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Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Name:

Question 1 2 3 Score

Maximum points 0 100 100 200

Points

1.[0] Formulate theorem about continuous and compact embedding of W 1,p(Ω) into the proper
Banach space(s).

Solution:

See lecture.
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2.[100] Let Ω ⊂ Rd be Lipschitz set. Assume that u ∈ L2(0, T ;W 1,2(Ω)) and F ∈ L2(0, T ;L2(Ω;Rd)).
Assume that for all φ ∈ C∞((0, T ) × Ω) fulfilling for all x ∈ Ω φ(0, x) = φ(T, x) = 0 there
holds ∫ T

0

∫
Ω

u∂tφdx dt =

∫ T

0

∫
Ω

F · ∇φdx dt. (E)

70% Prove that u ∈ C([0, T ];L2(Ω)).

30% Show that for all t ∈ (0, T ) there holds

∥u(t)∥22 − ∥u(0)∥22 = −2

∫ t

0

F · ∇u.

Solution:

Method I: Here, we rewrite the problem in the way that we can use directly the
Theorem from the lecture. Hence, we recall that V,H, V ∗ forms a Gelfand triple if we
set V :=W 1,2(Ω) and H := L2(Ω). First of all, we define F : (0, T ) → V ∗ by the formula

⟨F(t), v⟩ := −
∫
Ω

F(t, x) · ∇v(x) dx ∀v ∈ V.

The fact that F(t) ∈ V ∗ for almost all t ∈ (0, T ) follows from the linearity of the integral,
the Hölder inequality and the fact that F ∈ L2(0, T ;L2). It also follows the definition
that for almost all t ∈ (0, T ) ∫ T

0

∥F(t)∥2V ∗ ≤
∫ T

0

∫
Ω

|F|2

and consequently, we see that F ∈ L2(0, T ;V ∗). Next, we show that ∂tu = F . Consider
v ∈ V arbitrary and ψ ∈ C∞

0 (0, T ). Then we have, by using the properties of the Gelfand
triple, the properties of the Bochner integral and by setting φ := ψv in (E)∫ T

0

ψ(t)⟨F(t), v⟩V dt = −
∫ T

0

ψ(t)

∫
Ω

F(t, x) · ∇v(x)dx dt

= −
∫ T

0

∫
Ω

u(t, x)∂tψ(t)v(x)dx dt = −
∫
Ω

(∫ T

0

u(t, x)∂tψ(t) dt

)
v(x) dx

= −

〈∫ T

0

u(t)∂tψ(t) dt, v

〉
V

=

〈∫ T

0

∂tuψ(t) dt, v

〉
V

=

∫ T

0

ψ(t)⟨∂tu(t), v⟩V .

We used the definition of the weak derivative in Bochner spaces. Hence, we identified
∂tu with F . Thus, we have u ∈ L2(0, T ;V )∩W 1,2(0, T ;V ∗) and we can use the Theorem
from the lecture and get that u ∈ C([0, T ];L2(Ω)). Moreover, we can use the integration
by parts formula together with (E) and the fact that u ∈ L2(0, T ;V )

∥u(t)∥22 − ∥u(0)∥22 = 2

∫ t

0

⟨∂t, u⟩V = −2

∫ t

0

∫
Ω

F · ∇u.



PDE 1, WS 2022-2023 Written exam January 23, 2023

Method II: We modify the proof of integration by parts formula and in fact we do not
use any Gelfand triple. Fix h0 > 0. Assume that ψ ∈ C∞((0, T ) × Ω) is arbitrary and
consider g ∈ C∞(h0, T − h0). Consider h ∈ (0, h0) and define

(ψ(t, x)g(t))−h :=
1

h

∫ t

t−h

ψ(τ, x)g(τ) dτ, (ψ(t, x)g(t))h :=
1

h

∫ t+h

t

ψ(τ, x)g(τ) dτ.

