Nonlinear Aggregation-Diffusion Equations: Gradient Flows, Free Energies and Phase Transitions

J. A. Carrillo

University of Oxford

2020 PDE Workshop - Online Prague September 2020

Outline

Problems & Motivation

- Minimizing Free Energies
- 2 Phase Transition driven by Diffusion/Interaction Ratio
 - Local Cucker-Smale Model
 - The Torus case
 - Transition Points

Outline

Problems & Motivation

Minimizing Free Energies

2 Phase Transition driven by Diffusion/Interaction Ratio

- Local Cucker-Smale Model
- The Torus case
- Transition Points

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla W(X - a)$ $W(x) = W(-x), W(0) = 0, W \in C^{1}(\mathbb{R}^{d}/\{0\}, \mathbb{R})$

Multiple particles attracted/repelled by one another

$$\dot{X}_i = -\sum_{j \neq i} m_j \nabla W(X_i - X_j)$$

 $\rho(t, x) =$ density of particle at time *t*

$$v(x) = -\int_{\mathbb{R}^d} \nabla W(x-y) \ \rho(y) dy$$

So $v = -\nabla W * \rho$:

 $\begin{cases} \rho_t + \operatorname{div} \left(\rho v \right) = 0\\ v = -\nabla W * \rho \end{cases}$

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla W(X - a)$ $W(x) = W(-x), W(0) = 0, W \in C^{1}(\mathbb{R}^{d}/\{0\}, \mathbb{R})$

Multiple particles attracted/repelled by one another

$$\dot{X}_i = -\sum_{j \neq i} m_j \nabla W(X_i - X_j)$$

 $\rho(t, x) =$ density of particle at time t

$$v(x) = -\int_{\mathbb{R}^d} \nabla W(x-y) \ \rho(y) dy$$

$$\begin{cases} \rho_t + \operatorname{div}(\rho v) = 0\\ v = -\nabla W * \rho \end{cases}$$

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla W(X - a)$ $W(x) = W(-x), W(0) = 0, W \in C^{1}(\mathbb{R}^{d}/\{0\}, \mathbb{R})$

Multiple particles attracted/repelled by one another

$$\dot{X}_i = -\sum_{j \neq i} m_j \nabla W(X_i - X_j)$$

 $\rho(t, x) =$ density of particle at time t

$$v(x) = -\int_{\mathbb{R}^d} \nabla W(x-y) \ \rho(y) dy$$

So
$$v = -\nabla W * \rho$$
:

$$\begin{cases} \rho_t + \operatorname{div}(\rho v) = 0\\ v = -\nabla W * \rho \end{cases}$$

Aggregation-Diffusion Equation

$$\begin{cases} \rho_t + \operatorname{div}(\rho v) = 0\\ v = -\nabla W * \rho - \nabla P(\rho) \end{cases}$$

 $W: \mathbb{R}^d \to \mathbb{R}$ "interaction potential" $\rho(t, x)$: density v(t, x): velocity field $x \in \mathbb{R}^d, t > 0$

> $-\nabla W : \mathbb{R}^d \to \mathbb{R}^d$ "attracting field"

If repulsion is modelled by diffusion, when does a balance between attraction and diffusion happen?

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Aggregation-Diffusion Equation

$$\begin{cases} \rho_t + \operatorname{div}(\rho v) = 0\\ v = -\nabla W * \rho - \nabla P(\rho) \end{cases}$$

 $\rho(t, x)$: density v(t, x): velocity field $x \in \mathbb{R}^d, t > 0$

 $W: \mathbb{R}^d \to \mathbb{R}$ "interaction potential"

 $-\nabla W : \mathbb{R}^d \to \mathbb{R}^d$ "attracting field"

If repulsion is modelled by diffusion, when does a balance between attraction and diffusion happen?

Aggregation-Diffusion Equation

$$\begin{cases} \rho_t + \operatorname{div}(\rho v) = 0\\ v = -\nabla W * \rho - \nabla P(\rho) \end{cases}$$

 $W: \mathbb{R}^d \to \mathbb{R}$

"interaction potential"

 $\rho(t, x)$: density v(t, x): velocity field $x \in \mathbb{R}^d, t > 0$

 $-\nabla W : \mathbb{R}^d \to \mathbb{R}^d$ "attracting field"

If repulsion is modelled by diffusion, when does a balance between attraction and diffusion happen?

