

Bifurcations, pattern formation and synchronization in a few RD systems and networks of RD systems

Benjamin Ambrosio September 25 2020 Workshop Partial differential equations describing far from equilibrium open systems

Outline

- Equation 1 (1d)
- Equation 3 (2d, patterns)
- Equation 4 (1d,2d, patterns)
- Networks (synchronization)

Equation 1

$$\begin{cases} u_t = -u^3 + \alpha u - v + u_{xx}, (x,t) \in (0,1) \times (0,+\infty) \\ v_t = u \end{cases}$$
(1)

with Neuman Boundary conditions

<u>**Remark</u>** In comparison with classical works of (for example M. Marion, R. Temam...), note that second equation of (1) has no dissipative term $-\delta v$.</u>

Also, 0 belongs to the closure of eigenvalues of the linearized operator.

This brings some technical difficulties.

$$\begin{cases} u_t = -u^3 + \alpha u - v + u_{xx}, (x,t) \in (0,1) \times (0,+\infty) \\ v_t = u \end{cases}$$
(1)

We denote

$$\mathcal{H} = L^2(0,1) \times L^2(0,1)$$

Proposition 1. For any initial conditions in \mathcal{H} , there exists a unique continuous function (u, v)(t) solution of (1). Furthermore, $|u(t)|_{L^{\infty}}$ is bounded in the compacts sets of $(0, +\infty)$.

Global Stability

$$\begin{cases} u_t = -u^3 + \alpha u - v + u_{xx}, (x,t) \in (0,1) \times (0,+\infty) \\ v_t = u \end{cases}$$
(1)

Proposition 2. Assume $\alpha < 0$. For any initial conditions in \mathcal{H} , the solution (u, v)(t) of (1) satisfies

 $\lim_{t \to +\infty} ||(u,v)(t)||_{\mathcal{H}} = 0.$

$\mathbf{Proof}(\mathrm{Main~ideas})$

• The main point is that:

$$\frac{d}{dt}||(u,v)(t)||_{\mathcal{H}}^2 \le 0$$

- Then we work on a Galerkin approximation. We gain compacity and apply the LaSalle's invariance principle.
- We conclude thanks to a uniform control between the Galerkin approximation and the solution in \mathcal{H} .

Diffusionless ODE Equation

$$\begin{cases} u_t = -u^3 + \alpha u - v \\ v_t = u \end{cases}$$
(2)

Proposition 3. The point (0,0) is the unique stationary solution of equation (2). If $\alpha \leq 0$ all the trajectories converge towards (0,0). If $\alpha > 0$ equation (2) admits a unique limit-cycle which attracts all the trajectories distinct from (0,0). Furthermore, at u = 0 a supercritical Hopf bifurcation occurs.

Cascade of Hopf Bifurcations

$$\begin{aligned} u_t &= -u^3 + \alpha u - v + u_{xx}, (x,t) \in (0,1) \times (0,+\infty) \\ v_t &= u \end{aligned}$$
 (1)

Proposition 4. The eigenvalues of the linearized operator associated to (1) write:

$$\mu_k^{1,2} = 0.5 \left(\lambda_k + \alpha_-^+ \sqrt{(\alpha + \lambda_k)^2 - 4} \right)$$

with

$$\lambda_k = -k^2 \pi^2.$$

In particular, as α crosses λ_k from left to right the two complex conjugate eigenvalues $\mu_k^{1,2}$ cross the imaginary axis from left to right. Furthermore, for fixed α

$$\lim_{k \to +\infty} \mu_k^1 = -\infty, \lim_{k \to +\infty} \mu_k^2 = 0^-$$

A positively stable invariant set

$$\begin{cases} u_t = -u^3 + \alpha u - v + u_{xx}, (x,t) \in (0,1) \times (0,+\infty) \\ v_t = u \end{cases}$$
(1)

Proposition 5. Assume $0 \le \alpha < \lambda_1$. Assume that initial conditions satisfy

$$u(x,0) = u(1-x,0)$$
 and $v(x,0) = v(1-x,0)$.

Then, the solution (u, v)(t) of (1) satisfies

 $\lim_{t \to +\infty} ||(u,v)(t)||_{\mathcal{H}} = 0.$

Local Stability

$$\begin{cases} u_t = -u^3 + \alpha u - v + u_{xx}, (x,t) \in (0,1) \times (0,+\infty) \\ v_t = u \end{cases}$$
(1)

Theorem 1. For $0 < \alpha < \lambda_1$, there exists a sequence $(\mu_k)_{k \in}$ such that if $(u_k(0), v_k(0)) \in B(0, \mu_k)$

then

$$\lim_{t \to +\infty} ||(u(t) - u_0(t), v(t) - v_0(t))||_{\mathcal{H}} = 0,$$

where $B(0,\mu_k) \subset \mathbb{R}^2$ is the ball of center (0,0) and radius μ_k , and $u_k(t) = \int_0^1 u(x,t)\varphi_k(x)dx$, $v_k(t) = \int_0^1 v(x,t)\varphi_k(x)dx$, where $\varphi_0(x) = 1$ and $\varphi_k(x) = \sqrt{2}\cos(k\pi x)$ for k > 1.