Note that (see the lecture) it follows from the properties of the Bochner integral and
weak derivatives that

∂t(ψ(t, x)g(t))−h =
ψ(t, x)g(t)− ψ(t− h, x)g(t− h)

h
,

∂tuh(t, x) =
u(t+ h, x)− u(t, x)

h
weak derivative in L2(0, T ;L2(Ω))

Next, we set φ := (ψg)−h in (E). Using the fact that h < h0 that g is compactly
supported on (h0, T − h0), we can write after using the Fubini theorem

−
∫ T

0

∫
Ω

Fh(t, x) · ∇ψ(t, x)g(t) dx dt = − 1

h

∫ T

0

∫ h

0

∫
Ω

F(t+ τ, x) · ∇ψ(t, x)g(t) dx dτ dt

= − 1

h

∫ T

0

∫ h

0

∫
Ω

F(t, x) · ∇ψ(t− τ, x)g(t− τ) dx dτ dt

= −
∫ T

0

∫
Ω

F · ∇(ψg)−hdx dt
(E)
= −

∫ T

0

∫
Ω

u(t, x)
ψ(t, x)g(t)− ψ(t− h, x)g(t− h)

h
dx dt

=

∫ T

0

∫
Ω

ψ(t, x)g(t)
u(t+ h, x)− u(t, x)

h
dx dt =

∫ T

0

∫
Ω

∂tuh(t, x)ψ(t, x)g(t)dx dt

(1)

Using the density argument, we see that (1) holds true even for all ψ ∈ L2(0, T ;W 1,2(Ω))
and all g ∈ L∞(0, T ) compactly supported in (h0, T −h0). Consider now h1, h2 ∈ (0, h0)
and denote w := uh1

− uh2
. Then it follows from (1) that∫ T

0

∫
Ω

∂twψgdx dt =

∫ T

0

∫
Ω

(Fh2 − Fh1) · ∇ψg dx dt (2)

Next, let h0 < t1 < T/2 < τ < T − h0 be arbitrary. We set ψ := w and g := χ[t1,τ ] in
(2). Note that such choice is possible. A simple integration and the Hölder inequality
then gives

∥uh1(t1)− uh2(t1)∥22 ≤ ∥uh1(τ)− uh2(τ)∥22

+ 2

(∫ T−h0

h0

∥Fh2 − Fh1∥22

) 1
2
(∫ T−h0

h0

∥uh1
− uh2

∥2W 1,2

) 1
2

Integrating this result with respect to τ ∈ (T/2, T −h0) and using the Young inequality,
we have

sup
t1∈[h0,T/2]

∥uh1(t1)− uh2(t1)∥22 ≤ 2T

∫ T−h0

h0

∥Fh2 − Fh1∥22 + ∥uh1 − uh2∥2W 1,2 . (3)
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Thus, since Fh → F strongly in L2(0, T ;L2) and uh → u strongly in L2(0, T ;W 1,2), it
follows from (3) that uh is a Cauchy sequence in C([h0, T/2];L2(Ω)) and since it is a
Banach space, it has the limit u ∈ C([h0, T/2];L2(Ω)). Similarly we can prove the result
also on the time interval [T/2, T − h0] and since h0 was arbitrary, we can extend it onto
the whole time interval (0, T ), i.e., for all h0 > 0 we have

uh → u strongly in C([h0, T − h0];L
2(Ω)). (4)

It just remains to cover the interval [0, T ] and to prove also the energy equality. We start
with the following observation. Using (1) with ψ := uh and g = χ[t1,t2] with 0 < t1 < t2
we have for sufficiently small h > 0 that

− 2

∫ t2

t1

∫
Ω

Fh(t, x) · ∇uh(t, x) dx dt = ∥uh(t2)∥22 − ∥uh(t1)∥22.

Finally, using (4), we deduce

− 2

∫ t2

t1

∫
Ω

F(t, x) · ∇u(t, x) dx dt = ∥u(t2)∥22 − ∥u(t1)∥22. (5)

Hence, to finish the proof, it remains to show that

u(t) → u(0) strongly in L2(Ω) for t→ 0+.

And also similarly for t→ T−. However, now we can use the whole procedure, where we
just replace u by

w(t, x) := u(t+ δ, x)− u(t, x).

Then, (5) gives for δ > 0 small

∥u(t1 + δ)− u(t1)∥22 = ∥u(t2 + δ)− u(t2)∥22 + 2

∫ t2

t1

∫
Ω

(F(t+ δ, x)− F(t, x)) · ∇(u(t+ δ, x)− u(t, x)) dx dt.