Formal Gradient Flow

Basic Properties

- **O** Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint W(x - y) \ \rho(x) \ \rho(y) \ dxdy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \ dx$$

with respect to the Wasserstein distance W₂. (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta\mathcal{F}}{\delta\rho}(t,x)\right]\right)$$

with $\frac{\delta \mathcal{F}}{\delta \rho} = W * \rho + \Phi'(\rho), P'(\rho) = \rho \Phi''(\rho)$, and entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \, .$$

Formal Gradient Flow

Basic Properties

- Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint W(x - y) \ \rho(x) \ \rho(y) \ dxdy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \ dx$$

with respect to the Wasserstein distance W₂. (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta\mathcal{F}}{\delta\rho}(t,x)\right]\right)$$

with $\frac{\delta \mathcal{F}}{\delta \rho} = W * \rho + \Phi'(\rho), P'(\rho) = \rho \Phi''(\rho)$, and entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \, .$$

Formal Gradient Flow

Basic Properties

- Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint W(x - y) \ \rho(x) \ \rho(y) \ dxdy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \ dx$$

with respect to the Wasserstein distance W₂. (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta\mathcal{F}}{\delta\rho}(t,x)\right]\right)$$

with $\frac{\delta \mathcal{F}}{\delta \rho} = W * \rho + \Phi'(\rho), P'(\rho) = \rho \Phi''(\rho)$, and entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \, .$$

Free Energy Minimization: Stable Steady States

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) \rho(x) \rho(y) \, dx \, dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Free Energy Minimization: Stable Steady States

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) \rho(x) \rho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Free Energy Minimization: Stable Steady States

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) \rho(x) \rho(y) \, dx \, dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Free Energy Minimization: Stable Steady States

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) \rho(x) \rho(y) \, dx \, dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Free Energy Minimization: Stable Steady States

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) \rho(x) \rho(y) \, dx \, dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Free Energy Minimization: Stable Steady States

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) \rho(x) \rho(y) \, dx \, dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Free Energy Minimization: Stable Steady States

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) \rho(x) \rho(y) \, dx \, dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^aAoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k.
- Orientation Region: O_k.

Minimizing Free Energies

2nd Order Model: 3-Zone Model

D'Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|) + \sum_{j=1}^N a_{ij}(v_j - v_i). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms = an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential *W*(*x*).

$$W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$$

• Communication rate: $\gamma \ge 0$ and

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Minimizing Free Energies

2nd Order Model: 3-Zone Model

D'Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|) + \sum_{j=1}^N a_{ij}(v_j - v_i). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms = an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential *W*(*x*).

$$W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$$

• Communication rate: $\gamma \ge 0$ and

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Minimizing Free Energies

2nd Order Model: 3-Zone Model

D'Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|) + \sum_{j=1}^N a_{ij}(v_j - v_i). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms = an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential *W*(*x*).

$$W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$$

• Communication rate: $\gamma \ge 0$ and

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Minimizing Free Energies

2nd Order Model: 3-Zone Model

D'Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|) + \sum_{j=1}^N a_{ij} (v_j - v_i). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms = an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential *W*(*x*).

$$W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$$

• Communication rate: $\gamma \ge 0$ and

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Minimizing Free Energies

2nd Order Model: 3-Zone Model

D'Orsogna, Bertozzi et al. (PRL 2006) + Cucker-Smale (IEEE Aut. Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|) + \sum_{j=1}^N a_{ij}(v_j - v_i). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms = an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential *W*(*x*).

$$W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$$

• Communication rate: $\gamma \ge 0$ and

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

 $C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:

Problems & Motivation
000000000000000000000000000000000000000
Minimizing Free Energies

Flocking Patterns

Flocking	Profiles:
----------	-----------

Conclusions

Problems & Motivation

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions O

Minimizing Free Energies

Cell/Bacteria Movement by Chemotaxis

$$\begin{cases} \frac{\partial n}{\partial t} = \Delta \Phi(n) - \chi \nabla \cdot (n \nabla c) & x \in \mathbb{R}^2, \ t > 0, \\ \frac{\partial c}{\partial t} - \Delta c = n - \alpha c & x \in \mathbb{R}^2, \ t > 0, \\ n(0, x) = n_0 \ge 0 & x \in \mathbb{R}^2. \end{cases}$$

Movement and aggregation due to chemical signalling. Wikinut

J. Saragosti etal, PLoS Comput. Biol. 2010.

S. Volpe etal, PLoS One 2012.

Patlak (1953), Keller-Segel (1971), Nanjundiah (1973).

