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Regression models
beyond typical data
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Linear regression models and beyond

❏ Linear (regression) models... but the truth is (almost) never linear!
(the linearity property is used as a good and easy approximation)

❏ Nevertheless, it is convenient to have simple assumptions...
(but there are still many different issues that can go wrong...)

❏ Recall, that there are a few levels of linearity in the model
(linearity of the predictor, linearity of the expectation, linearity of LS, ...)

❏ the data are too flexible (higher order approximations/splines)
❏ the data are too irregular (piecewise approximation)
❏ the data are too complex (additive models)
❏ the data are too volatile (robust estimation approaches)
❏ Y contradicts the linear model (GLM)
❏ other issues (their combinations) (and way more alternatives)
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Recap: Linear regression framework

❏ for a generic random vector (Y , X⊤)⊤ ∈ Rp+1 we assume an unknown
population model Y = X⊤β + ε for an unknown vector β ∈ Rp

❏ for a random sample {(Yi , X⊤
i )⊤; i = 1, . . . , n} drawn from the joint

distribution F(Y ,X) we have the corresponding model Yi = X⊤
i β + εi

❏ the data model can be also expressed as Y |X ∼ (Xβ, σ2I), for the random
vector Y = (Y1, . . . , Yn)⊤ and X = (X1, . . . , Xn)⊤ ∈ Rn×p, rank(X) = p

❏ with the additional normality assumption ε ∼ Nn(0, σ2I), for error terms
ε = (ε1, . . . , εn)⊤ ∈ Rn it even holds that Y |X ∼ Nn(Xβ, σ2I)

❏ And, moreover:
❏ β̂ = (X⊤X)−1X⊤Y and Ŷ = Xβ̂ = HY , where H = X(X⊤X)−1X⊤

❏ Y = HY + MY , where H = (hij )n
i,j=1 and M = (I − H) = (mij )n

i,j=1

❏ U = MY = (I − H)Y = Y − Ŷ = (U1, . . . , Un)⊤

❏ SSe =
∑n

i=1(Yi − Ŷi )2 = ∥Y − Ŷ ∥2
2 = ∥U∥2

2 and MSe = SSe/(n − p)
❏ standardized residuals Vi = Ui /

√
MSe · mii , if mii > 0

NMFM 334 | Lecture 11 3 / 13



Linear regression models

Least squares and the linear regression models based on the LS
minimization are, in general, very sensitive (non-robust) with respect to
atypical (non-normal, skewed, or heavy-tailed) data...

But it is not straightforward to say what atypical actually means...

Two common concepts are:
❏ Outlying observations

↪→ an outlying observation in some regression model Yi = X⊤
i β + εi is

an observation ι ∈ {1, . . . , n} for which the response expectation E [Yι|Xι]
does not follow the postulated model E [Y |X] = X⊤β, respectively, it is
the observation for which E [Yι|Xι] ̸= X⊤

ι β (i.e., E [Yι|Xι] = X⊤
ι β + γ)

❏ Leverage points
↪→ a leverage point in the regression model Y = X⊤β + ε is
an observation ι ∈ {1, . . . , n} which is, in some sense, unusual with
respect to the distribution of X ∈ Rp (i.e., the values of Xi , for i ̸= ι)
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Outlying observations and leverage points

❏ It is a well-known fact that a few bad leverage points or outlyiers can
result in a (very) poor fit to the bulk of the data

❏ Moreover, this can be even the case when using more robust alternatives
that are particularly designed avoid such drawbacks

❏ Outlying observations and leverage points are of different nature—both of
them can appear in the model (even simultaneously)

❏ Different strategies are proposed in the literature to deal with the outliers,
with the leverage points, or both of them simultaneously

❏ For an simple, consider a problem of a simple mean and a simple median
calculated from some univariate random sample... while the average is
sensitive with respect to just one outlying observation, the sample median
is way more robust... both of these quantities are on two (opposite) sides
of a wide (robustness) spectra
The same analogy also applies for the regression framework...
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Outlying observations: more formally
❏ for a regression (data) model Yi = X⊤

i β + εi and some observation
ι ∈ {1, . . . , n} (fixed) the following two models can be defined:

❏ Leave-one-out model (Model M−ι)
M−ι : Y−ι|X−ι ∼ (X−ιβ, σ2In−1)

where −ι denotes the observation which is omitted
(i.e., Y−ι = (Y1, . . . Yι−1, Yι+1, . . . , Yn)⊤ ∈ Rn and also X−ι ∈ R(n−1)×p)

❏ Outlyier model (Model Mι)
Mι : Yι|Xι ∼ (Xιβ + j⊤

ι γι, σ2In−1)
where ι denotes the observation which is outlying and jι is a unit vector

with one on the position ι ∈ {1, . . . , n} and γι ∈ R is some parameter
(i.e., Yι = (Y1, . . . , Yι−1, Yι + γι, Yι+1, . . . , Yn)⊤ ∈ Rn)

❏ The two models above are, in some sense, mathematically equivalent.
It can be proved, that the residual sum of squares in both models are the same
(meaning that SSe−ι = SSeι). Moreover, the vector β̂−ι solves the normal
equations in Model M−ι if and only if (β̂⊤

ι , γ̂ι)⊤
ι solves the normal equations in

Model Mι, where, moreover, it holds that β̂−ι = β̂ι and γ̂ι = Yι − X⊤
ι β̂−ι
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Detection of leverage points

❏ From the practical point of view, the exploratory analysis plays the key
role in detection of leverage points (marginally, for some j ∈ {1, . . . , p})

