An Introduction to R

Theresa Scott, MS

August 16, 2004

Contents

1 What Is R? Why Use R? 1
2 Sourcing / Downloading R 2
3 Helpful References 2
4 Interacting with R 3
5 R Objects 3
6 Functions 4
7 R Details 5
8 Importing Data 6
9 Data Summaries 11
9.1 The table function 11
9.2 The Hmisc describe function 12
9.3 The Hmisc bystats function 14
9.4 Summary Statistics 16
10 Graphics in R 18
10.1 Histograms 18
10.2 Boxplots 20
10.3 Scatter plots 22
10.4 Multiple plots per page 25
10.5 Pairs plots 26
10.6 Graphs with text 27
10.7 Different page layouts 29
10.8 Graphical Data Summary 29
10.9 Summarizing/Describing the Fitted Model 31
11 Writing Your Own Functions 32
12 Statistics with R 36
12.1 Correlation 36
12.1.1 Pearson Correlation \& Testing for Association 38
12.1.2 Spearman Rank Correlation 38
12.2 Simple Linear Regression 39
12.2.1 Interpretation of Output 39
12.2.2 Plotting 95\% Confidence Intervals \& Prediction Intervals 40
12.2.3 Linear Regression for Categorical Variables 41
12.3 Simple Logistic Regression 43
12.4 Simple Proportional Hazards Regression 44
12.4.1 Kaplan-Meier Estimates 44
12.4.2 Log-Rank Test 48
12.4.3 Cox Proportional Hazards Regression 49

1 What Is R? Why Use R?

According to the R website (http://www.R-project.org):

- Language and environment for statistical computing and graphics
- GNU project, similar to the S Language (S-Plus), and environment which was developed at Bell Laboratories (formerly AT\&T, now Lucent Technologies) by John Chambers and colleagues
- Available as free software
- Runs on several UNIX platforms, Linux platforms, Windows, and MacOS
- Greatest strength: Ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed
- Open-source and highly extensible; constantly expanding
- Can be extended beyond basic statistics via packages
- Able to define new functions, increasing its functionality, and run extensive simulations ("looping")
- Because it is command driven, analysis and results are completely reproducible if properly documented
- Not always true with menu driven analysis packages; much harder to document

2 Sourcing / Downloading R

- R Website: http://www.R-project.org
- Windows (95 and later), Linux/UNIX, MacOS X
- To download:
- Under Download link: CRAN > United States of America
- http://cran.r-project.org/

3 Helpful References

- Documentation section of R website
- Manuals; FAQs; contributed manuals, tutorials, etc. by users of R (e.g. Frank Harrell); newsletter, help pages, publications
- Biostats department website: http://biostat.mc.vanderbilt.edu
- Statistical Computing $>\mathrm{R}$ and S-Plus Software and Documentation
- Other publications:
- Simple R - Using R for Introductory Statistics by John Verzani (pdf)
- An Introduction to S and the Hmisc and Design Libraries by Carlos Alzola and Frank E. Harrell (pdf)
- Data Analysis and Graphics Using R by John Maindonald and John Braun (book)
- Statistical Tables and Plots Using S and LaTex by Frank E. Harrell (pdf)
- R Data Import/Export by the R Development Core Team (pdf)
- R for Beginners by Emmanuel Paradis (pdf)
- An Introduction to R by W.N. Venables, D.M. Smith, and the R Development Core Team (pdf or book)
- Introductory Statistics with R by Peter Dalgaard (book)
- Regression Modelling Strategies by Frank E. Harrell (book)
- Not R specific, but good sources:
* The Elements of Graphing Data and Visualizing Data by William S. Cleveland (books)

4 Interacting with R

- R evaluates and prints out the result of any expression that one enters in at the command line prompt in the console window ${ }^{1}$
- The result, if any, appears on subsequent lines
- Simplest use of R: Using R as a calulator
$>2+2$
[1] 4
> sqrt(10)
[1] 3.162278
- Most frequent use of R: Using R to evaluate expressions, which include functions and defined objects

5 R Objects

- All R entities, including functions and data structures, exist as objects ${ }^{2}$
- They can all be operated on as data within expressions
- If you type the name of an object at the command prompt, the contents of the object are printed out (e.g. type q, mean)
- Objects are case sensitive (e.g. Age and age would refer to two different objects)
- Managing Project Data in R:
- By default, R stores all the objects created in your session in a single file: . RData, which is directory specific
- When running R interactively, R asks whether you want to update . RData to contain newly created objects upon termination of the session
- Since many of the objects are temporary, best to answer n ("No") to this question and not use the .RData mechanism
- Instead, use the save function to store some of your newly created data frames and selected other objects (i.e. regression fit objects that took significant execution time to create) permanently

[^0]- Use the save's compress argument to store the resulting file very compactly
- Example: A hypothetical data set containing a sample of 500 subjects. Each had three potential predictors measured: age, sex, and systolic blood pressure, and a diagnosis of a certain disease (present/absent).

```
> library(Hmisc)
> library(Design)
> prob1 <- read.table("prob1.csv", header = T, sep = ",")
> prob1 <- upData(prob1, labels = c(age = "Age", sex = "Sex", sysbp = "Systolic Blc
+ dz = "Disease"), units = c(age = "years"), levels = list(sex = c("Female",
+ "Male")))
Input object size: }18688\mathrm{ bytes; 4 variables
New object size: }19544\mathrm{ bytes; 4 variables
> m1 <- lm(age ~ sysbp + sex, data = prob1)
> save(m1, prob1, file = "prob1.rda", compress = TRUE)
- To retrieve the saved objects in a future session, use the load function:
```

```
> load("prob1.rda")
```

```
> load("prob1.rda")
```


6 Functions

- Almost everything in R is done by calling functions
- Most functions have arguments that pass values to the function for it to work on or to specify detailed options on how it should do its work ${ }^{3}$
- Arguments are given to the function either by name or by their sequential position in the series of arguments
- The 12,000 (and growing) functions in R are organized into packages, some of which are loaded when you start R , while others must be loaded explicitly using the library function
- The Hmisc package (i.e. "Harrell Miscellaneous"), which was developed by Frank E. Harrell, contains many functions useful for data analysis, high-level graphics, utility operations, functions for computing sample size and power, importing datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of S objects to LaTeX code, and recoding variables. ${ }^{4}$
- The Design library, which was also developed by Frank E. Harrell, is a collection of about 180 functions that assist and streamline regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. ${ }^{5}$

[^1]
$7 \quad \mathrm{R}$ Details

- Command line prompt: >
- R commands (expressions) are typed following this prompt
- Example:
> mean(c(12, 10, 20, 15, 30))
[1] 17.4
- Continuation prompt: +
- Appears in command window when, following a carriage return, the command is still not complete
- Example:
$>$ mean $(c(5,4,3,7,9, N A, 10,19,18,14,2,15,22,35,49$, $+\quad N A, N A, 54)$, na.rm $=T$)
[1] 17.73333
- Comment: \#
- Anything following a \# on the command line is taken as "comment" and ignored by R
- Example: > 175*(8/5) \# convert 175 miles to kms
- Multiple command separator: ;
- Allows multiple commands to appear on one line
- Example: > exp(1); 200-15
- Assigmnent: <-
- Left diamond bracket ($<$) followed by a minus sign (-)
- Example: $\mathrm{x}<-2$ implies " x is assigned to 2 "
> $\mathrm{x}<-2$
> x
[1] 2
- Arithmetic operators: $+,-,{ }^{*}, /,{ }^{\wedge}, \exp , \log , \log 10$
- Comparison operators: $<,>,<=,>=,==,!=$
- Logical operators: \&, |, !

