(xn), which is not possible. Thus rs(x) ∈ φ(D). Pick
k ∈ ω such that rs(x) ∈ φ(xk). Since rsn(X \ φ(xk)) ⊂ X \ φ(xk) for n large
enough, we must have rs(X \ φ(xk)) ⊂ X \ φ(xk). Therefore x ∈ φ(xk).

10 r-skeletons and W -sets
The notion of W -set was introduced by Gruenhage in [4]. Given a space
X let FS(X) =

⋃
n∈NX

n be the set of all finite sequences in X. For a
map O : FS(X) → τ(X), an element x ∈ Xω is called an O-sequence if
x(n) ∈ O(x �n) for each n ∈ N. Besides, we say that a set H ⊂ X is a W -set
in X if there is a map O : FS(X) → τ(H,X) such that every O-sequence
converges to H.

Theorem 10.1. Let X be a countably compact with a full r-skeleton {rs}s∈Γ.
If H is nonempty and closed in X, then H is a W -set in X.

Proof. It follows from Corollary 6.1 that the r-skeleton {rs}s∈Γ is strong.
Define recursively an order preserving function s : FS(X) → Γ satisfying
rs(a)(a(k)) = a(k) and rs(a)(H) ⊂ H, whenever a ∈ Xn and k ≤ n. Given
a ∈ FS(X), since rs(a)(H) is closed in the metrizable space rs(a)(X), we
can fix a decreasing base of open neighborhoods {Ua,n}n∈ω for rs(a)(H) in
rs(a)(X). Define O : FS(X)→ τ(H,X) as

O(a) =
⋂
k≤n r

−1
s(a�k)(Ua�k,n)

for each a ∈ Xn and n ∈ N. We assert that every O-sequence converges
to H. Let x ∈ Xω be an O-sequence. Note that, since X is countably
compact and Frechét-Urysohn, it is enough tho show that the limit of each
convergent subsequence of x belongs to H. Let m ∈ ωω be strictly increasing
and assume that x ◦m converges to some y ∈ X. Choose k ∈ ω. For each
n > k, sincem(n) > k we have that x(m(n)) ∈ O(x �m(n)) ⊂ r−1

s(x�k)(Ux�k,m(n))

and in this way rs(x�k)(x(m(n))) ∈ Ux�k,m(n). Since m is strictly increasing
and {Ux�k,n}n∈ω is a decreasing base for rs(x�k)(H) in rs(x�k)(X) we must
have that rs(x�k)(y) = limn→∞ rs(x�k)(x(n)) ∈ rs(x�k)(H) ⊂ H. Therefore, for
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t = sup{s(x �k)}k∈N, we must have y = limn→∞ x(n) = limn→∞ rt(x(n)) =
rt(y) = limn→∞ rs(x�k)(y) ∈ H.

11 c-skeletons
Definition 11.1. Given a spaceX say that {(Fs,Bs)}s∈Γ ⊂ CL(X)×[τ(X)]≤ω

is a c-skeleton on X if:

1. for each s ∈ Γ, Bs is a base for a topology τs on X and there exist
a Tychonoff space Zs and a continuous map gs : (X, τs) → Zs which
separates the points of Fs;

2. if s, t ∈ Γ and s ≤ t, then Fs ⊂ Ft;
3. X =

⋃
s∈Γ Fs;

4. the assignment s→ Bs is ω-monotone.

In addition, if X =
⋃
s∈Γ Fs, then we say that the c-skeleton is full.

Theorem 11.2. If X is countably compact and has a (full) c-skeleton, then
X has a (full) r-skeleton.

Proof. Let {(Fs,Bs)}s∈Γ be a full c-skeleton in X. Let Y =
⋃
s∈Γ Fs and

let Σ = [Y ]≤ω. By Lemma 2.4 we can construct an ω-monotone function
s : Σ → Γ such that M ⊂ Fs(M) for each M ∈ Σ. Select an ω-monotone
function E : Σ → Σ such that E(M) ∩ B 6= ∅ for each B ∈ Bs(M) and put
C = E . Set BM = Bs(C(M)), FM = Fs(C(M)), . . . and so on.

