
HOMEWORK: NOVEMBER 3

Problem 1: The goal is to show the optimality of the function space W 1,2(Ω) in
the definition of a weak solution. To say it differently, one can define weaker or
stronger concept of solution requiring that it belongs to some W 1,p(Ω) with p 6= 2,
but it may lead either to nonexistence or to nonuniqueness. It is important to
remember that it might be the case only if the elliptic operator has just measurable
(and discontinuous) coefficient.

Consider Ω = B1(0) ⊂ R2 and p ∈ (1, 2) be arbitrary. Find an elliptic matrix

A(x) and nontrivial û ∈W 1,p
0 (Ω) such that

(1.1)

∫
Ω

A∇û · ∇ϕ = 0 for all ϕ ∈ C1
0(Ω).

Note that we know that u ≡ 0 is the unique weak solution! Hence, we cannot get
the uniqueness in large class of functions and this is the true motivation for the
choice W 1,2(Ω) as the correct space.

Hint: Consider the matrix A with the coefficient given

(A)ij = δij + (a− 1)
xixj
|x|2

with some a > 1. Show that it is an elliptic matrix. Consider the function u(x)
given as (here x ∈ R2 and ε ∈ (0, 1))

ū(x) := x1|x|−1−ε.

• Find all p’s for which û ∈W 1,p(Ω).
• Find a proper relation between a and ε such that ū solves (1.1) - justify it

carefully!.
• Find u ∈W 1,2(Ω) fulfilling (1.1) such that u− ū ∈W 1,1

0 (Ω).
• Show that û := u − ū solves Problem 1. Show that by proper choice of a

and ε > 0 one can get cover the whole range p ∈ (1, 2).

Solution: We start with the ellipticity of the matrix A. Let z ∈ R2 be arbitrary,
then (here ”·”denotes the scalar product in R2)

Az · z =

2∑
i,j=1

(
δij + (a− 1)

xixj
|x|2

)
zizj = |z|2 + (a− 1)

(x · z)2

|x|2
≥ |z|2.

For sure,the matrix is also bounded and measurable and therefore we got it is
elliptic.

Next, we checkfor which p’s we have ũ ∈ W 1,p. Since we are asked to do it
carefully, we derive rigorously what is the weak derivative of ũ. First, we evaluate
the classical derivative outside of the point 0:

∂ũ

∂x1
= |x|−1−ε − (1 + ε)x2

1|x|−3−ε =: f1

∂ũ

∂x2
= −(1 + ε)x1x2|x|−3−ε =: f2

1
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Note that the above functions are for sure measurable and we just check whether
they are Lp integrable. By using the polar coordinates and the substitution, we see
that∫

Ω

|f1|p <∞ ⇔
∫

Ω

∣∣|x|−1−ε − (1 + ε)x2
1|x|−3−ε∣∣p <∞ ⇔

∫ 1

0

r−p(1+ε)r dr <∞

⇔ −p(1 + ε) + 1 > −1 ⇔ p <
2

1 + ε∫
Ω

|f2|p <∞ ⇔
∫

Ω

∣∣x1x2|x|−3−ε∣∣p <∞ ⇔
∫ 1

0

r−p(1+ε)r dr <∞

⇔ −p(1 + ε) + 1 > −1 ⇔ p <
2

1 + ε

Moreover, for p < 2
1+ε it is not difficult to check that

∫
Ω
|ũ|p < ∞. It remains

to show, that the pointwise derivatives f1, f2 (which were derived only outside
of the point 0, i.e., in Ω \ {0}), are indeed weak derivative in Ω. To check it,
let ϕbeasmooth compactly supported function. Then we use integration by parts
formula for smooth functions and the Lebesgue dominated convergence theorem to
see that ∫

Ω

f1ϕ = lim
δ→0+

∫
Ω\Bδ

f1ϕ = lim
δ→0+

∫
Ω\Bδ

∂ũ

∂x1
ϕ

byparts
= lim

δ→0+

∫
∂(Ω\Bδ)