(6)

Thus, we see that the sequence u(t) is Cauchy in L2(Ω) as t→ 0−. Hence, we have

u(t) → u(0).
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3.[100] Let Ω ⊂ Rd be a Lipschitz set and d ∈ N. Assume that B ∈ L∞(Ω;Rd×d) is given elliptic
matrix. In addition, let ∂Ω1 and ∂Ω2 be two smooth disjoint parts of the boundary such that
∂Ω1 ∪ ∂Ω2 = ∂Ω and |∂Ω1|d−1 > 0. Denote V := {φ ∈ W 1,2(Ω); φ = 0 on ∂Ω1}. Define a
set

K :=

{
f = (f1, . . . , fn) ∈ L2(Ω;Rd); ∀φ ∈ V

∫
Ω

f · ∇φ =

∫
Ω

φ−
∫
∂Ω2

x1n1φ

}
,

where the outer normal vector of ∂Ω is denoted as n = (n1, . . . , nd), and a functional

J(f) :=

∫
Ω

Bf · f − x2f1 − x1f2 + 2xdfd.

30% Show that there exists unique f ∈ K such that (Present the complete proof.)

J(f) ≤ J(f̃) for all f̃ ∈ K. (7)

20% Derive the Euler–Lagrange equations to (7) and show that the unique minimizer satisfies
such equations.

30% The problem (7) is a dual formulation of some primary problem(s). Derive the classical
formulation of the primary problem to (7) and show its “equivalence”to dual prolem.

20% Under which assumptions there hold f ∈W 1,2
loc (Ω;Rd) and/or f ∈W 1,2(Ω;Rd)?

Solution:

Existence and uniqueness: Note that we can assume that B is symmetric (since the
antisymmetric part of B is not visible for J). First, we show that K is nonempty. Using
integration by parts, it is not difficult to show that (−x1, 0, . . . , 0) ∈ K. Next, using the
ellipticity of B, the fact that Ω is bounded and the Hölder inequality, we also have that
for all f ∈ L2(Ω;Rd)

J(f) ≥ C1∥f∥22 − C2∥f∥2 ≥ C1

2
∥f∥22 − C, (8)

where C is a constant independent of f and C1 is the ellipticity constant of B. Hence,
since K is not empty and J is bounded from below, we have

I := inf
f∈K

J(f) > −∞.

Hence, from the definition of infima, we have that there exists a sequence fn ∈ K such
that

I = lim
n→∞

J(fn).

Since, J((−x1, 0, . . . , 0)) ≤ C3, we see that there exists n0 such that for all n ≥ n0 we
have

∥fn∥22 − C ≤ J(fn) ≤ J((−x1, 0, . . . , 0)) + 1 ≤ C3 + 1.

Consequently, we have that
∥fn∥2 ≤ C̃. (9)
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Using the reflexivity of L2, we have that there exists f ∈ L2(Ω;Rd) such that for a
subsequence that we do not relabel

fn ⇀ f weakly in L2(Ω;Rd).

The above weak convergence means that for all ψ ∈ L2(Ω) and all i = 1, . . . , d, there
holds

lim
n→∞

∫
Ω

fni ψ =

∫
Ω

fiψ. (10)

First, we show that the limit f ∈ K. Using (10) and the fact that fn ∈ K and ∇φ ∈ L2,
we get ∫

Ω

f · ∇φ = lim
n→∞

∫
Ω

fn · ∇φ =

∫
Ω

φ−
∫
∂Ω2

x1n1φ,

which means f ∈ K. Next, using the ellipticity and the symmetry of B and the weak
convergence (10), we deduce

I = lim
n→∞

J(fn) = lim inf
n→∞

∫
Ω

Bfn · fn − x2f
n
1 − x1f

n
2 + 2xdf

n
d

= lim inf
n→∞

∫
Ω

B(fn − f) · (fn − f) + Bf · (fn − f) + Bf · fn − x2f
n
1 − x1f

n
2 + 2xdf

n
d

≥ lim
n→∞

∫
Ω

Bf︸︷︷︸
∈L2

· (fn − f)︸ ︷︷ ︸
⇀0 in L2

+ Bf︸︷︷︸
∈L2

· fn︸︷︷︸
⇀f in L2

− (x2, x1, 0, . . . , 0,−2xd)︸ ︷︷ ︸
∈L2

· f︸︷︷︸
⇀f in L2

=

∫
Ω

Bf · f − x2f1 − x1f2 + 2xdfd = J(f).