We claim that gM(X) = gM(FM). Fix x ∈ X. Set BxM = {B ∈ BM : x ∈
B}. Select a decreasing base {Bn : n ∈ ω} ⊂ BM for x in (X, τM). For each
n ∈ ω choose yn ∈ Bn ∩ E(C(M)) = Bn ∩ C(M). Let y be an accumulation
point of {yn}n∈ω. Note that y ∈ B ∩ FM for each B ∈ BxM . The continuity
of the map gM : (X, τM) → ZM imply that gM(y) = gM(x). Since y ∈ FM
the claim have been proved.

Every continuous one-to-one map from a countably compact space onto
a Frechét-Urysohn space is a homeomorphism, so the topologies on FM in-
herited from X and (X, τM) coincide. The compactness of FM , the equality
gM(X) = gM(FM) and the fact that gM separates the points of FM imply that
gM �FM is a homeomorphism onto its image. Then rM = (gM �FM )−1 ◦ gM :
X → FM is a retraction. Given x ∈ X, if y is as above, then rM(x) = y and
so rM(x) ∈ B ∩ FM for each B ∈ BxM .
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We shall prove that {rM}M∈Σ is an r-skeleton in X. Condition 1 is
immediate. Item 3 follows from Corollary 4.3 once we prove 2 and 4.

2. Choose M,N ∈ Σ with M ⊂ N . From FM ⊂ FN we deduce that
rM = rN ◦ rM . If gM(x) 6= gM(rN(x)) for some x ∈ X, then we can find
disjoint sets B1 ∈ BxM ⊂ BxN and B2 ∈ BrN (x)

M ⊂ BrN (x)
N , which is not possible

since rN(x) ∈ B1 ∩ FN . Thus rM = rM ◦ rN .
4. Select M0 ⊂ M1 ⊂ · · · in Σ and N =

⋃
n∈ωMn. Pick x ∈ X.

Suppose that rN(x) 6= limn→∞ rMn(x) and choose B ∈ BrN (x)
N such that

rMn(x) 6∈ B ∩ FN for infinitely many n ∈ ω. However rMn(x) = rMn(rN(x)) ∈
B ∩ FMn ⊂ B ∩ FN because B ∈ BrN (x)

Mn
, for n large enough, a contradiction.

Finally, its is clear that {rM}M∈Σ is full whenever {(Fs,Bs)}s∈Γ is full.

12 c-skeletons in Cp-duality
In order to get a Cp-dual concept to c-skeleton, we introduce the following
notion.

Definition 12.1. Let X be a space. Consider a family {(qs, Ds)}s∈Γ, where
qs : X → Xs is an R-quotient map and Ds is a countable subset of X for
each s ∈ Γ. We say that {(qs, Ds)}s∈Γ is a q-skeleton on X if:

1. the set qs(Ds) is dense in Xs;
2. if s, t ∈ Γ and s ≤ t, then there exists a continuous onto map pt,s :
Xt → Xs such that qs = pt,s ◦ qt;

3. the assignment s→ Ds is ω-monotone;
4. Cp(X) =

⋃
s∈Γ q

∗
s(Cp(Xs)).

We say that the q-skeleton is full whenever Cp(X) =
⋃
s∈Γ q

∗
s(Cp(Xs)).

Proposition 12.2. If X has a (full) c-skeleton, then Cp(X) has a (full)
q-skeleton.