ũϕn1 −
∫

Ω\Bδ

∂ϕ

∂x1
ũ

= −
∫

Ω

∂ϕ

∂x1
ũ+ lim

δ→0+

(
−
∫
∂Bδ

ϕ
x2

1

δ2+ε
+

∫
Bδ

∂ϕ

∂x1

x1

|x|1+ε

)
Since ∣∣∣∣−∫

∂Bδ

ϕ
x2

1

δ2+ε
+

∫
Bδ

∂ϕ

∂x1

x1

|x|1+ε

∣∣∣∣ ≤ ‖ϕ‖1,∞(∫
∂Bδ

1

δε
+

∫
Bδ

1

|x|ε

)
≤ C(ε)‖ϕ‖1,∞

(
δ1−ε + δ2−ε) δ→0+→ 0,

we see that ∫
Ω

f1ϕ = −
∫

Ω

∂ϕ

∂x1
ũ

and similarly we can deduce ∫
Ω

f2ϕ = −
∫

Ω

∂ϕ

∂x2
ũ.

Hence, it is nothing else than the definition of the weak derivatives and consequently
f1 is a weak derivative with respect to x1 on Ω and f2 is weak derivative with respect
to x2 on Ω.

Next, we choose ε and a so that (1.1) holds true. First, we take ϕ ∈ C∞0 (Ω\{0}).
Since A and ũ are smooth on Ω \ {0}, we can use standard integration by parts
formula and deduce that (1.1) implies∫

Ω

div(A∇u)ϕ = 0.
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Since ϕ is arbitrary then the necessary condition for validity of (1.1) is that (here
we are using the classical derivatives, since the exist outside of 0)

(1.2) div(A∇u) = 0 in Ω \ {0}.

Thus, we evaluate this condition

− div(A∇u) = −
∑
i,j=1

∂

∂xi

(
Aij

∂ũ

∂xj

)

=
∑
i,j=1

∂

∂xi

((
δij + (a− 1)

xixj
|x|2

)
((1 + ε)x1xj |x|−3−ε − δ1j |x|−1−ε)

)
=
∑
i=1

∂

∂xi

(
(aε+ 1)x1xi|x|−3−ε − δ1i|x|−1−ε)

=
∑
i=1

(aε+ 1)
(
δ1ixi|x|−3−ε + x1|x|−3−ε − (3 + ε)x1x

2
i |x|−5−ε)+ (1 + ε)δ1ixi|x|−3−ε

= x1|x|−3−ε (1− ε2a
)

Consequently, (1.2) holds if and only if

(1.3) ε2a = 1

Hence, we have just shown that (1.3) is a necessary condition for the validity of
(1.1).

Next, we show that it is indeed sufficient. To do so, we use the Lebesgue domi-
nated convergence theorem, integration by parts (outside of zero, where all functions
are smooth), the fact that ϕ has compact support and also the point-wise relation
(1.2). Here,ϕ ∈ C1

0(Ω)∫
Ω

A∇ũ · ∇ϕ = lim
δ→0+

∫
Ω\Bδ(0)

A∇ũ · ∇ϕ

byparts
= lim

δ→0+

−
∫

Ω\Bδ(0)

div(A∇ũ)ϕ+

∫
∂(Ω\Bδ(0))

ϕA∇ũ · n

(1.2)
= lim

δ→0+

δ−1

∫
∂Bδ(0)

ϕ(x)

2∑
i=1

(
(aε+ 1)x1xi|x|−3−ε − δ1i|x|−1−ε)︸ ︷︷ ︸

(−A∇ũ)i

xi

= aε lim
δ→0+

δ−2−ε
∫
∂Bδ(0)

ϕ(x)x1.

Hence, we need to show that the last limit is equal to zero.
BE CAREFUL: If you used just brutal force then you would not get the result,

e.g., ∣∣∣∣∣δ−2−ε
∫
∂Bδ(0)

ϕ(x)x1

∣∣∣∣∣ ≤ ‖ϕ‖∞δ−2−ε
∫
∂Bδ(0)

|x| = 2π‖ϕ‖∞δ−ε
δ→0+→ ∞.
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So we must proceed differently and use a certain cancelation effect.∣∣∣∣∣δ−2−ε
∫
∂Bδ(0)

ϕ(x)x1

∣∣∣∣∣ =

∣∣∣∣∣δ−2−ε
∫
∂Bδ(0)

(ϕ(x)− ϕ(0))x1 + δ−2−εϕ(0)

∫
∂Bδ(0)

x1

∣∣∣∣∣
=

∣∣∣∣∣δ−2−ε
∫
∂Bδ(0)

(ϕ(x)− ϕ(0))x1

∣∣∣∣∣
≤ ‖∇ϕ‖∞δ−2−ε

∫
∂Bδ(0)

|x|2 = ‖∇ϕ‖∞δ1−ε δ→0+→ 0,

provided that ε < 1, which is however always the case since due to the fact that
ε2a = 1 and a > 1.

