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Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Name:

Question 1 2 3 Score

Maximum points 0 100 100 200

Points

1.[0] Introduce the notion of Gelfand triple and give the proper meaning to 〈. . . , . . .〉V for properly
chosen space V .

Solution:

See lecture.
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2.[100] 30% Define the notion of a set Ω, which is C0,α.

35% Consider the domain Ω given as

Ω :=
{

(x, y) ∈ R2; |x|+ |y| < 1
}
.

Show from the definition that Ω is Lipschitz.

35% Show from the definition that Ω is not C1.

Solution:

Only a sketch:

Definition: We say that Ω ∈ C0,α, if it is open and there exist positive numbers α, β,
M orthogonal transformations Tr and M C0,α functions ar such that if we define

V +
r := {(x′r, xrd) ∈ Rd; |x′ri | < α for i = 1, . . . d− 1, ar(x

′
r) < xrd < ar(x

′
r) + β}

V −r := {(x′r, xrd) ∈ Rd; |x′ri | < α for i = 1, . . . d− 1, ar(x
′
r)− β < xrd < ar(x

′
r)}

Λr := {(x′r, xrd) ∈ Rd; |x′ri | < α for i = 1, . . . d− 1, ar(x
′
r) = xrd}

Then
Tr(V

+
r ) ⊂ Ω, Tr(V

−
r ) ⊂ Rd \ Ω, ∂Ω = eMr=1Tr(Λr).

Task 2: We set M = 4 and define ar(x
1
r) := |x1

r| for all r = 1, . . . , 4. We also set α = 3/4
and β := 1/4 and define the set Vr (it is the same set for each r). Finally, we find four
proper orthogonal transformations as

T1(x1, x2) := (x1, x2 − 1),

T2(x1, x2) := (x1, 1− x2),

T3(x1, x2) := (x2 − 1, x1),

T4(x1, x2) := (1− x2, x1).

Finally, it is easy to check that such a setting gives the desired property. (Note that
T1 covers neighborhood of (0,−1), T2 represents (0, 1), T3 stands for (−1, 0) and T4 for
(1, 0).

Task 3 Assume for a contradiction that Ω is C1. Let us consider a point (0,−1) ∈ ∂Ω.
Then we can find an orthogonal transformation T , a C1 function a such that for all
|x1| ≤ α

T (x1, a(x1)) ⊂ ∂Ω

in addition there is x̃, |x̃| < α such that T (x̃, a(x̃)) = (0,−1) Since any orthogonal
transformation in 2D can be written as (for some t, c1, c2)

y1 := x1 cos t+ x2 sin t+ c1, y2 := −x1 sin t+ x2 cos t+ c2

We obtain from the constrain that for all |x1| ≤ α

|x1 cos t+ a(x1) sin t+ c1|+ | − x1 sin t+ a(x1) cos t+ c2| = 1. (1)

In addition we know that here exists x̃ such that

f1(x̃) := x̃ cos t+ a(x̃) sin t+ c1 = 0, f2(x̃) := −x̃ sin t+ a(x̃) cos t+ c2 = −1.
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Consequently, it follows from (1) that on some neighborhood of x̃, we have

−1 ≤ −x̃ sin t+ a(x̃) cos t+ c2 < 0.

Thus, f2 has a minimum at x̃, so

f ′2(x̃) = − sin t+ a′(x̃) cos t = 0. (2)

Let us also assume for a moment that

f ′1(x̃) := cos t+ a′(x̃) sin t = 0.

However, combining this with (2) we see that it cannot happen (multiply f ′2 by − sin t,
f ′1 by cos t and sum the resulting identities). Hence, we have f ′1(x̃) 6= 0, and since f1 ∈ C1

and we have f1(x̃) = 0 then the function |f1(x1)| cannot have derivative at x̃. Since (1)
is equivalent to

|x1 cos t+ a(x1) sin t+ c1| = 1 + f2(x1) (3)

we see that the right hand side has derivative at x̃ while the left hand side does not.
Which is a contradiction.
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3.[100] Let Ω ⊂ Rd be a Lipschitz set and n ∈ N. Assume that fi ∈ L2(Ω) for i = 1, . . . , n. Consider
the problem: Find n functions ui : Ω→ R (here i = 1, . . . , n) solving

−4ui +

n∑
j=1

aijuj = fi in Ω, i = 1, . . . , n,

ui = 0 on ∂Ω, i = 1, . . . , n,

where aij ∈ R are given.

20% Find a proper definition of a weak solution. Check that for given data such a definition
is meaningful.

30% Use the Lax-Milgram theorem and show that if the matrix A = {aij}ni,j=1 is positively
semidefinite, then there exists a unique weak solution. (Hint, find a proper bilinear form
and a proper function space (a subspace of W 1,2 × · · · ×W 1,2), for which you can use
the Lax-Milgram theorem.)

30% In case that A is not positively definite, find the sharp relation between the spectrum
of A and the spectrum of the operator −∆u that guarantees the existence of a weak
solution for every fi ∈ L2(Ω), with i = 1, . . . , n. (Hint, consider a proper basis {wi}∞i=1

of W 1,2
0 and consider a solution of the form ui =

∑∞
j=1 bijwj .)

20% Consider Ω := (0, π)2, n = 2 and f1 = f2 = sinx1 sinx2. Find the sharp assumption on
the matrix A for which you can find a solution. Is it unique? (Hint: I hope you remember
the homework about eigen-functions and eigen-vectors for the Laplace operator on the
square.)