Proof. Let {(Fs,Bs)}s∈Γ be a c-skeleton in X and set B =
⋃
{Bs}s∈Γ. For

each nonempty set W ∈ W(B) fix a map dW ∈ W . For each s ∈ Γ we set
Xs = πFs(Cp(X)), qs = πFs : Cp(X)→ Xs and Ds = {dN : N ∈ W(Bs)}. We
assert that {(qs, Ds)}s∈Γ is a q-skeleton on Cp(X). Conditions 2 and 3 are
easy to see. Let us verify 1 and 4.
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1. Fix s ∈ Γ. The fact that Bs is a network for the topology generated by
gs, implies thatW(Bs) is a network for g∗s(Cp(Zs)) in Cp(X). Then qs(W(Bs))
is a network for qs(g∗s(Cp(Zs))) = (g �Fs)

∗(Cp(Zs)) in Xs. Since gs �Fs is a
condensation, (g �Fs)

∗(Cp(Zs)) is dense in Cp(Fs) and hence in Xs. It follows
that qs(Ds) is dense Xs.

4. Set Y =
⋃
s∈Γ Fs. It is enough to show that π∗Y (Cp(πY (Cp(X)))) ⊂⋃

s∈Γ q
∗
s(Cp(Xs)). Select φ ∈ π∗Y (Cp(πY (Cp(X)))). Then φ = ψ ◦ πY for

some ψ ∈ Cp(πY (Cp(X))). By applying the Factorisation Theorem, we can
find A ∈ [Y ]≤ω and a continuous map ψA ∈ Cp(πA(Cp(X))) such that ψ =
ψA ◦ πY,A �πY (Cp(X)). Fix s ∈ Γ such that A ⊆ Fs. Then

φ = ψ◦πY = ψA◦πY,A◦πY = ψA◦πFs,A◦qs = q∗s(ψA◦πFs,A �Xs) ∈ q∗s(Cp(Xs)).

Finally, note that {(qs, Ds)}s∈Γ is full whenever {(Fs,Bs)}s∈Γ is full.

Proposition 12.3. If X has a (full) q-skeleton, then Cp(X) has a (full)
c-skeleton.

Proof. Let {(qs, Ds)}s∈Γ be a q-skeleton in X. Fix s ∈ Γ. Since qs is a quo-
tient map, the set Fs = q∗s(Cp(Xs)) is closed in Cp(X). Besides, Bs = B(Ds)
is a countable family of canonical open subsets of Cp(X). We shall prove
that {(Fs,Bs)}s∈Γ is a c-skeleton on Cp(X). Items 3 and 4 are immediate.
We will verify 1 and 2.

1. Fix s ∈ Γ. It is clear that Bs is a base for a topology τs on Cp(X). Con-
sider the Tychonoff space Zs = πDs(Cp(X)). Then gs = πDs : (Cp(X), τs)→
Zs is a continuous and onto map. Note that the map gs �Fs= πDs ◦ q∗s =
(qs �Ds)

∗ ◦ πqs(Ds) is one to one. Thus gs separates the points of Fs.
2. Fix s, t ∈ Γ with s ≤ t. The equality qs = pt,s ◦ qt implies that

Fs = q∗s(Cp(Xs)) = (pt,s ◦qt)∗(Cp(Xs)) = q∗t ◦p∗t,s(Cp(Xs)) ⊆ q∗t (Cp(Xt)) = Ft.

Finally, observe that if the q-skeleton {(qs, Ds)}s∈Γ is full, then the c-
skeleton {(Fs,Bs)}s∈Γ is full.

13 Generating q-skeletons
Lemma 13.1. Let f ∈ C(X, Y ), let BY be a base for Y and consider the
family F = {f−1(B) : B ∈ BY }. If r ∈ C(X,X) and r(F ) ⊂ F for all
F ∈ F , then f = f ◦ r ∈ r∗(Cp(r(X))).
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Proof. Take any point x ∈ X; we must show that f(x) = f(r(x)). Given an
arbitrary set B ∈ BY with f(x) ∈ B, observe that x ∈ F = f−1(B) ∈ F . By
our hypothesis, we have r(x) ∈ F , so f(r(x)) ∈ B. Since B is arbitrary, we
conclude that f(x) = f(r(x)).

Theorem 13.2. If X has a (strong) full r-skeleton, then X has a (full)
q-skeleton.