Thus is we set ε :=
√
a−1, we see that

2

1 + ε

a→∞→ 2,
2

1 + ε

a→1+→ 1,

thus going back to the condition for ũ being in W 1,p, we see that by proper choice
of a > 1 we can cover the whole interval (1, 2).

Finally, it is woth noticing that if we set ε := −
√
a−1 then (1.3) holds. Moreover,

if we denote for such ε the function u := x1|x|−1+
√
a−1

then by above computa-
tion we can justify that u ∈ W 1,2(Ω) solves (1.1) and in addition u = ũ on ∂Ω.
Consequently û := u− ũ has zero trace solves (1.1) but û /∈W 1,2.

�

Problem 2: The goal is to show that the maximal regularity1 cannot hold in
Lipschitz domains or when changing the type of boundary conditions. Let ϕ0 ∈
(0, 2π) be arbitrary and consider Ω ⊂ R2 given by2

Ω := {(r, ϕ) : r ∈ (0, 1), ϕ ∈ (0, ϕ0)}.
Denote Γi ⊂ ∂Ω in the following way (in polar coordinates (r, ϕ): Γ1 := (r, 0),
Γ2 := (r, ϕ0), Γ3 := (1, ϕ).

Consider two functions

u1(r, ϕ) := rα1 sin

(
ϕπ

ϕ0

)
,

u2(r, ϕ) := rα2 sin

(
ϕπ

2ϕ0

)
• Find the condition on αi so that ui ∈ W 1,2(Ω) - find an explicit formula

for ∇ui - and prove that it is really the weak derivative!
• Find the proper condition on αi so that ui solves the problem

−∆u1 = 0 in Ω, u1 = 0 on Γ1 ∪ Γ2, u1 = sin

(
ϕφ

ϕ0

)
on Γ3

−∆u2 = 0 in Ω, u2 = 0 on Γ1, u2 = sin

(
ϕφ

ϕ0

)
on Γ3, ∇u2 · n = 0 on Γ2

1Maximal regularity statement means that if

∆u = f

then f ∈ Lp(Ω) =⇒ u ∈ W 2,p(Ω). The goal of the homework is to show that this is not true on

domains with corners.
2We use polar coordinates, i.e. x1 = r cosϕ, x2 = r sinϕ
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CHECK in details that for such αi’s the weak formulation of the above
elliptic equations hold!
• Find all p’s for which ui ∈ W 2,p(Ω). What is the criterium on αi so that
ui ∈W 2,2(Ω)?
• With the help of the above computation, find fi ∈ L2(Ω) such that the

problems with homogeneous boundary conditions, i.e.,

−∆v1 = f1 in Ω, v1 = 0 on ∂Ω,

−∆v2 = f2 in Ω, v2 = 0 on Γ1 ∪ Γ3,∇v2 · n = 0 on Γ2

posses unique weak solutions vi ∈W 1,2(Ω) but v1 /∈W 2,2(Ω) if ϕ0 > φ and
v2 /∈W 2,2(Ω) for ϕ0 >

π
2 .

• REMEMBER: On domains with corner - the W 2,2 regularity statement
does not hold for Dirichlet problem for angels greater than π and does
not hold when changing Dirrichlet to Neumann problems on corners with
angle greater than π/2. In general W 2,2 regularity for Dirichlet problems
holds in any dimension either for convex domains or for domains with C1,1

boundary.

