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Universidad Nacional Autónoma de México
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Introduction

The notion of ω-monotone assignment, considered in this
talk, is implicit in several constructions. This concept is
very simple and natural, and at the same time strength
considerably some topological structures. The use of these
monotone assignments keep a nice relation with the use
of elementary submodels.

We will proceed as follows:

I Firstly, we are ging to deal with monotone ω-stability, a
concept which result to be useful to study retractonal
skeletons in general and in function spaces.

I Secondly, we will use ω-monotone assignments pro-
vide a proof of the characterizations of Corson and
Valdivia compact spaces by some special retractional
skeletons.
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monotone assignments

We start with the definition.

Definition
A function φ : [X ]≤ω → [Y ]≤ω is ω-monotone if satisfy:
1. A ⊂ B ∈ [X ]≤ω imply φ(A) ⊂ φ(B);
2. if {An}n∈ω ⊂ [X ]≤ω is increasing, then

φ(
⋃

n<ω An) =
⋃

n<ω φ(An).

I A function φ : [X ]≤ω → [Y ]≤ω is ω-monotone if and
only if φ(A) =

⋃
F∈[A]<ω φ(F ) for all A ∈ [X ]≤ω.

I ω-monotone assignements are preserved under
several estandard operations like composition.
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Finitary maps
Let H be a set. An n-ary function on H is an f : Hn → H
if n > 0, and a an element of H if n = 0. f is a finitary
function if it is n-ary for some n ∈ ω.

For a fnitary map f on H and A ⊂ H we set

f ∗ A =

{
f (An) if f is n-ary for n > 0.
{f } if f is 0-ary.

Given a set C ⊂ H and a fnitary map f on H we sat that
C is closed under F whenever f ∗ C ⊂ C. For a family F of
finitary functions on H and A ⊂ H , the closure of A under
F is the smallest set, with respect to inclusion, such that
A ⊂ C ⊂ H and C is closed under all functions from F .
Note that there is a least C, namely

C =
⋂
{D : B ⊂ D ⊂ A and D is closed under F }.
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The closure assignment
Theorem
If H is a set and F is a countable family of finitary functions
on H. Then the map C : [H ]≤ω → [H ]≤ω, which assigns to
each A ∈ [H ]≤ω the closure C(A) of A under F , is well defined
and ω-monotone.

Proof.
I Select C0(A) = A for each A ∈ [H ]≤ω.
I Let Cn+1(A) = Cn(A) ∪

⋃
f ∈F f ∗ Cn(A) for all A ∈ [H ]≤ω.

I Each function Cn is ω-monotone.
I The equality C(A) =

⋃
n∈ω Cn(A), for all A ∈ [H ]≤ω,

implies that C is ω-monotone.

Corollary
If φ : [X ]≤ω → [X ]≤ω is ω-monotone, then the assignment
A → φ(A) is ω-monootne.
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The Downloard Skolem Theorem

Given a set F of Skolem functions on a set H , containing
one for each formula, the closure of A ⊂ H under F is an
elementary submodel of H . Since Skolem functions are
finitary and there are countably many formulas, we get.

Theorem
Let θ be a cardinal. If R ∈ [H(θ)]≤ω then we can find an ω-
monotone functionM : [H(θ)]≤ω → [H(θ)]≤ω such thatM(A)
is an elementary submodel of H(θ) and R ⊂M(A) for each
A ∈ [H(θ)]≤ω.
In the practice, the set R from the above corollary will be
the set of all relevant objects in a given context and θ will
be a large enough cardinal. A function M as in Corollary
4 wil be referenced as an ω-monotone assignmet of suitable
elementary submodels.
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Monotonically ω-stable spaces

Definition
A space X is monotonically ω-stable if there exists an ω-
monotone assignment N : [Cp(X )]≤ω → [P(X )]≤ω such that
N (A) is a network for A for all A ∈ [X ]≤ω.

Theorem
If X is countably compact the X is monotonically ω-stable.

Proof. Fix a countable base BR for the real line R. Let A →
M(A) be an ω-monotone assignmet of suitable elementary
submodels and for each A ∈ [Cp(X )]≤ω let

N (A) =M(A) ∩ P(X ).

Then the assignment A → N (A) is ω-monotone. Given
A ∈ [Cp(X )]≤ω, we shall prove that N (A) is a network for A.
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Proof (continuation)

I Assume that x ∈ U =
⋂

f ∈F f −1(Bf ) where F ∈ [A]<ω

and Bf ∈ BR for each f ∈ F .
I For each y ∈ X \ U , fix fy ∈ F ⊂ A and By ∈ BR so that

fy ∈ [y, x ; By,Bfy \ By].
I For each y ∈ X \ U , select gy ∈ A ∩ [y, x ; By,Bfy \ By].
I Set U = {g−1

y (By) : y ∈ P \ U} and note that x 6∈
⋃
U .