Phase Transitions for the Keller-Segel model on an interval¹

$$\begin{cases} u_t = \nabla \cdot (u\nabla u - \chi u\nabla v), & x \in \Omega, t > 0, \\ v_t = \Delta v - v + u, & x \in \Omega, t > 0, \\ \partial_{\nu}(u\nabla u - \chi u\nabla v) = \partial_{\nu}v = 0, & x \in \partial\Omega, t > 0, \\ u(x, 0), v(x, 0) \ge \neq 0, & x \in \Omega. \end{cases}$$

¹C.-Chen-Wang-Wang-Zhang, SIAM J. Applied Mathematics 2020.

Conclusions

Conclusions

Conclusions

Conclusions

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

• Minimizing Free Energies

Phase Transition driven by Diffusion/Interaction Ratio
 Local Cucker-Smale Model

- Local Cucker-Sinale N
- The Torus case
- Transition Points

The Local Cucker-Smale model with noise

Phase Transition (Barbaro-Cañizo-C.-Degond, SIAM MMS 2016)

• We consider the following kinetic flocking model:

$$\partial_t f + v \nabla_x f = \nabla_v \cdot \left((v - u_f) f - \alpha v (1 - |v|^2) f + D \nabla_v f \right),$$

where

$$u_f(t,x) = \frac{\int v f(t,x,v) \, dv}{\int f(t,x,v) \, dv}$$

- The first term is a Cucker-Smale-like term, encourages the velocity to align with the mean velocity
- The second term provides self-propulsion and friction, encouraging unit velocities
- The last term captures the influence of noise in the velocity

Local Cucker-Smale Model

The homogeneous problem

• Looking at the spatially homogeneous problem:

$$\partial_t f = \nabla_v \cdot \left((v - u_f) f - \alpha v (1 - |v|^2) f + D \nabla_v f \right)$$

- We have a gradient flow structure: write the equation as $\partial_t f = \nabla_v \cdot (f \nabla_v \xi)$ with $\xi = \Phi(v) + W * f + D \log f$
 - Confinement in v: $\Phi(v) = \alpha \left(\frac{|v|^4}{4} \frac{|v|^2}{2} \right)$
 - Interaction potential of the form $W(v) = \frac{|v|^2}{2}$
 - Linear diffusion.
- Our model is continuity equation with velocity field of the form $-\nabla_v \xi$
- Natural entropy for this equation given by the free energy of the system:

$$\begin{aligned} \mathcal{F}[f] &:= \int_{\mathbb{R}^d} \Phi(v) f(v) \, dv + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} W(v - w) f(v) f(w) \, dw \, dv + D \int_{\mathbb{R}^d} f(v) \log f(v) \, dv \\ &= \int_{\mathbb{R}^d} \left(\alpha \frac{|v|^4}{4} + (1 - \alpha) \frac{|v|^2}{2} \right) f(v) \, dv - \frac{1}{2} |u_f|^2 + D \int_{\mathbb{R}^d} f \log f(v) \, dv \,, \end{aligned}$$

Local Cucker-Smale Model

The homogeneous problem

• Looking at the spatially homogeneous problem:

$$\partial_t f = \nabla_v \cdot \left((v - u_f) f - \alpha v (1 - |v|^2) f + D \nabla_v f \right)$$

- We have a gradient flow structure: write the equation as $\partial_t f = \nabla_v \cdot (f \nabla_v \xi)$ with $\xi = \Phi(v) + W * f + D \log f$
 - Confinement in v: $\Phi(v) = \alpha \left(\frac{|v|^4}{4} \frac{|v|^2}{2} \right)$
 - Interaction potential of the form $W(v) = \frac{|v|^2}{2}$
 - Linear diffusion.

• Our model is continuity equation with velocity field of the form $-\nabla_{\nu}\xi$

• Natural entropy for this equation given by the free energy of the system:

$$\begin{aligned} \mathcal{F}[f] &:= \int_{\mathbb{R}^d} \Phi(v) f(v) \, dv + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} W(v - w) f(v) f(w) \, dw \, dv + D \int_{\mathbb{R}^d} f(v) \log f(v) \, dv \\ &= \int_{\mathbb{R}^d} \left(\alpha \frac{|v|^4}{4} + (1 - \alpha) \frac{|v|^2}{2} \right) f(v) \, dv - \frac{1}{2} |u_f|^2 + D \int_{\mathbb{R}^d} f \log f(v) \, dv \,, \end{aligned}$$