Solution: First of all, one should be able to derive the formula for derivatives in
polar coordinates. Since our change of coordinates is given by

x1 = r cosϕ, x2 = r sinϕ,

Then for any C1 function f(r, ϕ), we have (for r ∈ (0, 1) and ϕ ∈ (0, 2π))

∂f(r, ϕ)

∂x1
= cosϕ

∂f(r, ϕ)

∂r
− sinϕ

r

∂f(r, ϕ)

∂ϕ

∂f(r, ϕ)

∂x2
= sinϕ

∂f(r, ϕ)

∂r
+

cosϕ

r

∂f(r, ϕ)

∂ϕ

Consequently, we can also deduce that

∆f(r, ϕ) =
∂2f

∂x2
1

+
∂2f

∂x2
1

=
∂

∂x1

(
cosϕ

∂f(r, ϕ)

∂r
− sinϕ

r

∂f(r, ϕ)

∂ϕ

)
+

∂

∂x2

(
sinϕ

∂f(r, ϕ)

∂r
+

cosϕ

r

∂f(r, ϕ)

∂ϕ

)
= cosϕ

∂

∂r

(
cosϕ

∂f(r, ϕ)

∂r
− sinϕ

r

∂f(r, ϕ)

∂ϕ

)
− sinϕ

r

∂

∂ϕ

(
cosϕ

∂f(r, ϕ)

∂r
− sinϕ

r

∂f(r, ϕ)

∂ϕ

)
+ sinϕ

∂

∂r

(
sinϕ

∂f(r, ϕ)

∂r
+

cosϕ

r

∂f(r, ϕ)

∂ϕ

)
+

cosϕ

r

∂

∂ϕ

(
sinϕ

∂f(r, ϕ)

∂r
+

cosϕ

r

∂f(r, ϕ)

∂ϕ

)
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Hence, evaluating the right hand side, we get that

∆f(r, ϕ) = cosϕ

(
cosϕ

∂2f(r, ϕ)

∂r2
+

sinϕ

r2

∂f(r, ϕ)

∂ϕ
− sinϕ

r

∂2f(r, ϕ)

∂ϕ∂r

)
− sinϕ

r

(
− sinϕ

∂f(r, ϕ)

∂r
+ cosϕ

∂2f(r, ϕ)

∂r∂ϕ
− cosϕ

r

∂f(r, ϕ)

∂ϕ
− sinϕ

r

∂2f(r, ϕ)

∂ϕ2

)
+ sinϕ

(
sinϕ

∂2f(r, ϕ)

∂r2
− cosϕ

r2

∂f(r, ϕ)

∂ϕ
+

cosϕ

r

∂2f(r, ϕ)

∂ϕ∂r

)
+

cosϕ

r

(
cosϕ

∂f(r, ϕ)

∂r
+ sinϕ

∂2f(r, ϕ)

∂r∂ϕ
− sinϕ

r

∂f(r, ϕ)

∂ϕ
+

cosϕ

r

∂2f(r, ϕ)

∂ϕ2

)
= cos2 ϕ

∂2f(r, ϕ)

∂r2
+

sin2 ϕ

r

∂f(r, ϕ)

∂r
+

sin2 ϕ

r2

∂2f(r, ϕ)

∂ϕ2

+ sin2 ϕ
∂2f(r, ϕ)

∂r2
+

cos2 ϕ

r

∂f(r, ϕ)

∂r
+

cos2 ϕ

r2

∂2f(r, ϕ)

∂ϕ2

=
∂2f(r, ϕ)

∂r2
+

1

r

∂f(r, ϕ)

∂r
+

1

r2

∂2f(r, ϕ)

∂ϕ2

Next, we use the hint an check for which A,B ∈ R, we have that

∆(rA sin(Bϕ)) = 0 in Ω.

Note that such function is smooth outside of the origin. Consequently, using the
above computation, we see that for uAB := rA sin(Bϕ)

∆uAB = A(A− 1)rA−2 sin(Bϕ) +ArA−2 sin(Bϕ)− rA−2B2 sin(Bϕ)

=
(
A2 −B2

)
rA−2 sin(Bϕ).

Hence, we require A2 = B2 in what follows. Next, we also check for which A,B we
have uAB ∈ W 1,2(Ω). Since, the classical derivatives exist in Ω, we know that the
weak derivative also exists and we just need to specify the conditions on A,B so
that ∫

Ω

|∇uAB |2 <∞.