BA, Qualitative Analysis of Reaction-Diffusion Systems in Neuroscience context. https://arxiv.org/abs/1903.05754

Equation 3

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u \end{cases}$$
(3)

with $\Omega \subset \mathbb{R}^2$ an open regular bounded set and NBC.

Patterns

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x,t) \in \Omega \times (0,+\infty) \\ v_t = u \end{cases}$$
(3)

Invariant manifold

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u \end{cases}$$
(3)

Theorem 2. Assume that we can divide the domain Ω into a partition

$$\Omega = \left(\bigcup_{i \in \{1, \dots, l\}} U_i \right) \cup \left(\bigcup_{i \in \{1, \dots, l\}} V_i \right)$$

such that there exists a diffeomorphism ϕ that maps each U_i onto V_i with det $J_{\phi} = 1$, where J_{ϕ} denotes the Jacobian of ϕ , and initial conditions such that for all $x \in \bigcup_{i \in \{1,...,l\}} U_i$ and all $t \in \mathbb{R}^+$

$$(u(\phi(x), t), v(\phi(x), t)) = -(u(x, t), v(x, t))$$

then the solution cannot converge to a non zero constant solution in space solution of the diffusion less system.

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u \end{cases}$$
(3)

BA, M.A. Aziz-Alaoui, Acta Biotheoretica, (2016)

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v \\ v_t = u - c \end{cases} (5)$$

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

Is system (4) able to generate oscillatory signal and to propagate it?

Idea: Oscillatory signal initiates at some point and propagates throughout excitatory tissue thanks to diffusion

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

We consider *c(x)* such that:

- c(x)=0 for x close to the center (oscillatory dynamics for the ODE)
- c(x)=c₀<-1 otherwise (excitatory dynamics for the ODE)

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

<u>1d</u>

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

<u>1d</u>

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

<u>1d</u>

$$\begin{aligned} c(x) &\leq 0\\ c(0) &= 0\\ \lim_{p \to 0} c(x) &= 0\\ \forall x \in (a, b), x \neq 0, c(x) \text{ is decreasing}\\ \forall x \in (a, b), x \neq 0 \lim_{p \to +\infty} c(x) = -\infty \end{aligned}$$

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

Proposition 6. The eigenvalues of the linearized operator associated to (4) write:

$$\mu_k^{1,2} = \frac{1}{2\epsilon} \left(\lambda_k^+ - \sqrt{(\lambda_k)^2 - 4\epsilon} \right)$$

where

 $\lambda_k, k \in$,

are the eigenvalues associated to the Sturm-Liouville equation

$$f'(\bar{u}) + u_{xx} = \lambda u$$

In particular, $\lambda_0 < 3$ and there exists a number p^* such that as p crosses p^* from right to left the two complex conjugate eigenvalues $\mu_0^{1,2}$ cross the imaginary axis from left to right. Furthermore, for fixed p

$$\lim_{k \to +\infty} \mu_k^1 = -\infty, \lim_{k \to +\infty} \mu_k^2 = 0^-$$

BA, *IJBC*, (2016)

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

Theorem 4. There exists $\delta > 0$ such that for $p > p^* - \delta$, there exists a sequence $(\mu_k)_{k \in}$ such that if

$$(u_k(0), v_k(0)) \in B(0, \mu_k)$$

then

$$\lim_{t \to +\infty} ||(u(t) - u_0(t), v(t) - v_0(t))||_{\mathcal{H}} = 0,$$

where $B(0, \mu_k) \subset \mathbb{R}^2$ is the ball of center (0, 0) and radius μ_k , and $u_k(t), v_k(t)$ denote the projection into the subspace associated with the kth eigenvalue.

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x, t) \in \Omega \times (0, +\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

<u>2d</u>

BA, J-P Francoise, PRSTA, (2009)

$$\begin{cases} \epsilon u_t = -u^3 + 3u - v + \Delta u, (x,t) \in \Omega \times (0,+\infty) \\ v_t = u - c(x) \end{cases}$$
(4)

<u>2d</u>

Networks of FHN RD systems

Networks of FHN RD systems

$$\begin{cases} u_{it} = F(u_i, v_i) + Q\Delta u_i + \sum_{k=1}^n c_{ik} u_k, & i \in \{1, ..., n\} \\ v_{it} = -\sigma(x) v_i + \Phi(x, u_i), \end{cases}$$

Unidirectionnal line

Ring

Fully connected

Networks

Theorem 5 (Fully connected networks). We assume that the coupling terms c_{ij} satisfy for all $i \neq j$ $c_{ij} > \frac{1}{n}$ then the network synchronizes in the norm L^2 .

BA, M.A. Aziz-Alaoui, V.L.E. Phan, IMA JAM, (2019)

BA, M.A. Aziz-Alaoui, ESAIM Proc, (2013)

BA, M.A. Aziz-Alaoui, CAMWA, (2012)

THANKS