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Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Name:

Question 1 2 3 Score

Maximum points 0 100 100 200

Points

1.[0] Formulate the Lax–Milgram theorem.

Solution:

See lecture.
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2.[100] Consider the set
Ω := {(x, y) ∈ R2; x2 + y2 < 1}

and the function
f(x, y) := |x− y|α.

70% Prove that for α ≥ 0, we have f ∈W 1,1(Ω). Derive rigorously ∂xf and ∂yf - the weak
derivatives of f . Find the biggest p > 1 for which f ∈W 1,p(Ω).

30% Prove that for α < 0, we have f /∈W 1,1(Ω).

Solution:

Let us define two open sets

Ω+ := {(x, y) ∈ Ω; x > y},
Ω− := {(x, y) ∈ Ω; x < y}.

Then f is smooth on Ω+ and on Ω− and we have that in Ω+∪Ω− the following formulae
for classical derivatives

∂f

∂x
= α|x− y|α−2(x− y),

∂f

∂y
= −α|x− y|α−2(x− y)

(1)

Consequently, if u ∈ W 1,1(Ω) then for weak derivatives necessarily holds (1) almost
everywhere in Ω. First, let us check the integrability of functions appearing in (1). In
case α ≥ 1, we see that all quantities in (1) are bounded. Next, consider α < 1 and
p ≥ 1 and compute∫

Ω

(
|x− y|α−1

)p
=

x′= x−y√
2
,y′= x+y√

2

2
(α−1)p

2

∫
Ω

|x′|(α−1)p dx′dy′ <∞ ⇔ p <
1

1− α

Consequently, if α < 0 then p would be less than 1, hence, it would not be the Sobolev
function. The case α = 0 is trivial because then f is constant.

Hence, finally if we check that (1) is really the formula for the weak derivative then we
get that f ∈ W 1,p(Ω) with p = ∞ if α ≥ 1 and for arbitrary 1 ≤ p < 1

1−α if α ∈ (0, 1).
So let ϕ ∈ C∞0 (Ω) be arbitrary and denote for ε > 0

Ωε+ := {(x, y) ∈ Ω; x > y + ε},
Ωε− := {(x, y) ∈ Ω; x < y − ε},
Ωε := {(x, y) ∈ Ω; y − ε ≤ x ≤ y + ε}.

Note that on Ωε± the function f is smooth and we can use the standard integration by
parts. Thus, we have∫

Ω

f
∂ϕ

∂x
=

∫
Ωε+

f
∂ϕ

∂x
+

∫
Ωε−

f
∂ϕ

∂x
+

∫
Ωε
f
∂ϕ

∂x

= −
∫

Ωε+

ϕ
∂f

∂x
−
∫

Ωε−

ϕ
∂f

∂x
+

∫
Ωε
f
∂ϕ

∂x
+

∫
∂Ωε+

fϕnx +

∫
∂Ωε−

fϕnx

(2)
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Next, we let ε→ 0+. We use the above computation and (1), so we have that for α > 0
∂xf ∈  L1(Ω). Therefore

lim
ε→0+

−
∫

Ωε+

ϕ
∂f

∂x
−
∫

Ωε−

ϕ
∂f

∂x
+

∫
Ωε
f
∂ϕ

∂x
= −α

∫
Ω

(x− y)|x− y|α−2ϕ

Similarly, denoting

Γε+ := {(x, y) ∈ Ω, x = y + ε}, Γε− := {(x, y) ∈ Ω, x = y − ε}

and observing that the normal vector satisfies nx = 1/
√

2 on Γε+ and nx = −1/
√

2 on
Γε−, and using the fact that ϕ = 0 on ∂Ω, we have

√
2 lim
ε→0+

(∫
∂Ωε+

fϕnx +

∫
∂Ωε−

fϕnx

)
= lim
ε→0+

∫
Γ+
ε

fϕ−
∫

Γ−ε

fϕ

= lim
ε→0+

εα
(∫

Γ+
ε

ϕ−
∫

Γ−ε

ϕ

)
= 0

Hence, letting ε → 0+ in (2) and using the above computation, we observe that (1) is
indeed a formula for the weak derivative. For ∂yf we do the same computation.
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3.[100] Let Ω := B1(0) ⊂ R2. Consider the following problem: Find u : (0, T )× Ω→ R fulfilling

∂2u

∂t2
− 2

∂2u

∂x2
1

− ∂2u

∂x2
2

+ 2
∂2u

∂x1∂x2
= 0 in (0, T )× Ω,(

2
∂u

∂x1
− ∂u

∂x2

)
x1 +

(
∂u

∂x2
− ∂u

∂x1

)
x2 = 0 on (0, T )× ∂Ω,

u(0) =
√
x2

1 + x2
2 in Ω,

∂u

∂t
(0) = 0 in Ω.