Local Cucker-Smale Model

The homogeneous problem

• Looking at the spatially homogeneous problem:

$$\partial_t f = \nabla_v \cdot \left((v - u_f) f - \alpha v (1 - |v|^2) f + D \nabla_v f \right)$$

- We have a gradient flow structure: write the equation as $\partial_t f = \nabla_v \cdot (f \nabla_v \xi)$ with $\xi = \Phi(v) + W * f + D \log f$
 - Confinement in v: $\Phi(v) = \alpha \left(\frac{|v|^4}{4} \frac{|v|^2}{2} \right)$
 - Interaction potential of the form $W(v) = \frac{|v|^2}{2}$
 - Linear diffusion.
- Our model is continuity equation with velocity field of the form $-\nabla_{\nu}\xi$
- Natural entropy for this equation given by the free energy of the system:

$$\begin{aligned} \mathcal{F}[f] &:= \int_{\mathbb{R}^d} \Phi(v) f(v) \, dv + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} W(v - w) f(v) f(w) \, dw \, dv + D \int_{\mathbb{R}^d} f(v) \log f(v) \, dv \\ &= \int_{\mathbb{R}^d} \left(\alpha \frac{|v|^4}{4} + (1 - \alpha) \frac{|v|^2}{2} \right) f(v) \, dv - \frac{1}{2} |u_f|^2 + D \int_{\mathbb{R}^d} f \log f(v) \, dv \,, \end{aligned}$$

ns & Motivation	Phase Transition driven by Diffusion/Interaction Ratio	
	0000000000000000000000000000000000000	
ucker-Smale Model		

The stationary solutions

Local

• We consider stationary solutions of the form:

$$f(\mathbf{v}) = \frac{1}{Z} \exp\left(\frac{-1}{D} \left[\alpha \frac{|\mathbf{v}|^4}{4} + (1-\alpha) \frac{|\mathbf{v}|^2}{2} - u_f \cdot \mathbf{v}\right]\right)$$

• We see that in order for the stationary solution to exist, *u_f* must be a root of the equation:

$$\mathcal{H}(u,D) = \int (v-u)f(v)dv$$

- We prove that, in any dimension²
 - There is a region of parameter space with only one such root, namely u = 0
 - There is another region of parameter space with more than one root, u = 0 and |u| = C_{α,D} ≠ 0

²1D case was proven independently in J. Tugaut. 2D also recently studied by X. Li.

oblems & Motivation	Phase Transition driven by Diffusion/Interaction Ratio	Conclusions
	000000000000000000000000000000000000000	
cal Cucker-Smale Model		

The stationary solutions

• We consider stationary solutions of the form:

$$f(\mathbf{v}) = \frac{1}{Z} \exp\left(\frac{-1}{D} \left[\alpha \frac{|\mathbf{v}|^4}{4} + (1-\alpha) \frac{|\mathbf{v}|^2}{2} - u_f \cdot \mathbf{v}\right]\right)$$

• We see that in order for the stationary solution to exist, *u_f* must be a root of the equation:

$$\mathcal{H}(u,D) = \int (v-u)f(v)dv$$

- We prove that, in any dimension²
 - There is a region of parameter space with only one such root, namely u = 0
 - There is another region of parameter space with more than one root, u = 0 and |u| = C_{α,D} ≠ 0

²1D case was proven independently in J. Tugaut. 2D also recently studied by X. Li.

oblems & Motivation	Phase Transition driven by Diffusion/Interaction Ratio	
000000000000000000000000000000000000000	000000000000000000000000000000000000000	
cal Cucker-Smale Model		

The stationary solutions

• We consider stationary solutions of the form:

$$f(\mathbf{v}) = \frac{1}{Z} \exp\left(\frac{-1}{D} \left[\alpha \frac{|\mathbf{v}|^4}{4} + (1-\alpha) \frac{|\mathbf{v}|^2}{2} - u_f \cdot \mathbf{v}\right]\right)$$

• We see that in order for the stationary solution to exist, *u_f* must be a root of the equation:

$$\mathcal{H}(u,D) = \int (v-u)f(v)dv$$

- We prove that, in any dimension²
 - There is a region of parameter space with only one such root, namely u = 0
 - There is another region of parameter space with more than one root, u = 0 and |u| = C_{α,D} ≠ 0

²1D case was proven independently in J. Tugaut. 2D also recently studied by X. Li.

