Monotone assignments in compact and function spaces

Reynaldo Rojas Hernández

Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México

45th Winter School in Abstract Analysis, Svratka, Czech Republic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Introduction

In this talk we will deal with another monotone structures, c-skeletons and q-skeletons, which also are useful to detect Corson compact spaces inside function spaces. Let us recall the following.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Introduction

In this talk we will deal with another monotone structures, c-skeletons and q-skeletons, which also are useful to detect Corson compact spaces inside function spaces. Let us recall the following.

Definition

A function $\phi : [X]^{\leq \omega} \to [Y]^{\leq \omega}$ is ω -monotone if satisfy:

- 1. $A \subset B \in [X]^{\leq \omega}$ imply $\phi(A) \subset \phi(B)$;
- 2. if $\{A_n\}_{n \in \omega} \subset [X]^{\leq \omega}$ is increasing, then $\phi(\bigcup_{n < \omega} A_n) = \bigcup_{n < \omega} \phi(A_n).$

Retractional skeletons

 Γ will denote an up-directed $\sigma\text{-closed}$ poset.

Definition

An *r*-skeleton in a space *X* is a family of retractions $\{r_s\}_{s \in \Gamma}$, satisfying the following conditions:

- 1. $r_s(X)$ has a countable network for each $s \in \Gamma$.
- 2. $s \leq t$ implies $r_s = r_s \circ r_t = r_t \circ r_s$.
- 3. For every $x \in X$, $x = \lim_{s \in \Gamma} r_s(x)$.
- 4. Given $s_0 < s_1 < \cdots$ in Γ , if $t = \sup_{n \in \omega} s_n$, then $r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$ for every $x \in X$.

Theorem

A compact space is Valdivia (Corson) if and only if it admits a commutative (full) *r*-skeleton.

Definition

Given a space X say that $\{(F_s, \mathcal{B}_s)\}_{s \in \Gamma} \subset \mathcal{CL}(X) \times [\tau(X)]^{\leq \omega}$ is a *c*-skeleton on X if:

- 1. for each $s \in \Gamma$, \mathcal{B}_s is a base for a topology τ_s on X and there exist a Tychonoff space Z_s and a continuous map $g_s : (X, \tau_s) \to Z_s$ which separates the points of F_s ;
- **2.** if $s, t \in \Gamma$ and $s \leq t$, then $F_s \subset F_t$;
- 3. $X = \overline{\bigcup_{s \in \Gamma} F_s};$

4. the assignment $s \rightarrow B_s$ is ω -monotone.

In addition, if $X = \bigcup_{s \in \Gamma} F_s$, then we say that the *c*-skeleton is *full*.

c-skeletons

Theorem

If X is countably compact and has a (full) c-skeleton, then X has a (full) r-skeleton.

Proof. By applying a closure argument we can find an updirected and σ -complete partially ordered set Σ such that $g_M(X) = g_M(F_M)$ for each $M \in \Sigma$.

Note that $g_M \upharpoonright_{F_M}$ is a homeomorphism onto its image. Then $r_M = (g_M \upharpoonright_{F_M})^{-1} \circ g_M : X \to F_M$ is a retraction. Then $\{r_M\}_{M \in \Sigma}$ is an *r*-skeleton in *X*.

q-skeletons

In order to get a C_p -dual concept to *c*-skeleton, we introduce the following notion.

Definition

Let *X* be a space. Consider a family $\{(q_s, D_s)\}_{s \in \Gamma}$, where $q_s : X \to X_s$ is an \mathbb{R} -quotient map and D_s is a countable subset of *X* for each $s \in \Gamma$. We say that $\{(q_s, D_s)\}_{s \in \Gamma}$ is a *q*-skeleton on *X* if:

- 1. the set $q_s(D_s)$ is dense in X_s ;
- 2. if $s, t \in \Gamma$ and $s \leq t$, then there exists a continuous onto map $p_{t,s} : X_t \to X_s$ such that $q_s = p_{t,s} \circ q_t$;
- 3. the assignment $s \rightarrow D_s$ is ω -monotone;

4.
$$C_p(X) = \overline{\bigcup_{s \in \Gamma} q_s^*(C_p(X_s))}.$$

The *q*-skeleton is *full* whenever $C_p(X) = \bigcup_{s \in \Gamma} q_s^*(C_p(X_s))$.

Duality results

Theorem

If X has a (full) c-skeleton, then $C_p(X)$ has a (full) q-skeleton.

Proof.