(P)

20% Define a notion of a weak solution u to (P). Check that it is meaningful.

60% Prove the existence and the uniqueness of a weak solution.

20% Is it true that ∂2u
∂t2 ∈ L

∞(0, T ;L2(Ω))? Justify!

Solution:

First, it is important to notice that this is hyperbolic equation of second order with
kind of Neumann data. (This is different to Dirichlet data, which was treated during
lectures). Therefore, we must not fix the trace for test function.

First, we rewrite the (P) to the more standard form. First, we can observe that ν :=
(x1, x2) is the normal vector on ∂Ω. Thus, if we define the matrix A as

A :=

(
2 −1
−1 1

)
we can rewrite the problem (P) into the more familiar form

∂2u

∂t2
− divA∇u = 0 in (0, T )× Ω,

A∇u · ν = 0 on (0, T )× ∂Ω,

u(0) =
√
x2

1 + x2
2 := u0(x) in Ω,

∂u

∂t
(0) = 0 in Ω.

(P2)

Moreover, it is also evident that the matrix A is elliptic, i.e., for all ξ ∈ R2 we have

Aξ · ξ ≥ c1|ξ|2

for some c1 > 0. Hence, now it is evident how we define a notion of a weak solution. We
set V := W 1,2(Ω) and say that u : (0, T )×Ω is a weak solution to (P) if u ∈ L2(0, T ;V ),
∂tu ∈ L2(0, T ;L2(Ω)) and ∂2

ttu ∈ L2(0, T ;V ∗) and for almost all t ∈ (0, T ) and all ϕ ∈ V
satisfies

〈∂ttu, ϕ〉+

∫
Ω

A∇u · ∇ϕ = 0. (3)

In addition, we require that u(0) = u0 and ∂tu(0) = 0. Note that thanks to the
assumptions on ∂tu and ∂2

ttu, we know that u ∈ C([0, T ];L2(Ω)) and ∂tu ∈ C([0, T ];V ∗)
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and therefore we can talk about the point-wise values of u(t) and ∂tu(t), in particular
for t = 0.

Next, we show that there exists a unique weak solution. Moreover, we show that u in
addition belongs to L∞(0, T ;V ) and ∂tu ∈ L∞(0, T ;L2(Ω)).

We start with the existence part. We can find {wi}∞i=1 a basis of V which is orthonormal
in L2(Ω). Then we look for un given by

un(t, x) :=

n∑
i=1

αni (t)wi

solving ∫
Ω

∂ttu
nwi +

∫
Ω

A∇un · ∇wi = 0 i = 1, . . . , n,

un(0) = Pnu0, ∂tu
n(0) = 0,

(4)

where Pnu0 :=
∑n
i=1 wi

∫
Ω
u0wi.

Next, we rewrite (4) as the ordinary equations of secdond order for αn. Using orthonor-
mality of the basis we have

(αni )′′(t) +

n∑
j=1

αnj (t)

∫
Ω

A∇wj · ∇wi = 0 i = 1, . . . , n,

αni (0) =

∫
Ω

u0wi, (αni )′(0) = 0.

(5)

The system (5) is the system of ordinary differential equations of second order with
constant coefficients and has always a solution.

Next, we focus on a priori (n-independnet) estimates. We also recal the property of Pn,
namely ‖Pnv‖2 ≤ ‖v‖2 and ‖Pnv‖V ≤ C‖v‖V for all v ∈ V . Also Notice that since
∇u0 = x

|x| , we see that u0 ∈ V and ‖Pnu0‖V ≤ C.

We multiply the i-th equation in (4) by (αni )′(t) and sum the result over i = 1, . . . , n to
obtain ∫

Ω

∂ttu
n∂tu

n +

∫
Ω

A∇un · ∇∂tun = 0.

Hence using the fact the A is symmetric, we get

d

dt

(
‖∂tun(t)‖22 +

∫
Ω

A∇un(t) · ∇un(t)

)
= 0.