Thus, we have I ≤ J(f) ≤ I and therefore f is a minimizer.

Concerning the uniqueness. Assume that f̃ ̸= f is another minimizer, i.e, J(f̃) = I and∫
Ω
|f − f̃ |2 > 0. Then (f̃ + f)/2 ∈ K and from definition of I we deduce

I ≤ J((f̃ + f)/2) =
1

4

∫
Ω

B(f + f̃) · (f + f̃)− 2x2(f1 + f̃1)− 2x1(f2 + f̃2) + 4xd(fd + f̃d)

=
1

2
J(f) +

1

2
J(f̃)− 1

4

∫
Ω

B(f − f̃) · (f − f̃) ≤ I − C1

4
∥f − f̃∥22 < I,

which is a contradiction.

Euler–Lagrange equations: Let f be a minimizer to (7). Denote

K0 :=

{
f = (f1, . . . , fn) ∈ L2(Ω;Rd); ∀φ ∈ V

∫
Ω

f · ∇φ = 0

}
,

. Next, let g ∈ K0 be arbitrary. Then for all ε > 0 we have (f ± εg) ∈ K and from the
definition of minima, it follows∫

Ω

Bf · f − x2f1 − x1f2 + 2xdfd = J(f) ≤ J(f ± εg)

=

∫
Ω

B(f ± εg) · (f ± εg)− x2(f1 ± εg1)− x1(f2 ± εg2) + 2xd(fd ± εgd)
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and consequently, a simple algebraic manipulation gives

0 ≤ ε2
∫
Ω

Bg · g ± ε

∫
Ω

2Bf · g − x2g1 − x1g2 + 2xdgd

Hence, dividing by ε > 0 and letting ε→ 0+, we get∫
Ω

2Bf · g − x2g1 − x1g2 + 2xdgd = 0 ∀g ∈ K0, (11)

which is the Euler–Lagrange equation for (7).

Primary formulation: Let α ∈ R be fixed but arbitrary. Denote u0 :=
x1x2−x2

d

2 + α.
Then u0 ∈W 1,2(Ω) and ∇u0 = 1

2 (x2, x1, 0, . . . , 0,−2xd). Hence, we can rewrite

J(f) = 2

∫
Ω

Bf · f
2

−∇u0 · f

and (11) has the form ∫
Ω

Bf · g −∇u0 · g = 0 ∀g ∈ K0. (12)

Finally, we introduce the problem (which is the primary problem to (7))

−div(B−1∇u) = 1 in Ω,

u = u0 on ∂Ω1,

B−1∇un = −x1n1 on ∂Ω2.

(13)

Note that the matrix B−1 exists since B is symmetric and elliptic. The weak formulation
of (13) is the following∫

Ω

B−1∇u · ∇φ =

∫
Ω

φ−
∫
∂Ω2

x1n1φ ∀φ ∈ V. (14)

The existence and uniqueness of a weak solution u ∈W 1,2, such that (u−u0) ∈ V follows
by the Lax–Milgram theorem (see the lecture and use the fact that |∂Ω1|(d−1) > 0).
Finally we show that (therefore, we called it the primary formulation)

∇u = Bf . (15)

To do so, we compute

C

∫
Ω

|Bf −∇u|2 ≤
∫
Ω

B−1(Bf −∇u) · (Bf −∇u) =
∫
Ω

(Bf −∇u) · (f − B−1∇u)

=

∫
Ω

(Bf −∇u0) · (f − B−1∇u)︸ ︷︷ ︸
∈K0

+

∫
Ω

∇(u0 − u︸ ︷︷ ︸
∈V

) · (f − B−1∇u)

(12),(14)
= 0,

where we also used the fact that f ∈ K. Thus, (15) holds true.

Regularity: We use the elliptic regularity(from the lecture). We assume that B is in
addition Lipschitz (and consequently also B−1). Then we use the elliptic regularity for
(13). Hence, we have u ∈W 2,2

loc (Ω). In addition, to get that u ∈W 2,2(Ω) we must assume

that Ω ∈ C1,1 and also that ∂Ω1∩∂Ω2 = ∅. Thus using (15), we deduce f ∈W 1,2
loc provided

that B is Lipschitz and f ∈W 1,2 provided that Ω ∈ C1,1 and also that ∂Ω1 ∩ ∂Ω2 = ∅.