❏ From the overall point of view (i.e., jointly with respect to Xi ∈ Rp), the
hat matrix can be used by considering {hi }n

i=1 ≡ {Xi (X⊤X)−1Xi }n
i=1

❏ It is easy to show that
∑n

i=1 hii = tr(H) = tr(QQ⊤) = tr(Q⊤Q) = p
which can be used for further inspection of the leverage points

❏ The average leverage is, therefore, h =
∑n

i=1 hii = p
n and some

rules-of-thumb can be applied based on this average

❏ Under some additional distribution assumptions one can also use some
statistical inference (e.g., statistical tests)

❏ However, the key point here is that the point with high leverage may also
influence the fit—but if it has a large residual—that’s why it’s often
evaluated in combination with the analysis of outlying observations

NMFM 334 | Lecture 11 7 / 13



Detection of outlying observations

❏ For any ι ∈ {1, . . . , n} let Ŷ[ι] = X⊤
ι β̂−ι denote the prediction for Yι

which is the estimate of µι = E [Yι|Xι] but using only n − 1 observations
❏ The whole vector Y can be estimated by using a leave-one-out model,

obtaining Ŷ[·] = (Ŷ[1], . . . , Ŷ[n])⊤ ∈ Rn

❏ It can be shown, that the following also holds:
❏ γ̂ι = Ŷι − X⊤

ι β̂−ι = Yι − Ŷ[ι] = Uι
mιι

❏ β̂−ι = β̂ι = β̂ − Uι
mιι

(X⊤X)−1Xι

❏ SSe−ι = SSeι = SSe − U2
ι

mιι
= SSe − MSe(V 2

ι )

❏
MSe−ι

MSe = MSeι
MSe = n−p−(Vt )2

n−p−1 , where rank(X) = rank(X−ι) = p

❏ Thus, the original (just one) regression model Y |X ∼ (Xβ, σ2I) can be
used o detect outlying observations in the model

❏ From the inferential point of view, it is therefore interesting to test the
null hypothesis H0 : γι = 0 (detection of an outlier)

NMFM 334 | Lecture 11 8 / 13



Something to keep in mind

❏ Two or more outliers next to each other can hide each other

❏ The outlier is always relative/specific to a model that is considered
(an outlier in one model is not necessarily an outlier in another model)

❏ The outlying observation can also suggest that a particular observation is
a data-error that must be corrected → importance of the exploratory

❏ If some observation is indicated to be an outlier, it should always be
explored in more details...

❏ Often, identification of outliers with respect to some model is of primary
interest (e.g., credit card transactions)
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Cross-validation (CV)

❏ Cross-validation is a very popular and commonly used statistical
techniques (also applied in regression) which is based on the vector
Ŷ[·] = (Ŷ[1], . . . , Ŷ[n])⊤ (so-called leave-one-out CV)

❏ standard residual Ui = Yi − Ŷi for some observation i ∈ {1, . . . , n} may
be considered to be too optimistic, because the value of Yi was used to
train the model—i.e., to estimate β and to obtain Ŷ = Xβ̂ (and also Ŷi )

❏ different regularization techniques are proposed and used to avoid such
optimistic (overfitted) residuals but the linearity of the predictor X⊤β is
quite strong regularization by itself

❏ slightly less optimistic residual (sometimes also called the deleted residual)
obtained by the quantity γ̂ι = Yι − Ŷ[ι] = Uι/mιι because the value of Yι

is not estimated by using the data that does not contain Yι itself
❏ more general concepts (so-called k-fold cross-validation) are also know in

the literature and these techniques are commonly used in regression
modelling in practice
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Leverage points and outlying observations

❏ Some rules-of-thumb for identifying leverage points uses the criterion
hii > 3p/n (or, alternatively, hii > 2p/n)

❏ Other alternatives include
❏ DFBETAS

the analysis of the effect of a particular observation on the estimates of
some parameter βj

❏ DFFITS
the analysis of the effect of the ιth observation on the estimates of Yι

❏ COVRATIO
the analysis of the effect of a particular observation on the estimates of the
parameter vector β

❏ Cook distance
the analysis of the effect of a particular observation on the estimates of the
mean vector µ = E [Y |X]
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How to deal with outliers and leverage points

Different statistical techniques and methodological approaches can be used to deal
with the outlying observations, leverage points, or both of them simultaneously...

❏ naive methods use the principle of deleting bad outiers and bad leverage
poitns... this should, however, never be done automatically—a proper
data exploration is needed before

❏ more advanced methods used (iterative) re-weighted least squares where
the weights are determed by some of the criterion mentioned above

❏ robust regression alternative which are not that much sensitive to the
ouliers, leverage points, or both simultaneously can be used instead
(e.g., median regression, M-estimation, least trimmed squares (LTS), ...)

In general, when dealing with leverage points (extremes in covariates) and outliers
(extremes in response), traditional least squares regression can give very misleading
results. Robust regression techniques typically aim to reduce the influence of such
problematic observations (but there are very many different methods proposed) ...
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Summary

❏ Outlying observations
❏ unusual observations with respect to the observed values of the response
❏ outliers may have serious consequences with respect to the final fit
❏ different recommendations are used to detect and classify outliers
❏ various alternatives are proposed to incorporate outliers into the model

❏ Leverage points
❏ unusual observations with respect to the values of the covariates
❏ leverage points may also have serious impact on the final fit
❏ different tools are used to explore leverage points
❏ modifications of the regression framework are used to bad leverage points

NMFM 334 | Lecture 11 13 / 13


	Motivation