Solution:

Weak formulation: We deal with homogeneous Dirichlet problem. Hence, we say that
ui with i = 1, . . . , n is a weak solution if ui ∈ W 1,2

0 (Ω) for all i = 1, . . . , n and for all
ϕ ∈W 1,2

0 (Ω) and all i = 1, . . . , n there holds∫
Ω

∇ui · ∇ϕ+

∫
Ω

n∑
j=1

aijujϕ =

∫
Ω

fiϕ. (4)

Thanks to the Hölder inequality all integrals are well defined. Equivalently, we can set

V := W 1,2
0 (Ω)× · · · ×W 1,2

0 (Ω)︸ ︷︷ ︸
n−times

and look for u = (u1, . . . , un) ∈ V such that for all ϕ ∈ V there holds∫
Ω

∇u : ∇ϕ+Au · ϕ =

∫
Ω

f · ϕ. (5)

Here, we set f := (f1, . . . , fn), the matrix {A}ij := aij , the symbol “·”denotes the scalar
product in Rn and the symbol “:”denotes the scalar product in Rn × Rd.
Existence of solution for positively semidefinite A: For our purposes, we define
the bilinear B form on V as

B(u, v) :=

∫
Ω

∇u : ∇v +Au · v =

∫
Ω

n∑
i=1

d∑
j=1

∂ui
∂xj

∂vi
∂xj

+

n∑
i,j=1

aijujvi
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and F ∈ V ∗ as

〈F, v〉V :=

∫
Ω

f · v =

∫
Ω

n∑
i=1

fivi, for all v ∈ V.

Clearly, the problem then reduces to: find u ∈ V such that for all v ∈ V there holds

B(u, v) = 〈F, v〉V . (6)

The existence and uniqueness will be proven by the Lax-Milgram theorem and the fact
that A is assumed to be positively semidefinite. Indeed, V is a Hilbert space. The form
B is evidently also bilinear and V -bounded, which follows from the Hölder inequality.
Thus, it just remains to prove coercivity. However, using the fact that A is positively
semidefinite, we get (we use that u has zero trace)

B(u, u) =

n∑
i=1

‖∇ui‖22 +

∫
Ω

Au · u ≥
n∑
i=1

‖∇ui‖22
Poincaré
≥ c1

n∑
i=1

‖ui‖21,2 = c1‖u‖2V .

Hence, B satisfies all assumptions of the Lax–Milgram theorem. Thus, existence and
uniqueness is proven.

Characterization via spectrum: First, we know that there exists a basis {wj}∞j=1

of W 1,2
0 , which is orthogonal in W 1,2

0 and orthonormal in L2, which consists of eigen
functions and eigen vectors of Laplace operator, i.e.,∫

Ω

wiwk = δik,∫
Ω

∇wi · ∇ϕ = λi

∫
Ω

wiϕ, for all ϕ ∈W 1,2
0 (Ω).

Note, that we also have λi > 0 for all i. Since, it is a basis, every ui and fi can be written
as

ui =

∞∑
j=1

bijwj , fi =

n∑
j=1

Fijwj with Fij :=

∫
Ω

fiwj . (7)

Due to the property of basis, we can equivalently rewrite (4) as∫
Ω

∇ui · ∇wk +

∫
Ω

n∑
j=1

aijujwk =

∫
Ω

fiwk for all i = 1, . . . , n and k ∈ N.

Using, the definition (7) and the orthogonality and orthonormality of the basis, it reduces
to: Find bik ∈ R such that

bikλk +

n∑
j=1

aijbjk = Fik for all i = 1, . . . , n and k ∈ N. (8)

Hence, if we denote by bk,Fk ∈ Rn as

bk := (b1k, . . . , bnk), Fk := (F1,k, . . . , Fnk)
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Then the relation (8) can be reformulated as: for every k ∈ N find bk ∈ Rn such that

(λkI +A)bk = Fk, (9)

where I is the identity matrix in Rn×n. Next, (9) is just linear algebraic equation. The-
refore, if we require that there exists unique solution to (9) for arbitrary Fk, then ne-
cessarily λkI +A) must be a regular matrix, whin means nothing else that

λk /∈ spt (−A) for all k ∈ N. (10)

Solution for special choice of f1 and f2: Here, we recall the homework, where you
proved that the eigen-functions and eigen-values for the Laplace operator with zero trace
on the square are of the form (we do not normalize them to have L2 norm equal to 1)

wlk = sin(lx1) sin(kx2), λlk = l2 + k2, l, k ∈ N.

Hence, it follows from (10) that if for all l, k ∈ N

−l2 − k2 /∈ spt (A)

then we have a unique solution.

Now, we can follow the preceding step and look for u of the form

ui =

∞∑
lk=1

bilkwlk, f1 = w21, f2 = w11. (11)

Repeating step by step the previous procedure, we end up with the system of equations

b1klλkl + a11b1kl + a12b2kl =

{
1 if k = 1 & l = 1,

0 otherwise

b2klλkl + a21b1kl + a22b2kl =

{
1 if k = 1 & l = 1,

0 otherwise

(12)

Hence, if we consider l > 1 or k > 1 then we can simply set bikl = 0 to fulfill (12).
However, if spectrum of −A contains (l2 + k2) we can chose bikl as a corresponding
eigen-vector to A, so we have non-uniqueness.

Finally, if the spectrum of A does not contain −2, the system (12) always have a (non-
unique) solution. On the other, if the spectrum of −A contains 2 then we can first rewrite
(12) for k = l = 1. Then it reduces (denoting (B = b111, b211)) to find B such that

(2I +A)B = (1, 1).

Since −2 is in spectrum of A the above equation has a (nonunique) solution if and only
if

0 = w1 + w2 = (1, 1) · (w1, w2) for any solution w to (2I +AT )w = 0.

Or in other words, the vector (1, 1) must be orthogonal to eigen-vectors of matrix AT

corresponding to eigen-value −2.