Using the transformation into the polar coordinates and the substitution theorem,
we have∫

Ω

|∇uAB |2 dx =

∫
Ω

(
∂uAB
∂x1

)2

+

(
∂uAB
∂x2

)2

dx

=

∫ 1

0

∫ ϕ0

0

(
cosϕ

∂uAB
∂r

− sinϕ

r

∂uAB
∂ϕ

)2

r +

(
sinϕ

∂uAB
∂r

+
cosϕ

r

∂uAB
∂ϕ

)2

r dϕ dr

=

∫ 1

0

∫ ϕ0

0

((
∂uAB
∂r

)2

+
1

r2

(
∂uAB
∂ϕ

)2
)
r dϕ dr

=

∫ 1

0

∫ ϕ0

0

((
ArA−1 sin(Bϕ)

)2
+

1

r2

(
BrA cos(Bϕ)

)2)
r dϕ dr

=

∫ 1

0

∫ ϕ0

0

r2A−1
(
A2 sin2(Bϕ) +B2 cos2(Bϕ)

)
dϕ dr

=

∫ 1

0

∫ ϕ0

0

A2r2A−1 dϕ dr = A2ϕ0

∫ 1

0

r2A−1 dr,
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where we used the fact that A2 = B2. Consequently, if we want to have the above
integral finite, we must impose the condition A > 0. Since the regularity of the
solution does not depend on the sign of B, we assume in what follows only the case
A = B > 0.

Next, we show for which p′s the function uAB ∈ W 2,p(Ω). For that reasons, we
compute the second derivatives (in term of variables (r, ϕ))

∂2uAB
∂x2

1

= cos2 ϕ
∂2uAB
∂r2

+
2 cosϕ sinϕ

r2

∂uAB
∂ϕ

− 2 cosϕ sinϕ

r

∂2uAB
∂ϕ∂r

+
sin2 ϕ

r

∂uAB
∂r

+
sin2 ϕ

r2

∂2uAB
∂ϕ2

= A(A− 1)rA−2 cos2 ϕ sin(Aϕ) + 4ArA−2 cosϕ sinϕ cos(Aϕ)

+ArA−2 sin2 ϕ sin(Aϕ)−A2rA−2 sin2 ϕ sin(Aϕ)

In the same manner we shall estimate other second derivatives to finally conclude
that ∫

Ω

|∇2uAB |p dx ∼
∫ 1

0

r(A−2)pr dr

and wee that the integral is finite if and only if (for 0 ≤ A < 2, since for A ≥ 2 it
is always finite)

p <
2

2−A
.

Finally, we apply everything to the functions u1 and u2, which are thus given as

u1 = r
π
ϕ0 sin

(
ϕπ

ϕ0

)
, u2 = r

π
2ϕ0 sin

(
ϕπ

2ϕ0

)
and due to the above computations we get that u1, u2 ∈W 1,2(Ω) and

u1 ∈


W 2,p(Ω) for p <

2

2− π
ϕ0

and ϕ0 >
π

2

W 2,∞(Ω) for ϕ0 ≤
π

2

 =⇒ u1 ∈W 2,2(Ω) if ϕ0 < π,

u2 ∈


W 2,p(Ω) for p <

2

2− π
2ϕ0

and ϕ0 >
π

4

W 2,∞(Ω) for ϕ0 ≤
π

4

 =⇒ u2 ∈W 2,2(Ω) if ϕ0 <
π

2
.

Finally, we check that u1 and u2 are the solutions of the corresponding problem.
Since, u1 is continuous in Ω and also u1 ∈ W 1,2(Ω), then evidently the trace of u1

is zero. Next, for any smooth compactly supported function v we get by integration
by parts (we ca apply that because u1 is smooth in the interior of Ω)∫

Ω

∇u1 · ∇v = −
∫

Ω

∆u1v = 0,

where we used the fact that u1 is harmonic. Finally since the space C∞0 (Ω) is dense

in W 1,2
0 (Ω) we can generalize the above relation also for any v ∈W 1,2

0 (Ω). Indeed,

for any v ∈W 1,2
0 (Ω), we can find a sequence (by density) {vn} ⊂ C∞0 (Ω) such that

vn → v in W 1,2(Ω) and then

(1.4)

∫
Ω

∇u1 · ∇v = lim
n→∞

∫
Ω

∇u1 · ∇vn = 0.
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Finally, let w be a smooth function on R2 fulfilling w = 1 in B 1
2
(0) and w = 0 on