Let $\{(F_s, \mathcal{B}_s)\}_{s\in\Gamma}$ be a *c*-skeleton in *X* and set $\mathcal{B} = \bigcup \{\mathcal{B}_s\}_{s\in\Gamma}$. For each $W \in \mathcal{W}(\mathcal{B})$ fix $d_W \in W$. For each $s \in \Gamma$ we set $X_s = \pi_{F_s}(C_p(X)), q_s = \pi_{F_s}: C_p(X) \to X_s$ and $D_s = \{d_N : N \in \mathcal{W}(\mathcal{B}_s)\}$. Then $\{(q_s, D_s)\}_{s\in\Gamma}$ is a *q*-skeleton in $C_p(X)$.

1

 ${}^{1}\mathcal{W}(\mathcal{B})$ consists of all sets $\{f \in C_{p}(X) : \forall (i \leq n)(f(B_{i} \subset U_{i}))\}$, where $B_{i} \in \mathcal{B}$ and $U_{i} \in \mathcal{B}_{\mathbb{R}}$.

Duality results

Theorem

If X has a (full) q-skeleton, then $C_p(X)$ has a (full) c-skeleton.

Proof.

Let $\{(q_s, D_s)\}_{s\in\Gamma}$ be a *q*-skeleton in *X*. Fix $s \in \Gamma$. The set $F_s = q_s^*(C_p(X_s))$ is closed in $C_p(X)$. Besides, let $\mathcal{B}_s = \mathcal{B}(D_s)$ the family of all canonical open sets with support in D_s . It can ve verified that $\{(F_s, \mathcal{B}_s)\}_{s\in\Gamma}$ is a *c*-skeleton on $C_p(X)$.

$$C_p(X) \xleftarrow{q_s} C_p(q_s(X))$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$X \xrightarrow{q_s} q_s(X)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Generating q-skeletons

Theorem

If X has a (strong) full r-skeleton, then X has a (full) q-skeleton.

Proof.

Let $\{r_s\}_{s\in\Gamma}$ be a strong (full) *r*-skelton in *X*. Consider the set $\Sigma = [\mathcal{CL}(X)]^{\leq \omega}$. Construct assignments $\mathcal{F} \to s_{\mathcal{F}}$ and $\mathcal{F} \to D_{\mathcal{F}}$ such that $r_{s_{\mathcal{F}}}(D_{\mathcal{F}})$ is dense in $r_{s_{\mathcal{F}}}(X)$.

Let $q_{\mathcal{F}} = r_{s_{\mathcal{F}}}$ for each $\mathcal{F} \in \Sigma$. Then $\{(q_{\mathcal{F}}, D_{\mathcal{F}})\}_{\mathcal{F} \in \Sigma}$ is a (full) *q*-skeleton in *X*.

Corollary

If X has a strong r-skeleton, then X has a full c-skeleton.

Generating q-skeletons

Theorem

Every monotonically ω -stable space has a full q-skeleton.

Proof.

Construct an ω -monotone map $\mathcal{A} : [C_p(X)]^{\leq \omega} \to [C_p(X)]^{\leq \omega}$ such that $\mathcal{A}(A)$ is a dense in $\Delta^*_{\mathcal{A}(A)}(C_p(\Delta_{\mathcal{A}(A)}(X))).$

Given $A \in \Gamma$, the map $q_A = \Delta_{\overline{\mathcal{A}(A)}}$ is an \mathbb{R} -quotient map. Let $A \to D_A$ be an ω -monotone assignment such that $q_A(D_A)$ is dense in $q_A(X)$. Then $\{(q_A, D_A)\}_{A \in \Gamma}$ is a full *q*-skeleton in *X*.

Strong *r*-skeletons

An *r*-skeleton $\{r_s\}_{s\in\Gamma}$ in a space *X* is said to be *strong* if whenever $s_0 \in \Gamma$ and *F* is closed in X^n , for some $n \in \mathbb{N}$, there exists $s \in \Gamma$ such that $s_0 \leq s$ and $r_s^n(F) \subset F$.

Theorem

If X is has a strong r-skeleton and is monotonically ω -monolithic (monotonically ω -stable), then X is Sokolov.

Theorem

A space X has a strong r-skeleton if and only if $C_p(X)$ has a strong r-skeleton.

Theorem

If X is has a strong r-skeleton and is monotonically ω -monolithic, then X is a Lindelöf D-space.

- O. T. Alas, V. V. Tkachuk, and R. G. Wilson, A broader context for monotonically monolithic spaces, Acta Math. Hungar. 125 (2009), no. 4, 369–385.
- W. Kubiś, H. Michalewski, *Small Valdivia compact spaces*, Topology Appl. 153 (2006) 2560–2573.
- R. Rojas-Hernández, On monotone stability, Topology Appl. 165 (2014) 50–57.
- S. Garciá-Ferreira and R. Rojas-Hernández, *Families* of continuous retractions and function spaces, J. Math. Anal. Appl. 441 (2016), 330-348.

Thank You!

・ロト・日本・モト・モー・ ヨー つくぐ