8 Importing Data

- The easiest form of data import into R is a simple text file ${ }^{6}$
- Often have the data saved as an Excel spreadsheet, SPSS file, or STATA file
- Export the data as a text file (e.g. a delimited file; either tabdelimited or comma-delimited)
- General Tip: Start R session from within the relevant project directory (folder)
- R automatically stores all objects created in your R session to your workspace (.Rdata file), which is directory specific
- Allows you to keep defined objects separate for each project and not overload your workspace
- Allows you to easily reference your data file for importing
- Example: the Low Birthweight Study data (Hosmer \& Lemeshow, Applied Logistic Regression) read in as a tab-delimited file
- The original file is an Excel spreadsheet (.xls)
- NOTE: No missing values, so do not need to worry about specifying them
- Use Excel to save the file as a tab-delimited file (.txt)
* File > Save As: Save As Type: Text (Tab delimited) (*.txt)
- In R:
> lowbw <- read.table("lowbwt.txt", header = T)
- Example: the Primary Biliary Cirrhosis (PBC) Trial data (Fleming \& Harrington, Counting Processes and Survival Analysis) read in as a commadelimited file
- The original file is an Excel spreadsheet (.xls)
- Use Excel to save the file as a comma-delimited file (.csv)
* File > Save As: Save As Type: CSV (Comma delimited) (*.csv)
- NOTE: Data contains missing values:
* In Excel, replace all blank cells with "NA" (before saving as .csv)
- Edit > Find \& Replace: Search for: (blank), Replace with "NA"
* In R (after saving as .csv), specify na.string = "" in read.table function

[^2]- In R:
> pbc <- read.table("liver.csv", header = T, na.string = "", sep = ",")
- For STATA files:

1. To read in a STATA file (.dta) directly, use the read.dta function in the foreign library (example given in section 12.1)
2. To create an ASCII file from STATA, enter the following commands in STATA (using estriol.dta for illustration):

- Space-delimited text file: outfile using estriol.dta wide
- Comma-delimited text file: outfile using estriol.dta wide comma
- NOTE: The option wide ensures one record per line; otherwise the records are wrapped to the next line
- General Tip: Always ensure your data set has been read-in (imported) correctly
- Use the dim function to check the dimensions (number of rows, number of columns) of your read-in data frame
> dim(lowbw)
[1] 18911
$>\operatorname{dim}(p b c)$
[1] 31020
- Use the names function to check the names of the columns of your read-in data frame
> names(lowbw)
[1] "id" "low" "age" "lwt" "race" "smoke" "ptl" "ht" "ui"
[10] "ftv" "bwt"
> names(pbc)

[1]	"age"	"albumin"	"alkphos"	"ascites"	"bili"
[7] "edema"	"edmadj"	"hepmeg"	"obstime"	"platelet" "protime"	
[13] "sex"	"sgot"	"spiders"	"stage"	"status"	"tx"
[19] "trig"	"urinecu"				

- Use the Hmisc contents function to check the following attributes of the variables from your read-in data frame: names, labels (if any), units (if any), number of factor levels (if any), factor levels, class, storage mode, and number of NAs
> library(Hmisc)
> contents(lowbw)

```
Data frame:lowbw 189 observations and 11 variables Maximum # NAs:0
    Storage
id integer
low integer
age integer
lwt integer
race integer
smoke integer
ptl integer
ht integer
ui integer
ftv integer
bwt integer
> contents (pbc)
Data frame:pbc 310 observations and 20 variables Maximum # NAs:30
```

	Storage	NAs
age	double	0
albumin	double	0
alkphos	double	0
ascites	integer	0
bili	double	0
cholest	integer	28
edema	integer	0
edmadj	double	0
hepmeg	integer	0
obstime	integer	0
platelet	integer	4
protime	double	0
sex	integer	0
sgot	double	0
spiders	integer	0
stage	integer	0
status	integer	0
tx	integer	0
trig	integer	30
urinecu	integer	2

- General Tip: Make any changes to the read-in data frame (e.g. variable names, labels, or value codes) upfront in order to take advantage of all the new annotations during your analysis
- Use the Hmisc upData function to edit the read-in data frame's contents (e.g. variable names, labels, levels, units, etc.)
- The Hmisc upData function accomplishes the following, listed in order in which changes are executed by the function:

1. optionally change names of variables to lower case
2. rename variables
3. adds new variables
4. recomputes existing variables from the original variable and/or from other variables in the data frame
5. changes the storage mode of variables to the most efficient mode (as done with clean.import)
6. drops variables
7. adds, changes, and combines levels of factor variables
8. adds or changes variable labels attributes
9. adds or changes variable units (units of measurement) attributes
```
> library(Hmisc)
> lowbw <- upData(lowbw, labels = c(id = "Subject Identification Code",
+ low = "Low Birthweight?", age = "Mother's Age", lwt = "Mother's Weight at Last Menstrl
+ race = "Race", smoke = "Did Mother Smoke During Pregnancy?",
+ ptl = "Number of Premature Labors", ht = "History of Hypertension?",
+ ui = "Uterine Irritability?", ftv = "Number of Physician Visits in 1st Trimester",
+ bwt = "Birthweight"), units = c(age = "years", lwt = "lbs",
+ bwt = "grams"), levels = list(low = c(">2500g", "<=2500g"),
+ race = c("White", "Black", "Other"), smoke = c("No", "Yes"),
+ ht = c("No", "Yes"), ui = c("No", "Yes")))
\begin{tabular}{lrl} 
Input object size: & 11428 bytes; & 11 variables \\
New object size: & 14844 bytes; & 11 variables
\end{tabular}
> contents(lowbw)
Data frame:lowbw 189 observations and 11 variables Maximum # NAs:0
\begin{tabular}{|c|c|c|}
\hline & Labels Units & Storage \\
\hline id & Subject Identification Code & integer \\
\hline low & Low Birthweight? & 2 integer \\
\hline age & Mother's Age years & integer \\
\hline lwt & Mother's Weight at Last Menstrual Period lbs & integer \\
\hline race & Race & 3 integer \\
\hline smoke & Did Mother Smoke During Pregnancy? & 2 integer \\
\hline ptl & Number of Premature Labors & integer \\
\hline ht & History of Hypertension? & 2 integer \\
\hline ui & Uterine Irritability? & 2 integer \\
\hline ftv & Number of Physician Visits in 1st Trimester & integer \\
\hline bwt & Birthweight grams & integer \\
\hline
\end{tabular}
```



```
> pbc <- upData(pbc, labels = c(age = "Age", albumin = "Serum Albumin",
+ alkphos = "Serum Alkaline Phosphatase", ascites = "Presense of Ascites",
+ bili = "Serum Bilirubin", cholest = "Serum Cholesterol",
+ edema = "Presence of Edema", edmadj = "Graded Measurement of Edema",
+ hepmeg = "Presence of Hepatomegaly", obstime = "Observation Time",
+ platelet = "Platelet Count", protime = "Prothrombin Time",
+ sex = "Sex", sgot = "Serum SGOT", spiders = "Presence of Spider Angiomata",
+ stage = "Stage of Disease", status = "Survival Status", tx = "Treatment Group",
+ trig = "Serum Triglycerides", urinecu = "Urine Copper"),
+ units = c(age = "year", obstime = "day"), levels = list(ascites = c("Absent",
+ "Present"), edema = c("Absent", "Present"), hepmeg = c("Absent",
+ "Present"), sex = c("Male", "Female"), spiders = c("Absent",
+ "Present"), stage = c("Best", "Better", "Worse", "Worst"),
+ status = c("Censored", "Died"), tx = c("Placebo", "Drug")))
\begin{tabular}{lrl} 
Input object size: & 38392 bytes; & 20 variables \\
New object size: & 43976 bytes; & 20 variables
\end{tabular}
> contents(pbc)
```