R2 \ B 3
4
(0) and define v1 := u1w. Then evidently v1 ∈ W 1,2(Ω) ∩W 2,p(Ω) with p

specified above, v1 = 0 on ∂Ω and we have for any z ∈W 1,2
0 (Ω)∫

Ω

∇v1 · ∇z =

∫
Ω

w∇u1 · ∇z + u1∇w · ∇z

=

∫
Ω

∇u1 · ∇(wz)︸ ︷︷ ︸
(1.4)

−
∫

Ω

z∇u1 · ∇w − u1∇w · ∇z = −
∫

Ω

z∇u · ∇w + div(u1∇w)z,

which is the weak formulation of

−∆v1 = −∇u1 · ∇w − div(u1∇w) =: f1

Note that thanks to the presence of w, the function f1 is smooth since u1 is regular
outside of 0 but w is constant near zero.

For v2 we could use exactly the same arguments to get the result, but since
we did not formulate any result concerning the density of functions vanishing only
near Γ1. Thus, we proceed differently. Let Q : [0,∞)→ [0,∞) be smooth function
fulfilling Q = 1 on [0, 1/4] and Q = 0 on [1,∞) and let R : [0,∞) → [0,∞) be
smooth nondecreasing function fulfilling R = 0 on [0, 1/2] and R = 1 on [1,∞).
Next, we define

v2(r, ϕ) := u2(r, ϕ)Q(r2)

Then it is easy to check that v2 = 0 on Γ1∪Γ3. Next we check what kind of problem
v2 satisfies. We use also the function R to cut everything near zero in order to be
able to use integration by parts. In addition, it is also a direct consequence of the
definition that ∇v2 · n = 0 on Γ2. Hence, let z ∈ W 1,2(Ω)be arbitrary fulfilling (in
sense of traces) z = 0 on Γ1 ∪ Γ3∫

Ω

∇v2 · ∇z = lim
ε→0+

∫
Ω

∇v2 · ∇zR(r2/ε2)

= − lim
ε→0+

∫
Ω

div(R(r2/ε2)∇v2)z − lim
ε→0+

∫
∂Ω

∇v1 · n︸ ︷︷ ︸
=0 on Γ2

zR(r2/ε2)︸ ︷︷ ︸
=0 on Γ1∩Γ3

= − lim
ε→0+

∫
Ω

(∇R(r2/ε2) · ∇v2 +R(r2/ε2)div(∇v2)︸ ︷︷ ︸
∆(u2Q)

)z

= −
∫

Ω

(u2∆Q+∇u2 · ∇Q)z − lim
ε→0+

2ε−2

∫
Bε(0)∩Ω

R′(r2/ε)x · ∇v2z

Thus, if we show that the last limit is equal to zero, we see that v2 is a weak solution
to the desired problem with f2 := −(u2∆Q+∇u2 ·∇Q) which is a smooth function.

To estimate the limit, we recall the Poincaré inequality and for all z̃ ∈ W 1,2(Ω)
being equal to zero on Γ1 there holds ‖z̃‖2 ≤ C‖∇z̃‖2. Hence, if we define the
particular z̃ as

z̃(x) := z(εx)
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and use the substitution and Poincaré inequality on Ω we have
(1.5)∫

Ω∩Bε(0)

|z(x)|2 dx =

∫
Ω∩Bε(0)

|z̃(x/ε)|2 dx = ε2

∫
Ω

|z̃(x)|2 dx ≤ Cε2

∫
Ω

|∇z̃(x)|2 dx

= Cε4

∫
Ω

|∇z(εx)|2 dx = Cε2

∫
Ω∩Bε(0)

|∇z(x)|2 dx

Hence, by the Hölder inequality and theabove proven re-scaled Poincaréinequality,
we have∣∣∣∣∣ε−2

∫
Bε(0)∩Ω

R′(r2/ε)x · ∇v2z

∣∣∣∣∣ ≤ ‖R′‖∞
(∫

Ω∩Bε(0)
|z(x)|2 dx

ε2

) 1
2
(∫

Ω∩Bε(0)

|∇v2|2
) 1

2

≤ C‖R′‖∞‖∇z‖2

(∫
Ω∩Bε(0)

|∇v2|2
) 1

2
ε→0+→ 0

where the last limit holds since v2 ∈W 1,2(Ω).
�


