Difficult homework(s)

Homework 1: Define the mapping $A : \mathbb{R}^{N \times d} \to \mathbb{R}^{N \times d}$ as

$$\xi \mapsto \arctan(1+|\xi|^2)\xi \qquad \forall \xi \in \mathbb{R}^{N \times d}$$

where $|\xi|^2$ is given as

$$|\xi|^2 := \sum_{\nu=1}^N \sum_{i=1}^d (\xi_i^{\nu})^2.$$

 $-\operatorname{div} A(\nabla u) = 0$ in Ω , $u = u_0$ on $\partial \Omega$.

Consider the problem: $\Omega \subset \mathbb{R}^d$ and $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ and to find $u: \Omega \to \mathbb{R}^N$

 $\mathcal{M} = (\mathcal{N}_{a_1}\mathcal{M}_{a_1}\dots\mathcal{M}_{a_k})$ N-equations. It is a system of N-partial differential equations, which in components can be written as

(1)
$$-\sum_{i=1}^{d} \frac{\partial}{\partial x_i} \left(\arctan\left(1 + \sum_{k=1}^{d} \sum_{\nu=1}^{N} (\partial_{x_k} u^{\nu})^2 \right) \partial_{x_i} u^{\mu} \right) = 0 \text{ in } \Omega,$$
$$u^{\mu} = u_0^{\mu} \text{ on } \partial\Omega$$

for $\mu = 1, ..., N$.

- Define a notion of a weak solution and prove the existence and uniqueness of weak solution
- Show that $u \in W^{2,2}_{loc}(\Omega; \mathbb{R}^N)$. Hint: Prove that A is uniformly monotone operator from $\mathbb{R}^{N \times d} \to \mathbb{R}^{N \times d}$, i.e., that it satisfies for some c_1

$$(A(\xi_1) - A(\xi_2)) \cdot (\mathbf{x}_1 - \xi_2) \ge c_1 |\xi_1 - \xi_2|^2.$$

Then follow step by step the proof from winter semester for linear equations.

• Show **rigorously** that $|\nabla u|^2$ is a sub-solution to a certain elliptic problem with measurable coefficients. That is, show that $|\nabla u|^2 \in W^{1,1+\varepsilon}_{loc}(\Omega)$ for some $\varepsilon > 0$ and that there exists a bounded measurable elliptic matrix with components $b_{ij}(x)$ such that for all nonnegative $\varphi \in \mathcal{C}_0^{\infty}(\Omega)$ there holds

$$\sum_{j=1}^{d} \int_{\Omega} b_{ij}(x) \partial_{x_i}(|\nabla u|^2) \partial_{x_j} \varphi \le 0$$

• premium difficult homework: Based on the property above, prove rigorously that $u \in W_{loc}^{1,\infty}(\Omega; \mathbb{R}^N)$

Homework 2: Consider the problem

 $\partial_t u - \Delta u - \Delta_p u = 0$ in $(0,T) \times \Omega$, u = 0 on $(0,T) \times \partial \Omega$, $u = u_0$ in Ω

with some $p \in (1, 2]$ and $u_0 \in L^2(\Omega)$, where Δ_p is the *p*-Laplacian and $\Omega \subset \mathbb{R}^d$ is a Lipschitz set. Assume that $u \in L^2(0, T; W_0^{1,2}(\Omega))$ solves the above problem in the following sense: For all $\varphi \in \mathcal{C}_0^{\infty}((-\infty, T) \times \Omega)$ there holds (here $Q := (0, T) \times \Omega$))

$$\int_{Q} -u\partial_t \varphi + (\nabla u + |\nabla u|^{p-2} \nabla u) \cdot \nabla \varphi = \int_{\Omega} \varphi(0, x) u_0(x) \, dx$$