Data frame:pbc
310 observations and 20 variables
Maximum \# NAs:30

	Labels Units Levels		Storage NAs	
age	Age	year	double	0
albumin	Serum Albumin	double	0	
alkphos	Serum Alkaline Phosphatase	double	0	
ascites	Presense of Ascites	2 integer	0	
bili	Serum Bilirubin	double	0	
cholest	Serum Cholesterol	integer	28	
edema	Presence of Edema	2 integer	0	
edmadj	Graded Measurement of Edema	double	0	
hepmeg	Presence of Hepatomegaly	2 integer	0	
obstime	Observation Time	day	integer	0

9 Data Summaries

There are many functions to produce statistical summaries (including the mean, median, sd, and table functions), but here is an illustration of a few of the more "advanced" ones in the Hmisc library: ${ }^{7}$

9.1 The table function

> table (pbc\$tx)
Placebo Drug
153157
> table(pbc\$tx, pbc\$status)

[^3]| | Censored | Died |
| :---: | :---: | :---: |
| Placebo | 93 | 60 |
| Drug | 92 | 65 |
| > with(pbc, table(tx, status)) | | |
| status | | |
| tx | Censored | Died |
| Placebo | 93 | 60 |
| Drug | 92 | 65 |

9.2 The Hmisc describe function

> library(Hmisc)
> describe(lowbw)
lowbw

	id : Subject Identification Code							
	216.6							
	low : Low Birthweight? n missing unique							
	age : Mother's Age [years]							
	. 95							
	lowest : 14151617 18, highest: 3334353645							
Variables 189 Observations								
	189 0 189	121.1	20.8	30.8	68.0	123.0	176.0	207.2
	. 95							
	n missing unique	Mean	. 05	. 10	. 25	. 50	. 75	. 90
	189 0 24	23.24	16	17	19	23	26	31
	n missing unique	Mean	$.05$	$.10$	$.25$. 50	. 75	. 90
	189 0 75	129.8	94.4	99.6	110.0	121.0	140.0	170.0
	. 95							
	188.2							

```
lowest : 80 85 89 90 91 , highest: 215 229 235 241 250
race : Race
        n missing unique
    189 0 3
White (96, 51%), Black (26, 14%), Other (67, 35%)
smoke : Did Mother Smoke During Pregnancy?
        n missing unique
    189 0 2
No (115, 61%), Yes (74, 39%)
-------------------------------------------------------------------------------
ptl : Number of Premature Labors
        n missing unique Mean
        189 0 4 0.1958
0(159, 84%), 1 (24, 13%), 2(5, 3%), 3(1, 1%)
ht : History of Hypertension?
        n missing unique
    189 0 2
No (177, 94%), Yes (12, 6%)
----------------------------------------------------------------------------------------
ui : Uterine Irritability?
        n missing unique
        189 0 2
No (161, 85%), Yes (28, 15%)
ftv : Number of Physician Visits in 1st Trimester
        n missing unique Mean
        189 0 % 0.7937
            0}112234
Frequency 100 47 30 7 4 1
% 53 25 16 4 2 1
```



```
lowest : 709 1021 1135 1330 1474, highest: 4167 4174 423845934990
------------------------------------------------------------------------------
> describe(pbc$edmadj)
pbc$edmadj : Graded Measurement of Edema
        n missing unique Mean
    310 0 3 0.1113
0.0(261, 84%), 0.5 (29, 9%), 1.0 (20, 6%)
> describe(pbc[, c("bili", "stage")])
pbc[, c("bili", "stage")]
    2 Variables 310 Observations
bili : Serum Bilirubin r
Best (16, 5%), Better (65, 21%), Worse (120, 39%), Worst (109, 35%)
```


9.3 The Hmisc bystats function

```
> library(Hmisc)
> library(Design)
> bystats(pbc$age, pbc$status)
    Mean of pbc$age by
        N Mean
Censored 185 47.73017
Died 125 53.24174
ALL 310 49.95257
> summary(age ~ status, data = pbc)
```


> bystats(pbc\$albumin, pbc\$tx, pbc\$status, fun = quantile)
quantile of pbc\$albumin by pbc\$tx, pbc\$status

		N	0%	25%	50%	75%	100%
Placebo	Censored	93	2.90	3.41	3.610	3.830	4.38
Drug	Censored	92	2.83	3.40	3.665	3.855	4.64
Placebo	Died	60	1.96	3.19	3.435	3.670	4.30
Drug	Died	65	2.10	3.05	3.350	3.700	4.40
ALL		310	1.96	3.31	3.555	3.800	4.64

```
> summary(albumin ~ tx + status, method = "cross", data = pbc,
```

$+\quad$ fun $=$ quantile)

UseMethod by tx, status

+----+\|					
10\%					
\| 25% \|					
\| 50% \|					
175\% \|					
\| 100% \|					
+----+					
\| tx	Censored	Died	ALL		
\|Placebo		\| 93	60	153	
1 \|	\| 2.90	1.96	1.96		
1 I	3.41 \|3.19	3.35			
1 I	3.610 \|3.435	3.550			
1 I	3.830 \|3.670	3.780			
1 \|	4.38 \|4.30	4.38			
\| Drug	\| 92	65	157		
1 \|	\| 2.83	2.10	2.10		

| \| | 1 | 3.40 | \|3.05 |3.21| |
| :---: | :---: | :---: | :---: |
| , | 1 | 3.665 | \|3.350|3.570| |
| 1 | 1 | 3.855 | \|3.700|3.830| |
| I | 1 | 4.64 | \|4.40 |4.64 | |
| \| ALL | 1 | 185 | \| 125 |310 |
| , | I | 2.83 | \|1.96 |1.96 |
| I | 1 | 3.40 | \|3.11 |3.31 | |
| I | 1 | 3.630 | \|3.430|3.555| |
| I | 1 | 3.850 | \|3.670|3.800| |
| , | 1 | 4.64 | \|4.40 |4.64 | |