Integration with respect to time then leads to

‖∂tun(t)‖22 +

∫
Ω

A∇un(t) · ∇un(t) = ‖∂tun(0)‖22 +

∫
Ω

A∇un(0) · ∇un(0)

=

∫
Ω

A∇Pnu0 · ∇Pnu0 ≤ C‖Pnu0‖2V ≤ C.
(6)
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Thus, using the fact that A is elliptic, we get

sup
t∈(0,T )

‖∂tu(t)‖22 + ‖∇un(t)‖22 ≤ C (7)

with C being independent of n. Note that in the above equation we do not control un

in V , since we do not have the Poincaré inequality (Neumann problem). Thus, to add
the remaining information, we use the properties of the Bochner integral and the fact
we know initial condition. Indeed,

‖un(t)‖2 =

∥∥∥∥∫ t

0

∂τu
n(τ)dτ + un(0)

∥∥∥∥
2

≤
∫ t

0

‖∂tu(t)‖2+‖Pnu0‖2 ≤ ‖u0‖+T sup
t
‖∂tun(t)‖2

Hence, using the first part in (7), we deduce the final estimate

‖∂tun‖L∞(0,T ;L2(Ω)) + ‖un‖L∞(0,T ;V ) ≤ C(‖u0‖V , T ). (8)

Finally, we derive the estimate for ∂ttu
n. Using the orthonormality of the basis, we have

for all v ∈ V

〈∂ttun(t), v〉 =

∫
Ω

∂ttu
n(t)v

Orthogonality
=

∫
Ω

∂ttu
n(t)Pnv

(4)
= −

∫
Ω

A∇un(t) · ∇Pnv ≤ C‖∇un(t)‖2‖∇Pnv‖2
(7)

≤ C‖v‖V .

Consequently, using the definition of the norm, we have

‖∂ttun‖V ∗ := sup
v∈V ; ‖v‖V =1

〈∂ttun(t), v〉 ≤ C

and we have
‖∂ttun‖L∞(0,T ;V ) ≤ C. (9)

Hence, using (8) and (9), we can find u such that

un ⇀∗ u weakly∗ in L∞(0, T ;V ), (10)

∂tu
n ⇀∗ ∂tu weakly∗ in L∞(0, T ;L2(Ω)), (11)

∂ttu
n ⇀∗ ∂ttu weakly∗ in L∞(0, T ;V ∗). (12)

Thus, u is a good candidate for weak solution, it just remains to check whether it satisfies
(3) and fulfils also the initial conditions. Since from this point, the proof is identical
to the proof for hyperbolic equations with homogeneous boundary data, we refer to the
lecture for the rest of the proof of the existence theorem.

To get uniqueness, we also closely follow the proof for Dirichlet problem. For arbitrary
s > 0. Due to the linearity, it is enough to show that if u is a weak solution with zero
initial data then it is identical zero. We define (Bochner integral)

ϕ(t) :=


∫ s

t

u(τ)dτ if t ≤ s,

0 if t ∈ (s, T ).
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Since ϕ ∈ L2(0, T ;V ) we can use it in (3) to get for almost all t the identity

〈∂ttu(t), ϕ(t)〉+

∫
Ω

A∇u(t) · ∇ϕ(t) = 0.

Integrating the result over t ∈ (0, T ) and using integration by parts, we have

0 =

∫ T

0

〈∂ttu, ϕ〉+

∫
Ω

A∇u · ∇ϕ ϕ(T )=0,∂tu(0)=0
= −

∫ T

0

〈∂tu, ∂tϕ〉+

∫ T

0

∫
Ω

A∇u · ∇ϕ

=

∫ s

0

∫
Ω

∂tuu−
∫ s

0

∫
Ω

A(∇∂tϕ) · ∇ϕ =
1

2

∫ s

0

d

dt

(
‖u‖22 −

∫
Ω

A∇ϕ · ∇ϕ
)

=
1

2

(
‖u(s)‖22 +

∫
Ω

A∇ϕ(0) · ∇ϕ(0)

)
≥ 1

2
‖u(s)‖22.

Hence, u(s) = 0 and since s was arbitrary, we have u = 0 almost everywhere in (0, T )×Ω.

Concerning the regularity statement, we give here just heurestic arguments (which
would be however sufficient for the exam). In case that ∂ttu ∈ L∞(0, T ;L2(Ω)) the
also ∂ttu(0) ∈ L2(Ω) (this is the heurestic part). Then we can however read from the
equation

∂ttu(0) = divA∇u(0) = divA∇u0 =
∑
i,j

Aij
∂2

∂xi∂xj
u0

Since the left hand side is in L2(Ω) then also the right hand side must be in L2(Ω).
However, for this purpose we need that u0 ∈ W 2,2(Ω). Since |∇2u| ∼ |x|−1 and we are
in dimension two, we see that u0 /∈W 2,2(Ω), which is a contradiction.