• Show that $\partial_t u \in L^2(0,T; (W_0^{1,2}(\Omega))^*)$ and that $u(0) = u_0$ and that for arbitrary $\psi \in W_0^{1,2}(\Omega)$ and almost all $t \in (0,T)$ we have

$$\langle \partial_t u(t), \psi \rangle + \int_{\Omega} (\nabla u(t, x) + |\nabla u(t, x)|^{p-2} \nabla u(t, x)) \cdot \nabla \psi(x) \, dx = 0$$

• Show that if $p \in (1, 2)$ then for arbitrary $u_0 \in L^2(\Omega)$ there exists $\tau \in (0, \infty)$ such that u(t) = 0 for all $t \ge \tau$. Hint: You should prove that there is $\delta > 0$ such that (formally)

$$\frac{d}{dt} \|u\|_2^2 + \delta \|u\|_2^{2\lambda} \le 0$$

for some $\lambda \in (0, 1)$. Then you should apply your knowledge from the theory of ordinary differential equations (inequalities).

• Show that if p = 2 then for arbitrary $u_0 \neq 0$ and arbitrary $t \in (0, \infty)$ we have $u(t) \neq 0$. Hint: show that if $\{w_k\}_{k \in \mathbb{N}}$ are eigenfunctions of Laplace operator with eigenvalues λ_k then for every k and t there holds

$$|u(t)||_2^2 \ge e^{-2\lambda_k t} ||P^k u_0||_2^2$$

where P_k is the projection to the span of first k eigenvectors.

Additional hint to HW1: In the part of proving subsolution property. Here is just the formal/non-rigorous hint. But since you have that $u \in W_{loc}^{2,2}$ this formal procedure can be justified rigorously (= DO IT).

Apply $\frac{\partial}{\partial x_k}$ to the μ -th equation in (1). Then multiply the product by $\partial_{x_k} u^{\mu}$ and sum over $k = 1, \ldots, d$ and $\mu = 1, \ldots, N$ to get

$$0 = -\sum_{i,k=1}^{d} \sum_{\mu=1}^{N} \partial_{x_{k}} u^{\mu} \frac{\partial}{\partial x_{i}} \left(\frac{\partial}{\partial x_{k}} \left(\arctan\left(1 + \sum_{k=1}^{d} \sum_{\nu=1}^{N} (\partial_{x_{k}} u^{\nu})^{2}\right) \partial_{x_{i}} u^{\mu} \right) \right)$$

$$= \sum_{i,k=1}^{d} \sum_{\mu=1}^{N} \frac{\partial}{\partial x_{i}} \left(\partial_{x_{k}} u^{\mu} \frac{\partial}{\partial x_{k}} \left(\arctan\left(1 + \sum_{k=1}^{d} \sum_{\nu=1}^{N} (\partial_{x_{k}} u^{\nu})^{2}\right) \partial_{x_{i}} u^{\mu} \right) \right)$$

$$+ \sum_{i,k=1}^{d} \sum_{\mu=1}^{N} \frac{\partial^{2} u^{\mu}}{\partial x_{k} \partial x_{i}} \frac{\partial}{\partial x_{k}} \left(\arctan\left(1 + \sum_{k=1}^{d} \sum_{\nu=1}^{N} (\partial_{x_{k}} u^{\nu})^{2}\right) \partial_{x_{i}} u^{\mu} \right) =: I_{1} + I_{2}.$$

Show that $I_2 \ge 0$ and that I_1 can be rewritten as

$$I_1 = -\sum_{j=1}^d \frac{\partial}{\partial x_j} \left(\sum_{i=1}^d b_{ij}(x) \left(\sum_{\mu=1}^N |\nabla u^{\mu}|^2 \right) \right) =: -\sum_{j=1}^d \frac{\partial}{\partial x_j} \left(\sum_{i=1}^d b_{ij}(x) \left(|\nabla u|^2 \right) \right)$$

with a proper elliptic matrix b_{ij} .

 $\mathbf{2}$

¹In fact you should be able to get that $I_2 \ge c \sum_{\mu=1}^N |\nabla^2 u^{\mu}|^2$.