9.4 Summary Statistics

```
> library(Hmisc)
> library(Design)
> sublowbw <- lowbw[, -1]
> summ <- summary(~., data = sublowbw)
> latex(summ, size = "smaller", middle.bold = T, digits = 3, file = "")
> lowbw$low
Low Birthweight?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(>2500 \mathrm{~g}\) & < \(=2500 \mathrm{~g}\) & & >2500g & >2500g & >2500g & >2500g & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) \\
\hline [10] & 00 g & 00 g & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & >2500g & \(>2500 \mathrm{~g}\) & g & g & \(>2500 \mathrm{~g}\) \\
\hline [19] & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & 0 g & \(>2500 \mathrm{~g}\) & > & \(>2500 \mathrm{~g}\) & \(<=2500 \mathrm{~g}\) & 500 g & >2500g \\
\hline & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & \(=2500 \mathrm{~g}\) & < \(=2500 \mathrm{~g}\) & > & 0 g & \(<=2500 \mathrm{~g}\) & g & < \(=2500 \mathrm{~g}\) \\
\hline & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & < 2500 g & < \(=2500 \mathrm{~g}\) & & \(<=2500 \mathrm{~g}\) & > & 0 g & g \\
\hline & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & >2500g & >2500g & > & >25 & > & Og & = 2500 g \\
\hline & \(>2500 \mathrm{~g}\) & >25 & > & \(<=2500 \mathrm{~g}\) & >25 & & > & <=2500 & \\
\hline & \(=2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & & > & & \(<=2500 \mathrm{~g}\) & < 2500 g & >2 & \(>2500 \mathrm{~g}\) \\
\hline [73] & < 2500 g & \(>2500 \mathrm{~g}\) & & >25 & >2500 & >2500g & \(>2500 \mathrm{~g}\) & >2500 & g \\
\hline ] & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & >25 & \(>2500 \mathrm{~g}\) & 25 & \(>2500 \mathrm{~g}\) & 500 & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) \\
\hline [91] & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & >2 & >25 & >25 & \(>2500 \mathrm{~g}\) & 00g & 500 & 2500 \\
\hline [ \(]\) & < 2500 g & \(>2500 \mathrm{~g}\) & \(<=2500 \mathrm{~g}\) & >2500g & >25 & >25 & 0 g & \(=2500 \mathrm{~g}\) & 0 g \\
\hline 9] & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & 00 & \(<=2500 \mathrm{~g}\) & >25 & >2500g & >2 & 00 & >2500g \\
\hline 8] & < 2500 g & \(>2500 \mathrm{~g}\) & >2500g & >2500g & >25 & < \(=2500\) & >2500g & >2 & \\
\hline ] & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & >2500g & \(<=2500 \mathrm{~g}\) & >250 & < \(=2500 \mathrm{~g}\) & < 2500 g & \(>2500 \mathrm{~g}\) & 2500g \\
\hline 6] & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & < \(=2500\) & >2500g & < \(=2500\) & >2500g & & \(>2500 \mathrm{~g}\) & 2500g \\
\hline [ ] & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & >2500g & 25 & >250 & >250 & >2500g & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) \\
\hline 4] & \(<=2500 \mathrm{~g}\) & \(<=2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & \(<=2500 \mathrm{~g}\) & >2500 & >2500g & < 2500 g & < \(=2500 \mathrm{~g}\) & \\
\hline 3] & \(>2500 \mathrm{~g}\) & \(>2500 \mathrm{~g}\) & < 2500 g & >2500g & < \(=2500\) & < 2500 g & >2500g & >2500g & \(=2500 \mathrm{~g}\) \\
\hline ] & \(>2500 \mathrm{~g}\) & >2500g & < \(=2500 \mathrm{~g}\) & \(=2500 \mathrm{~g}\) & < \(=2500 \mathrm{~g}\) & \(<=2500 \mathrm{~g}\) & < 2500 g & < \(=2500 \mathrm{~g}\) & \\
\hline \(1]\) & 2500 g & 0 g & & & & & & & \\
\hline
\end{tabular}
Levels: >2500g <=2500g
```

Table 1: Descriptive Statistics $(N=189)$

Low Birthweight? : $\leq 2500 \mathrm{~g}$	31\% (59)
Mother's Age years	192326
Mother's Weight at Last Menstrual Period ibs	110121140
Race : White	51\% (96)
Black	14\% (26)
Other	35\% (67)
Did Mother Smoke During Pregnancy? : Yes	39\% (74)
Number of Premature Labors : 0	84\% (159)
1	13\% (24)
2	$3 \% ~(5)$
3	1\% (1)
History of Hypertension? : Yes	6\% (12)
Uterine Irritability? : Yes	15\% (28)
Number of Physician Visits in 1st Trimester : 0	53\% (100)
1	25\% (47)
2	16\% (30)
3	4\% (7)
4	2\% (4)
6	1% (1)
Birthweight grams	241429773475

$a b c$ represent the lower quartile a, the median b, and the upper quartile c for continuous variables.

Numbers after percents are frequencies.

```
> unclass(lowbw$low)
```

```
    [1] 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 2 1 1 2 1 2 1
    [38] 11 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 1 2 1
    [75] 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 1 1 1 1 2 1 1 1 1 2
[112] 2
[149] 1 1 1 1 1 2 2 1 2 1 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 1 1 1 2 2 1
[186] 2 2 2 2
attr(,"levels")
[1] ">2500g" "<=2500g"
attr(,"label")
[1] "Low Birthweight?"
> unclass(lowbw$low) - 1
```


[186] 11111
attr(,"levels")
[1] ">2500g" "<=2500g"
attr(,"label")
[1] "Low Birthweight?"
> sublowbw2 <- lowbw[, -c(1, 2)]
> low.summ <- summary(unclass(lowbw\$low) - 1 ~ ., data = sublowbw2)
> latex(low.summ, middle.bold = T, file = "")

10 Graphics in R

As with the statstical summaries, there is a large variety of plotting functions in R. The following is an illustration of just a few:

10.1 Histograms

```
> hist(lowbw$age, main = "Histogram of Mother's Age", xlab = "Age (years)")
```

Table 2: Low Birthweight? N=189

	N	unclass(lowbw\$low) - 1
Mother's Age years		
$[14,20)$	51	0.29
$[20,24)$	56	0.36
$[24,27)$	36	0.42
[27,45]	46	0.20
Mother's Weight at Last Menstrual Period ibs		
[80,112)	53	0.47
$[112,122)$	43	0.23
[122,141)	46	0.26
[141,250]	47	0.26
Race		
White	96	0.24
Black	26	0.42
Other	67	0.37
Did Mother Smoke During Pregnancy?		
No	115	0.25
Yes	74	0.41
Number of Premature Labors		
0	159	0.26
1	24	0.67
2	5	0.40
3	1	0.00
History of Hypertension?		
No	177	0.29
Yes	12	0.58
Uterine Irritability?		
No	161	0.28
Yes	28	0.50
Number of Physician Visits in 1st Trimester		
0	100	0.36
1	47	0.23
2	30	0.23
3	7	0.57
4	4	0.25
6	1	0.00
Birthweight grams		
[709,2424)	48	1.00
[2424,2992)	48	0.23
[2992,3487)	46	0.00
[3487,4990]	47	0.00
Overall		
	189	0.31

Histogram of Mother's Age

10.2 Boxplots

> boxplot(lowbw\$age, main = "Boxplot of Mother's Age", xlab = "Age (years)")

Boxplot of Mother's Age

Age (years)
> boxplot(lowbw\$age ~ lowbw\$race, main = "Boxplot of Mother's Age Across Race",

+ xlab = "Race")

Boxplot of Mother's Age Across Race

10.3 Scatter plots

> plot(lowbw\$age ~ lowbw\$lwt, main = "Mother's Age vs. Weight", + xlab = "Mother's Weight", ylab = "Mother's Age")

Mother's Age vs. Weight


```
> plot(pbc$albumin, pbc$alkphos, main = "Serum Alk. Phos. vs. Serum Albumin",
+ xlab = "Serum Albumin", ylab = "Serum Alkaline Phosphatase",
+ pch = 19)
> plot(pbc$albumin, pbc$alkphos, main = "Serum Alk. Phos. vs. Serum Albumin",
+ xlab = label(pbc$albumin), ylab = label(pbc$alkphos), pch = 19)
```


Serum Alk. Phos. vs. Serum Albumin


```
> plot(lowbw$age ~ lowbw$bwt, type = "n", main = "Mother's Age vs. Birth Weight",
+ xlab = "Mother's Weight", ylab = "Mother's Age")
> points(lowbw$bwt[lowbw$smoke == "No" & !is.na(lowbw$smoke)],
+ lowbw$age[lowbw$smoke == "No" & !is.na(lowbw$smoke)], pch = 19)
> points(lowbw$bwt[lowbw$smoke == "Yes" & !is.na(lowbw$smoke)],
+ lowbw$age[lowbw$smoke == "Yes" & !is.na(lowbw$smoke)], pch = 19,
+ col = "gray")
> abline(lm(age ~ bwt, data = lowbw[lowbw$smoke == "No" & !is.na(lowbw$smoke),
+ ]), col = "black")
> abline(lm(age ~ bwt, data = lowbw[lowbw$smoke == "Yes" & !is.na(lowbw$smoke),
+ ]), col = "gray")
```


NOTES: (1) type $=$ " $\mathrm{n} "$ in the plot command will produce the axes, the axes labels, and the main title for the plot, but will not plot any of the points; (2) the is.na function indicates which elements are missing (i.e. NA), so ! is.na(lowbw\$smoke) will return only the non-missing values of lowbw\$smoke; (3) the abline function adds a straight line to a plot

10.4 Multiple plots per page

```
> par(mfrow = c(2, 3))
> hist(pbc$obstime, main = "Observation Time", xlab = "Observation Time (days)")
> boxplot(pbc$platelet, main = "Platelet Count", xlab = "Platelet Count")
> boxplot(pbc$protime ~ pbc$sex, main = "Pro. Time Across Sex",
+ xlab = "Sex", ylab = "Prothrombin Time")
> hist(pbc$sgot, main = "Serum SGOT", xlab = "Serum SGOT")
> hist(pbc$trig, main = "Serum Triglycerides", xlab = "Serum Triglycerides")
> boxplot(pbc$urinecu, main = "Urine Copper", xlab = "Urine Copper")
> par(mfrow = c(1, 1))
```


NOTES: (1) the par function is used to set graphical parameters; (2) the mfrow argument allows you to change the number of plots per page by specifying the number of rows, and the number of columns, respectively (by default, there is one plot per page, which is equivalent to one row and one column)

10.5 Pairs plots

```
> library(Hmisc)
> pairs(pbc[Cs(age, albumin, alkphos, bili, cholest, platelet)])
```


10.6 Graphs with text

rates.dat contains a dataset for a study of beta-blocker adherence post-AMI.

```
> rates <- read.table("rates.dat", header = T)
> par(oma = c(5, 0, 2, 0))
> plot(rates$day, rates$rate1, type = "l", ylim = c(0, 85), axes = F,
+ xlab = "Days since discharge", ylab = "Percent beta-blocker users (%)")
> axis(1, at = c(0, 30, 90, 180, 270, 365))
> axis(2, at =c(0, 20, 40, 60, 80))
> axis(1, at = rates$day, labels = rates$atrisk1, tick = F, line = 4,
+ cex = 0.8)
> axis(1, at = rates$day, labels = rates$atrisk0, tick = F, line = 6.5,
+ cex = 0.8)
> lines(rates$day, rates$rate0, type = "l")
> box()
```

```
> mtext("No. at-risk: patients discharged on beta-blockers", side = 1,
+ line = 4, adj = 0, cex = 0.8)
> mtext("No. at-risk: patients not discharged on beta-blockers",
+ side = 1, line = 6.5, adj = 0, cex = 0.8)
> mtext("Figure 1. Outpatient adherence to beta-blocker therapy post-AMI",
+ side = 3, cex = 1.2, line = 1)
> text(180, 70, "Discharged on beta-blockers", cex = 0.8)
> text(180, 20, "Not discharged on beta-blockers", cex = 0.8)
```

Figure 1. Outpatient adherence to beta-blocker therapy post-AM

NOTES: (1) the oma argument of the par function allows you to change the size of the outer margins of the plot given in lines of text (the order is bottom, left, top, right); (2) the axis function adds and axis to a plot, allowing the spefication of the side, position, label, and other options (corresponds to setting axes = F in the plot command); (3) the lines function adds a line to a plot; (4) the box function draws a box around a plot; (5) the mtext function writes text into the margins of a plot; and (6) the text function writes text inside a plot

10.7 Different page layouts

Unfortunately, the LaTex interface I used to create this pdf file had problems placing the following plot in this pdf file, but we can still run the code in R and view the resulting plot.

```
albhist<-hist(pbc$albumin, plot=FALSE)
obtimehist<-hist(pbc$obstime, plot=FALSE)
def.par <- par(no.readonly = TRUE) # save default, for resetting...
layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), widths=c(3,1),
    heights=c(1,3), respect=TRUE)
plot(pbc$albumin, pbc$obstime, xlab="Serum Albumin",
    ylab="Observation Time", main="Observation Time by Serum Albumin")
barplot(albhist$counts, main="Serum Albumin",
    space=0)
barplot(obtimehist$counts, horiz=TRUE, main="Observation Time",
    space=0)
par(def.par)#- reset to default
```