Proof. We consider the case of strong r-skeletons. The proof for full r-
skeletons is similar. Let {rs}s∈Γ be a strong r-skeleton in X. Let Σ =
[CL(X)]≤ω the up-directed and σ-complete partially ordered set consisting
of all countable collections of closed subsets of X. Using Lemma 2.4 we can
construct an ω-monotone map s : Σ → Γ such that rs(F)(F ) ⊂ F when-
ever F ∈ F . For each G ∈ [CL(X)]<ω fix a countable dense subset Ds(G) of
rs(G)(X). Given F ∈ Σ set DF =

⋃
G∈[F ]<ω Ds(G) and qF = rs(F). Observe

that qF(X) = DF . It is standard to verify that {(qF , DF)}F∈Σ is a q-skeleton
in X.

To prove that the q-skeleton is full, fix f ∈ Cp(X). Consider the family
F = {f−1(B) : B ∈ BR} ∈ Σ. By the above and Lemma 13.1, the map qF
satisfies f = f ◦ qF ∈ q∗F(Cp(qF(X))).

Lemma 13.3. Let A ⊂ Cp(X) for some space X. If A is a dense subset of
∆∗A(Cp(∆A(X))), then the map ∆A is R-quotient.

Proof. Given x, y ∈ X note that ∆A(x) = ∆A(y) if and only if ∆A(x) =
∆A(y). So, the projection pA : ∆A(X) → ∆A(X) is a condensation. It
follows that p∗A(Cp(∆A(X))) is dense in Cp(∆A(X)). The equality ∆A =
pA ◦ ∆A implies that ∆∗A(Cp(∆A(X))) is dense in ∆∗

A
(Cp(∆A(X))). By our

hypothesis, we conclude that A is dense in ∆∗
A

(Cp(∆A(X))). In this way
∆∗
A

(Cp(∆A(X))) = A. Therefore ∆A is R-quotient.

Theorem 13.4. Every monotonically ω-stable space has a full q-skeleton.

Proof. LetN be a monotonically ω-stable operator inX. Put Γ = [Cp(X)]≤ω.
Let D : Γ→ [X]≤ω be an ω-monotone function such that D(A) ∩N 6= ∅ for
each nonempty set N ∈ N (A). For each F ∈ [Cp(X)]<ω fix a countable
dense subset EF of ∆∗F (Cp(∆F (X))) containing F . For each A ∈ Γ let
E(A) =

⋃
F∈[A]<ω EF . Then E : Γ → Γ is ω-monotone. Let A = E . Given

A ∈ Γ set qA = ∆A(A) and DA = D(A(A)).
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Select A ∈ Γ. Since DA intersects each nonempty element of N (A(A)),
the set DA is a dense subset of X endowed with the weak topology generated
by A(A). It follows that qA(DA) is dense in qA(X).

Given A ∈ Γ, to see that qA is an R-quotient map, by Lemma 13.3 it
is enough to show that A(A) is a dense in ∆∗A(A)(Cp(∆A(A)(X))). Select a
nonempty open set U = Ux,B in Cp(X), for some x ∈ Xn, B ∈ BnR and
n ∈ ω. Pick a function f ∈ U ∩ ∆∗A(A)(Cp(∆A(A)(X))). Select a map g ∈
Cp(∆A(A)(X)) satisfying f = g ◦ ∆A(A). Choose F ∈ [A(A)]<ω so that
∆F (x(i)) = ∆F (xj) if and only if ∆A(A)(xi) = ∆A(A)(xj) for all i, j ∈ n.
Select h ∈ Cp(∆F (X)) such that h(∆F (x(i))) = g(∆A(A)(xi)) = f(x(i))
for all i ∈ n. Then h ◦ ∆F ∈ U ∩ ∆∗F (Cp(∆F (X))). Since the set EF is
dense in ∆∗F (Cp(∆F (X))) and EF ⊂ E(A(A)) ⊂ A(A), we must have that
∅ 6= U∩EF ⊂ U∩A(A). Therefore A(A) is a dense in ∆∗A(A)(Cp(∆A(A)(X))).

Finally, it is easy to verify that {(qA, DA)}A∈Γ is a full q-skeleton inX.
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