Choose V ⊂ [U ]<ω such that X ⊂ U ∪
⋃
V and note that

V ∈ M(A).
I Therefore N = X \

⋃
V ∈ N (A) and x ∈ N ⊂ U . �
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Retractional skeletons

Γ will always denote an up-directed σ-closed poset.

Definition
An r -skeleton in a space X is a family of retractions {rs}s∈Γ,
satisfying the following conditions:
1. rs(X ) has a countable network for each s ∈ Γ.
2. s ≤ t implies rs = rs ◦ rt = rt ◦ rs.
3. For every x ∈ X , x = lims∈Γ rs(x).
4. Given s0 < s1 < · · · in Γ, if t = supn∈ω sn , then

rt (x) = limn→∞ rsn (x) for every x ∈ X .

I We call
⋃

s∈Γ rs(X ) the set induced by {rs}s∈Γ.

I The family {rs}s∈Γ is a weak r-skeleton in X if it only
satisfies conditions 1,2 and 4.
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Closed invariant sets

Lemma
Let X be monotonically ω-stable and let Y be induced by a
weak r-skeleton {rs}s∈Γ in X . If n ∈ ω, F ⊂ Y and s0 ∈ Γ,
then there exist t ∈ Γ and D ∈ [F ]≤ω such that s0 ≤ t and
rt (F ) ⊂ D.

Proof. Let N be a monotonically stable operator in X . For
each s ∈ Γ fix a countable dense subset As of r∗s (Cp(rs(X ))).
Let M be a suitable elementary submodel. Set

t = sup(Γ ∩M ), D = F ∩M and A = Cp(X ) ∩M .

Clearly s0 ≤ t . It is enough to show that rn
t (F ) ⊂ D.



Proof (continuation)

I Assume that rt (x) 6∈ D for some x ∈ F and choose
U ∈ τ(x ,X ) such that rt (x) ∈ U ⊂ X \ D.

I Set f ∈ Cp(rt (X )) st f (rt (x)) = 0 and f (D∩rt (X )) ⊂ {1}.
I From rt = lims∈Γ∩M rs we deduce

r∗t (Cp(rt (X ))) ⊂
⋃

s∈Γ∩M
r∗s (Cp(rs(X ))) =

⋃
s∈Γ∩M

As ⊂ A.

I N (A) is a network for A, i.e. for r∗t (Cp(rt (X ))) and rt .
I Set N ∈ N (A)n such that x ∈ N ⊂ (rn

t )−1(U ).
I N is ω-monotone, N ∈ N (E)n for some E ∈ [Cp(X ) ∩
M]<ω and so N ∈ M .

I Pick y ∈ (F ∩ N ) ∩M and s ∈M such that rn
s (y) = y.

I We then have that y = rt (y) ∈ U ∩ D, a contradiction.
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Some consequences
Corollary
Let X be monotonically ω-stable and let Y be induced by a
weak r-skeleton {rs}s∈Γ in X . Then:
1. t(Y ) ≤ ω.
2. x = lims∈Γ rs(x) for each x ∈ Y .

Proof.
1. Set A ⊂ Y and x ∈ A. Choose s0 ∈ Γ so that rs0(x) = x .
Find D ∈ [A]≤ω and s ∈ Γ such that s0 ≤ s and rs(A) ⊂ D.
This implies that x = rs(x) ∈ rs(A) ⊂ D.
2. Fix x ∈ Y and a neighborhood U of X . Choose an
open set V satisfying x ∈ V ⊂ V ⊂ U . Set F1 = V ∩ Y
and F2 = (X \ U ) ∩ Y . Find s ∈ Γ such that rs(F i )) ⊂ F i
for i = 1,2. Choose t ∈ Γ such that s ≤ t . If rt (x) 6∈ U ,
then rt (x) ∈ F2 and so rs(x) = rs(rt (x)) ∈ F 2, which is not
possible.
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We say that an r-skeleton {rs}s∈Γ in X is full if X =
⋃

s∈Γ rs(X ),
and commutative if rs ◦ rt = rt ◦ rs whenever s, t ∈ Γ.

Lemma
Let Y be induced by an r-skeleton {rs}s∈Γ in a compact X .
Then there is a family of retractions {rA}A∈P(Y ) in X such
that for every A ∈ P(Y ) we have:
1. {rB �rA(X )}B∈[A]≤ω is an r-skeleton on rA(X ) and induces

rA(X ) ∩ Y ;
2. A ⊂ rA(X ) and d(rA(X ) ∩ Y ) ≤ |A|+ ω;
3. rB ◦ rA = rA ◦ rB = rB whenever B ⊂ A;
4. If A =

⋃
α<γ Aα for some increasing family {Aα}α<γ,

then rA(x) = limα<γ rAα(x) for every x ∈ X .
If in adddition the r-skeleton {rs}s∈Γ is commutative, then
we also can get rB ◦ rA = rA ◦ rB for every A,B ∈ P(Y ).
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Proof.
For each s ∈ Γ fix a countable dense subset Ds of rs(X ).
Let A → M(A) be an ω-monotone assignmet of suitable
elementary submodels. For each A ∈ [Y ]≤ω set

sA = sup(Γ ∩M(A)), DA = Y ∩M(A) and rA = rsA .

Note that A ⊂ rA(X ) = DA for each A ∈ [Y ]≤ω.
Now, choose an arbitrary A ⊂ Y . Let ΓA = [A]≤ω and DA =⋃

B∈ΓA
DB. It happens that {rB �DA

}B∈ΓA is an r-skeleton on
DA and induces the set

⋃
B∈ΓA

rB(X ) =
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Theorem

Let Y be dense in a compact X . If Y is induced by a com-
mutative or full r -skeleton on X , then Y is a Σ-subset of X .

Proof.
By induction on the density of Y . Assume that d(Y ) =
κ > ω. Consider the family of retractions {rA}A∈P(Y ) as be-
fore.Let {yα}α<κ be a dense subspace of Y .For each α ≤ κ,
set Aα = {yβ}β<α and rα = rAα. Given α < κ, let φα : rα(X )→
ITα and embedding such that Y ∩ rα(X ) = φ−1

α (ΣITα) for
some set Tα. Select T =

⊔
α<κ Tα. Define φ : X → IT as

follows:

φ(x)(α) =

{
φα+1(rα+1(x))− φα+1(rα(x)) if α > 0;

φ0(r0(x)) if α = 0.

Then we can verify that φ is an embedding and Y = φ−1(ΣIT ).
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Chatarcterizing Valdivia (Corson) compacta
Theorem
A compact space is Valdivia (Corson) if and only if it admits
a commutative (full) r -skeleton.

Proof.
Given a set T , the space IT (ΣIT ) is montonically ω-stable
and admits a commutative (full) r-skeleton. It follows that
each Valdivia (Corson) compact space admits a commuta-
tive (full) r-skeleton.

Theorem
A countably compact space admits a full commutative r-
skeleton iff X can be embedded in ΣIT for some set T .

Proof.
If X admits a full commutative r-skeleton, then it is easy
to see that X is induced by a commutative r-skleton in βX .
So X is a Σ-subset of βX and hence X can be embedded
in ΣIT for some set T .
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Strong r-skeletons

An r-skeleton {rs}s∈Γ in a space X is said to be strong if
whenever s0 ∈ Γ and F is closed in X n , for some n ∈ N,
there exists s ∈ Γ such that s0 ≤ s and rn

s (F ) ⊂ F .

Theorem
If X is has a strong r-skeleton and is monotonically
ω-monolithic, then X is Sokolov.

Theorem
Let X be a monotonically ω-stable space. Then an r-skeleton
on X is strong if and anly if it is full.

Theorem
A space X has a strong r-skeleton if and only if Cp(X ) has
a strong r-skeleton.
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Strong r-skeletons
A neighborhood assignment for a space (X , τ) is a function
φ : X → τ with x ∈ φ(x) for every x ∈ X . A kernel for φ is a
subset D ⊂ X such that φ(D) :=

⋃
x∈D φ(x) = X . X is said

to be a D-space if every neighborhood assignment φ for X
has a closed discrete kernel.

Theorem
If X is has a strong r-skeleton and is monotonically
ω-monolithic, then X is a Lindelöf D-space.
Given a space X let FS(X ) =

⋃
n∈N X n be the set of all finite

sequences in X . For a map O : FS(X )→ τ(X ), an element
x ∈ Xω is called an O-sequence if x(n) ∈ O(x �n) for each
n ∈ N. Besides, we say that a set H ⊂ X is a W -set in
X if there is a map O : FS(X ) → τ(H ,X ) such that every
O-sequence converges to H .

Theorem
Let X be a countably compact with a full r -skeleton {rs}s∈Γ.
If H is nonempty and closed in X , then H is a W -set in X .
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