10.8 Graphical Data Summary

The titanic3 data set contains information on $\mathrm{N}=1309$ passengers from the Titanic. Chapter 12 in Frank Harrell's Regression Modelling Strategies develops a binary logistic regression model to describe the patterns of survival in these passengers, based on passenger age, sex, ticket class, and the number of family members accompanying each passenger. ${ }^{8}$

```
> library(Hmisc)
> library(Design)
> getHdata(titanic3)
> x <- titanic3[Cs(pclass, survived, age, sex, sibsp, parch)]
> x <- upData(x, labels = c(sex = "Sex", pclass = "Passenger Class",
+ sibsp = "Sibs/Spouses Aboard", parch = "Parents/Children Aboard"))
Input object size: }54396\mathrm{ bytes; }6\mathrm{ variables
New object size: 54604 bytes; 6 variables
> dd <- datadist(x)
> options(datadist = "dd")
> titanic.summ <- summary(survived ~ age + sex + pclass + cut2(sibsp,
+ 0:3) + cut2(parch, 0:3), data = x)
> latex(titanic.summ, file = "")
> par(cex = 0.85)
> plot(titanic.summ, main = "Univariable Summaries of Titanic Survival")
```

[^4]Table 3: Survived $\quad \mathrm{N}=1309$

		N
Age	survived	
$[0.167,22.0)$	Year	
$[22.000,28.5)$	290	0.43
$[28.500,40.0)$	246	0.39
$[40.000,80.0]$	265	0.42
Missing	245	0.39
Sex	263	0.28
female		
male	466	0.73
Passenger Class	843	0.19
1st		
2nd	323	0.62
3rd	277	0.43
Sibs/Spouses Aboard	709	0.26
0	891	0.35
1	319	0.51
2	42	0.45
$[3,8]$	57	0.16
Parents/Children Aboard		
0	1002	0.34
1	170	0.59
2	113	0.50
$[3,9]$	24	0.29
Overall		
	1309	0.38

Univariable Summaries of Titanic Survival

10.9 Summarizing/Describing the Fitted Model

It is always important for the analyst to present and interpret a fitted model, once the proper variables have been modelled and all assumptions have been met. The coefficients in the model may be interpreted by computing, for each variable, the change in log odds for a sensible change in the variable value (e.g. interquartile range). ${ }^{9}$

```
> library(Hmisc)
> library(Design)
> dd <- datadist(x)
> options(datadist = "dd")
> titanic.model <- lrm(survived ~ (sex + pclass + rcs(age, 5))^2 +
+ rcs(age, 5) * sibsp, data = x)
```

[^5]```
> titanic.model.summ <- summary(titanic.model, age = c(1, 30),
+ sibsp = 0:1)
> plot(titanic.model.summ, log = T)
```



Adjusted to:sex=male pclass=3rd age=28 sibsp=0

## 11 Writing Your Own Functions

- Perhaps one of the best features of $R$ is its capability of writing your own functions
- Writing your own functions will become very useful when you find yourself executing the same set of commands (e.g. finding the mean and standard deviation, or plotting the same general plot) repeated times
- Some Examples:

1. A function that prints out the mean and standard deviation of a set of numbers: ${ }^{10}$
```
> mean.and.sd <- function(x) {
+ av <- mean(x)
+ stdev <- sd(x)
+ c(mean = av, SD = stdev)
+ }
mean.and.sd(1:10)
 mean SD
5.500000 3.027650
> mean.and.sd(lowbw$age)
 mean SD
23.238095 5.298678
```

2. A functions that generates four plots for a continuous variable: (1) a histogram, (2) a boxplot, (3) a normal Q-Q plot, and (4) a Kernel Density plot:
```
> dist.shape <- function(xdata, varname) {
+ par(mfrow = c(2, 2))
 hist(xdata, freq = F, main = varname, xlab = varname)
 boxplot(xdata, main = varname, xlab = varname)
 qqnorm(xdata)
 qqline(xdata)
 dx <- density(xdata)
 xbar <- mean(xdata)
+ xbar <- mean(xdata)
+ rangex <- range(dx$x)
+ xx <- seq(rangex[1], rangex[2], length = length(dx$y))
+ plot(dx, main = "Kernel Density with Normal")
+ lines(xx, dnorm(xx, xbar, stdev), lty = 2)
+ }
> dist.shape(pbc$age, "Age")
```

[^6]

3. A function that finds high and low outliers (greater than $+/-4$ S.D. of the mean) of one or more continuous variables (assumes first column of data frame represents an ID):

```
> out <- function(dataframe, colnames, idname) {
+ data <- dataframe[, colnames]
+ I <- dim(data)[2]
+ for (i in 1:I) {
+ colm <- data[!is.na(data[[i]]), i]
+ colname <- colnames[[i]]
+ con <- 4
+ bottom <- mean(colm) - con * sd(colm)
+ top <- mean(colm) + con * sd(colm)
+ nhigh <- length(colm[colm > top])
+ nlow <- length(colm[colm < bottom])
+ if (nlow > 0) {
+ lowouts <- dataframe[colm < bottom & !is.na(data[[i]]),
```

```
 c(idname, colname)]
 cat("LOW OUTLIERS", "\t", "(<", bottom, ")", "\n",
 "ID", "\t", colname, "\n", file = "outliers.txt",
 append = T)
 J <- dim(lowouts)[1]
 K <- dim(lowouts)[2]
 for (j in 1:J) {
 for (k in 1:K) {
 cat(paste(lowouts[j, k]), "\t", file = "outliers.txt",
 append = T)
 if (k == K)
 cat("\n", file = "outliers.txt", append = T)
 }
 }
 cat("-------------------------------------", "\n",
 "\n", file = "outliers.txt", append = T)
 }
 if (nhigh > 0) {
 highouts <- dataframe[colm > top & !is.na(data[[i]]),
 c(idname, colname)]
 cat("HIGH OUTLIERS", "\t", "(>", top, ")", "\n",
 "ID", "\t", colname, "\n", file = "outliers.txt",
 append = T)
 J <- dim(highouts)[1]
 K <- dim(highouts)[2]
 for (j in 1:J) {
 for (k in 1:K) {
 cat(paste(highouts[j, k]), "\t", file = "outliers.txt",
 append = T)
 if (k == K)
 cat("\n", file = "outliers.txt", append = T)
 }
 }
 cat("-------------------------------------", "\n",
 "\n", file = "outliers.txt", append = T)
 }
 }
+ }
> out(lowbw, c("age", "lwt", "bwt"), "id")
```


## 12 Statistics with R

### 12.1 Correlation

Example: Estriol and Birthweight

Consider a study investigating birthweight (/100 g) and estriol levels (mg/24hr) in pregnant women (estriol.dta)
> library(foreign)
> est <- read.dta("estriol.dta")
> names (est)
[1] "estriol" "birthwt"
> dim(est)
[1] 312
> plot(est\$estriol, est\$birthwt, main = "Birthweight by Estriol", $+\quad x l a b=$ "Estriol (mg/24hr)", ylab = "Birthweight (/100g)")

Birthweight by Estriol


### 12.1.1 Pearson Correlation \& Testing for Association

```
> cor(est)
 estriol birthwt
estriol 1.0000000 0.6097313
birthwt 0.6097313 1.0000000
> cor.test(est$estriol, est$birthwt)
 Pearson's product-moment correlation
data: est$estriol and est$birthwt
t = 4.1427, df = 29, p-value = 0.0002712
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.3257757 0.7927878
sample estimates:
 cor
0.6097313
```


### 12.1.2 Spearman Rank Correlation

```
> library(Hmisc)
> rcorr(est$estriol, est$birthwt, type = "spearman")
 x y
x 1.00 0.56
y 0.56 1.00
n= 31
P
 x y
x 0.001
y 0.001
> rcorr(est$estriol, est$birthwt, type = "pearson")
 x y
x 1.00 0.61
y 0.61 1.00
n= 31
```

P

```
 x y
x 3e-04
y 3e-04
```


### 12.2 Simple Linear Regression

## Example: Estriol and Birthweight

Consider regressing birthweight on estriol.

```
> est.m <- lm(birthwt ~ estriol, data = est)
> summary(est.m)
Call:
lm(formula = birthwt ~ estriol, data = est)
Residuals:
 Min 1Q Median 3Q Max
-8.12000 -2.03810 -0.03810 3.35371 6.88000
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.5234 2.6204 8.214 4.68e-09 ***
estriol 0.6082 0.1468 4.143 0.000271 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.821 on 29 degrees of freedom
Multiple R-Squared: 0.3718, Adjusted R-squared: 0.3501
F-statistic: 17.16 on 1 and 29 DF, p-value: 0.0002712
```


### 12.2.1 Interpretation of Output

```
> plot(est$estriol, est$birthwt, main = "Birthweight by Estriol",
+ xlab = "Estriol (mg/24hr)", ylab = "Birthweight (/100g)")
> abline(est.m, lwd = 3)
```


## Birthweight by Estriol


12.2.2 Plotting 95\% Confidence Intervals \& Prediction Intervals

```
> pred.frame <- data.frame(estriol = 7:27)
> pp <- predict(est.m, int = "p", newdata = pred.frame)
> pc <- predict(est.m, int = "c", newdata = pred.frame)
> pred.estriol <- pred.frame$estriol
> plot(est$estriol, est$birthwt, ylim = range(est$estriol, pp,
+ na.rm = T), main = "Plot with Confidence and Tolerance Bands",
+ xlab = "Estriol (mg/24hr)", ylab = "Birthweight (/100g)")
> matlines(pred.estriol, pc, lty = c(1, 2, 2), col = "black")
> matlines(pred.estriol, pp, lty = c(1, 3, 3), col = "black")
```


## Plot with Confidence and Tolerance Bands


12.2.3 Linear Regression for Categorical Variables

## Example: Low Birthweight Study

We would like to determine whether there is a difference in mean birthweight for those with no previous pre-term labor and those with $1+$ pre-term labors.

```
> lowbw$ptl.cat <- ifelse(lowbw$ptl > 0, 1, 0)
> names(lowbw)
```

| [1] "id" | "low" | "age" | "lwt" | "race" |
| :--- | :--- | :--- | :--- | :--- |
| [8] "ht" | "ui" | "ftv" | "bwt" | "ptl.cat" |

> table(lowbw\$ptl)

| 0 | 1 | 2 | 3 |
| ---: | ---: | ---: | ---: |
| 159 | 24 | 5 | 1 |

```
> table(lowbw$ptl.cat)
 0 1
159 30
> lowbw.m <- lm(bwt ~ ptl.cat, data = lowbw)
> summary(lowbw.m)
Call:
lm(formula = bwt ~ ptl.cat, data = lowbw)
Residuals:
Birthweight [grams]
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-1992.572 & -495.400 & -8.572 & 586.428 & 1976.428
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3013.57 56.57 53.269 < 2e-16 ***
ptl.cat -434.17 142.00 -3.058 0.00256 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 713.4 on 187 degrees of freedom
Multiple R-Squared: 0.04761, Adjusted R-squared: 0.04252
F-statistic: 9.349 on 1 and 187 DF, p-value: 0.002558
> t.test(bwt ~ ptl.cat, data = lowbw, var.equal = T, alternative = "two.sided")
 Two Sample t-test
data: bwt by ptl.cat
t = 3.0576, df = 187, p-value = 0.002558
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 154.0518 714.2929
sample estimates:
mean in group 0 mean in group 1
 3013.572 2579.400
> t.test(bwt ~ ptl.cat, data = lowbw, var.equal = T, alternative = "less")
 Two Sample t-test
data: bwt by ptl.cat
t = 3.0576, df = 187, p-value = 0.9987
alternative hypothesis: true difference in means is less than 0
```

```
95 percent confidence interval:
 -Inf 668.8983
sample estimates:
mean in group 0 mean in group 1
 3013.572 2579.400
> t.test(bwt ~ ptl.cat, data = lowbw, var.equal = T, alternative = "greater")
 Two Sample t-test
data: bwt by ptl.cat
t = 3.0576, df = 187, p-value = 0.001279
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 199.4463 Inf
sample estimates:
mean in group 0 mean in group 1
 3013.572 2579.400
```


### 12.3 Simple Logistic Regression

## Example: Estriol and Birthweight

Suppose we wish to relate estriol level to the probability of having a low birthweight infant, where a low birthweight indicator in which birthweight $<3000$ grams indicates low birthweight.

```
> est$birthwt.ind <- ifelse(est$birthwt < 30, 1, 0)
> table(est$birthwt.ind)
 0}
23 8
> library(Hmisc)
> library(Design)
> dd <- datadist(est)
> options(datadist = "dd")
> est.birthwt.m <- lrm(birthwt.ind ~ estriol, data = est)
> summary(est.birthwt.m)
 Effects Response : birthwt.ind
Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
estriol 15 19.5 4.5 -1.56 0.7 -2.93
 Odds Ratio 15 19.5 4.5 0.21 NA 0.05 0.82
> anova(est.birthwt.m)
```

| Factor | Chi-Square | d.f. | P |
| :--- | :--- | :--- | :--- |
| estriol | 5.03 | 1 | 0.0249 |
| TOTAL | 5.03 | 1 | 0.0249 |

### 12.4 Simple Proportional Hazards Regression

## Example: Primary Biliary Cirrhosis (PBC) Trial

We would like to investigate the role of d-penicillamine (DPCA) for treating PBC on the patients' survival.

### 12.4.1 Kaplan-Meier Estimates

First lets just look at patient survival, regardless of treatment.

```
> library(survival)
> pbc.surv <- survfit(Surv(obstime, status == "Died"), data = pbc)
> pbc.surv
Call: survfit(formula = Surv(obstime, status == "Died"), data = pbc)
\begin{tabular}{rrrrrrr}
\(n\) & events & rmean & se(rmean) & median & \(0.95 L C L\) & \(0.95 U C L\) \\
310 & 125 & 2971 & 102 & 3358 & 3086 & 3853
\end{tabular}
> summary(pbc.surv)
Call: survfit(formula = Surv(obstime, status == "Died"), data = pbc)
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 41 310 1 0.997 0.00322 0.990 1.000
 51 309 1 1 0.994 0.00455
 71 308 1 1 0.990 0.00556
 77 307 1 1 0.987
```



```
 130 305 1 1 0.981 0.00782
 131 304 1 0.0.977 0.00844 0.961 0.994
 140 303 1 1 0.974 0.00901
 179 302 1 1 0.971 0.00954
 186 301 1 1 0.968 0.01004
.
.
```



```
 3428 41 1 0.0.476 0.04096
3445 40 1 1 0.464 0.04163 0.0.389 0.553
```

| 3574 | 37 | 1 | 0.451 | 0.04235 | 0.376 | 0.543 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3584 | 34 | 1 | 0.438 | 0.04314 | 0.361 | 0.531 |
| 3762 | 30 | 1 | 0.424 | 0.04410 | 0.345 | 0.519 |
| 3839 | 27 | 1 | 0.408 | 0.04517 | 0.328 | 0.507 |
| 3853 | 25 | 1 | 0.392 | 0.04622 | 0.311 | 0.494 |
| 4079 | 17 | 1 | 0.369 | 0.04891 | 0.284 | 0.478 |
| 4191 | 13 | 1 | 0.340 | 0.05272 | 0.251 | 0.461 |
| > plot(pbc.surv, main $=$ | "Kaplan-Meier Survival Estimates", xlab = "Observation Time") |  |  |  |  |  |

Kaplan-Meier Survival Estimates


The following plot shows the estimated (smoothed) distribution of time patients stayed alive. The shaded area represents the $95 \%$ confidence interval. A similar plot was shown in an article published in the Journal of the American Medical Association (JAMA, June 20, 2001 - Vol 285, No. 23).

```
> xx <- c(pbc.surv$time, rev(pbc.surv$time))
> yy <- c(lowess(pbc.surv$time, pbc.surv$upper)$y, rev(lowess(pbc.surv$time,
+ pbc.surv$lower)$y))
```

```
> plot(pbc.surv$time, pbc.surv$surv, type = "n", ylim = c(0, 1),
+ xlab = "Observation Time", ylab = "Probability Alive", main = "Estimated Distbn of Tin
> polygon(xx, yy, col = "lightgray", border = "lightgray")
> lines(lowess(pbc.surv$time, pbc.surv$surv))
```


## Estimated Distbn of Time Participants Stayed Alive



Now let's look at the role of treatment on patient survival.

```
> pbc.surv.tx <- survfit(Surv(obstime, status == "Died") ~ tx,
+ data = pbc)
> pbc.surv.tx
Call: survfit(formula = Surv(obstime, status == "Died") ~ tx, data = pbc)
 n events rmean se(rmean) median 0.95LCL 0.95UCL
tx=Placebo \begin{tabular}{llllllll}
153 & 60 & 2987 & 144 & 3428 & 3090 & Inf
\end{tabular}
\begin{tabular}{llllllll}
tx=Drug & 157 & 65 & 2947 & 142 & 3282 & 2583 & Inf
\end{tabular}
> summary(pbc.surv.tx)
```




### 12.4.2 Log-Rank Test

> library(survival)
> survdiff(Surv(pbc\$obstime, pbc\$status == "Died") ~ pbc\$tx)
Call:
survdiff(formula = Surv(pbc\$obstime, pbc\$status == "Died") ~ pbc\$tx)

|  | $N$ | Observed | Expected | $(0-E)^{\wedge} 2 / E$ | $(0-E) \wedge 2 / V$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| pbc\$tx=Placebo | 153 | 60 | 61.8 | 0.0507 | 0.100 |
| pbc\$tx=Drug | 157 | 65 | 63.2 | 0.0495 | 0.100 |

Chisq= 0.1 on 1 degrees of freedom, $p=0.751$

```
12.4.3 Cox Proportional Hazards Regression
> library(survival)
> pbc.coxph.tx <- coxph(Surv(obstime, status == "Died") ~ tx, data = pbc)
> summary(pbc.coxph.tx)
Call:
coxph(formula = Surv(obstime, status == "Died") ~ tx, data = pbc)
 n= 310
 coef exp(coef) se(coef) z p
txDrug 0.0568 1.06 0.179 0.317 0.75
 exp(coef) exp(-coef) lower . }95\mathrm{ upper . }9
txDrug 1.06 0.945 0.745 1.50
Rsquare= 0 (max possible= 0.984)
Likelihood ratio test= 0.1 on 1 df, p=0.751
Wald test =0.1 on 1 df, p=0.751
Score (logrank) test = 0.1 on 1 df, p=0.751
> hist(pbc$bili, main = "Histogram of Serum Bilirubin", xlab = "Serum Bilirubin")
```


## Histogram of Serum Bilirubin


> pbc.coxph.logbili <- coxph(Surv(obstime, status == "Died") ~
$+\quad \log (b i l i)$, data $=p b c)$
> summary (pbc.coxph.logbili)
Call:
coxph(formula $=$ Surv(obstime, status == "Died") ~ log(bili),
data $=\mathrm{pbc})$
$n=310$
coef $\exp ($ coef) se(coef) z p
$\log ($ bili $) 1.08 \quad 2.96 \quad 0.093411 .60$
$\begin{array}{lrrrr} & \text { exp(coef) } & \exp (- \text { coef }) & \text { lower } .95 & \text { upper } .95 \\ \log (\text { bili) } & 2.96 & 0.338 & 2.46 & 3.55\end{array}$
Rsquare $=0.348 \quad(\max$ possible $=0.984)$

Likelihood ratio test= 133 on $1 \mathrm{df}, \quad \mathrm{p}=0$
Wald test $=135$ on $1 \mathrm{df}, \mathrm{p}=0$
Score (logrank) test $=159$ on $1 \mathrm{df}, \mathrm{p}=0$


[^0]:    ${ }^{1}$ Data Analysis Using R, Maindonald
    ${ }^{2}$ Data Analysis Using $R$, Maindonald

[^1]:    ${ }^{3}$ An Introduction to $S$ and the Hmisc and Design Libraries, Harell
    ${ }^{4}$ An Introduction to $S$ and the Hmisc and Design Libraries, Harell
    ${ }^{5}$ The Information on Package 'Design' help page in R (library (help="Design"))

[^2]:    ${ }^{6}$ An Introduction to $S$ and the Hmisc and Design Libraries, Harell; R Data Import/Export, R Development Core Team

[^3]:    ${ }^{7}$ An Introduction to $S$ and the Hmisc and Design Libraries, Harell

[^4]:    ${ }^{8}$ Regression Modelling Strategies, Harrell

[^5]:    ${ }^{9}$ Regression Modelling Strategies, Harrell

[^6]:    ${ }^{10}$ Data Analysis and Graphics Using R, Maindonald and Braun