Local Cucker-Smale Model
Problems & Motivation

Conclusions

Main idea of our proof

• Our proof hinges Laplace's method and the behavior of $\mathcal{H}(u, D)$ as D varies:

- For small *D*, we are able to use Laplace's Method to show that there is a nonzero stationary solution
- For large D, $\frac{\partial \mathcal{H}}{\partial u}$ is negative for all u.
- Since we know that u = 0 is a solution for all *D*, this shows that there is more than one root of \mathcal{H} for small *D*, and only one root for large *D*

Local Cucker-Smale Model
Problems & Motivation

Conclusions

Main idea of our proof

- Our proof hinges Laplace's method and the behavior of $\mathcal{H}(u, D)$ as *D* varies:
 - For small *D*, we are able to use Laplace's Method to show that there is a nonzero stationary solution
 - For large D, $\frac{\partial \mathcal{H}}{\partial u}$ is negative for all u.
- Since we know that u = 0 is a solution for all D, this shows that there is more than one root of \mathcal{H} for small D, and only one root for large D

Local Cucker-Smale Model
Problems & Motivation

Conclusions

Main idea of our proof

- Our proof hinges Laplace's method and the behavior of $\mathcal{H}(u, D)$ as *D* varies:
 - For small *D*, we are able to use Laplace's Method to show that there is a nonzero stationary solution
 - For large D, $\frac{\partial \mathcal{H}}{\partial u}$ is negative for all u.
- Since we know that u = 0 is a solution for all D, this shows that there is more than one root of \mathcal{H} for small D, and only one root for large D

Local Cucker-Smale Model
Problems & Motivation

Conclusions

Main idea of our proof

- Our proof hinges Laplace's method and the behavior of $\mathcal{H}(u, D)$ as *D* varies:
 - For small *D*, we are able to use Laplace's Method to show that there is a nonzero stationary solution
 - For large D, $\frac{\partial \mathcal{H}}{\partial u}$ is negative for all u.
- Since we know that u = 0 is a solution for all *D*, this shows that there is more than one root of \mathcal{H} for small *D*, and only one root for large *D*

Problems & Motivation

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Local Cucker-Smale Model

Stability of the stationary solutions in 1D

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions

Comparing particles to f in 1D

Outline

Minimizing Free Energies

2 Phase Transition driven by Diffusion/Interaction Ratio

- Local Cucker-Smale Model
- The Torus case
- Transition Points

The aggregation diffusion equation

Nonlocal (possibly) degenerate parabolic PDE

 $\partial_t \rho = \Delta \rho^m + \kappa \nabla \cdot (\rho \nabla W \star \rho) \quad \text{in } \mathbb{T}^d_L \times (0, T]$

with periodic boundary conditions, $\rho(\cdot, 0) = \rho_0 \in \mathcal{P}(\mathbb{T}_L^d), \mathbb{T}_L^d = \left(-\frac{L}{2}, \frac{L}{2}\right)^d = \Omega,$ $1 \leq m < \infty.$

- $\rho(\cdot, t) \in \mathcal{P}(\Omega)$ probability density of particles
- W coordinate-wise even, mean-zero interaction potential
- $\kappa > 0$ interaction strength (parameter)

Assume throughout that

 $W(x) \in C^2(\Omega)$

The aggregation diffusion equation

Nonlocal (possibly) degenerate parabolic PDE

 $\partial_t \rho = \Delta \rho^m + \kappa \nabla \cdot (\rho \nabla W \star \rho) \quad \text{in } \mathbb{T}^d_L \times (0, T]$

with periodic boundary conditions, $\rho(\cdot, 0) = \rho_0 \in \mathcal{P}(\mathbb{T}^d_L), \mathbb{T}^d_L = \left(-\frac{L}{2}, \frac{L}{2}\right)^d = \Omega,$ $1 \leq m < \infty.$

- $\rho(\cdot, t) \in \mathcal{P}(\Omega)$ probability density of particles
- W coordinate-wise even, mean-zero interaction potential
- $\kappa > 0$ interaction strength (parameter)

Assume throughout that

 $W(x) \in C^2(\Omega)$

Conclusions

The Torus case

Example: The noisy Kuramoto model

The Kuramoto model:
$$m = 1$$
, $W(x) = -\sqrt{\frac{2}{L}} \cos\left(2\pi k \frac{x}{L}\right)$, $k \in \mathbb{Z}$

Goals and Motivation:

- Bifurcations
- Classification for continuous and discontinuous transitions
- Better understanding of the free energy landscape

blems & Motivation	Phase Transition driven by Diffusion/Interaction Ratio	
	000000000000000000000000000000000000000	

H-stability

Notation: Fourier representation $\hat{f}(k) = \langle f, w_k \rangle_{L^2(\mathbb{T}_L)}$ with $k \in \mathbb{Z}^d$

$$w_k(x) = L^{-d/2} \Theta(k) \prod_{i=1}^d w_{k_i}(x_i) \quad \text{with} \quad w_{k_i}(x_i) = \begin{cases} \cos\left(\frac{2\pi k_i}{L} x_i\right) & k_i > 0, \\ 1 & k_i = 0, \\ \sin\left(\frac{2\pi k_i}{L} x_i\right) & k_i < 0, \end{cases}$$

Definition (*H*-stability)

An even function $W \in L^2(\mathbb{T}^d_L)$ is *H*-stable, $W \in \mathbb{H}_s$, if

$$\hat{W}(k) = \langle W, w_k
angle \geq 0, \quad orall k \in \mathbb{Z}^d \; ,$$

Decomposition of potential W into H-stable and H-unstable part

$$W_{\mathrm{s}}(x) = \sum_{k \in \mathbb{N}^d} (\langle W, w_k \rangle)_+ w_k(x) \quad and \quad W_{\mathrm{u}}(x) = W(x) - W_s(x) .$$

Problems & Motivation	Phase Transition driven by Diffusion/Interaction Ratio	Conclusions
	000000000000000000000000000000000000000	
The Terris case		

The equations have the following free energy, $\mathcal{F}_{\kappa}^{m}: \mathcal{P}(\Omega) \to \mathbb{R} \cup \{+\infty\}$, associated to them

$$\mathcal{F}_{\kappa}^{m} := \begin{cases} \frac{1}{m-1} \int_{\Omega} \rho^{m}(x) \, \mathrm{d}x - \frac{1}{m-1} + \frac{\kappa}{2} \int \!\!\!\int_{\Omega \times \Omega} W(x-y) \rho(x) \rho(y) \, \mathrm{d}x \, \mathrm{d}y & m > 1 \\ \\ \int_{\Omega} (\rho \log \rho)(x) \, \mathrm{d}x + \frac{\kappa}{2} \int \!\!\!\int_{\Omega \times \Omega} W(x-y) \rho(x) \rho(y) \, \mathrm{d}x \, \mathrm{d}y & m = 1 \end{cases}$$

W2-gradient flow w.r.t this energy

- m = 1: For $\kappa \in (0, \infty)$ the free energy $\mathcal{F}_{\kappa}(\rho)$ has a smooth minimiser $\rho_{\kappa} \in C^{\infty}(\Omega) \cap \mathcal{P}(\Omega)$. For $\kappa \ll 1$ or $W \in \mathbb{H}_s$, \mathcal{F}_{κ} is strictly convex and ρ_{∞} is the unique minimiser.
- $1 < m < \infty$: For $\kappa \in (0, \infty)$ the free energy $\mathcal{F}_{\kappa}^{m}(\rho)$ has a minimiser $\rho_{\kappa} \in C^{0}(\Omega) \cap \mathcal{P}(\Omega)$. For $\kappa \ll 1$ or $W \in \mathbb{H}_{s}$, \mathcal{F}_{κ}^{m} is strictly convex and ρ_{∞} is the unique minimiser.

Problems & Motivation	Phase Transition driven by Diffusion/Interaction Ratio	Conclusions
	000000000000000000000000000000000000000	
The Torus case		

The equations have the following free energy, $\mathcal{F}_{\kappa}^{m}: \mathcal{P}(\Omega) \to \mathbb{R} \cup \{+\infty\}$, associated to them

$$\mathcal{F}_{\kappa}^{m} := \begin{cases} \frac{1}{m-1} \int_{\Omega} \rho^{m}(x) \, \mathrm{d}x - \frac{1}{m-1} + \frac{\kappa}{2} \int_{\Omega \times \Omega} W(x-y)\rho(x)\rho(y) \, \mathrm{d}x \, \mathrm{d}y & m > 1\\ \\ \int_{\Omega} (\rho \log \rho)(x) \, \mathrm{d}x + \frac{\kappa}{2} \int_{\Omega \times \Omega} W(x-y)\rho(x)\rho(y) \, \mathrm{d}x \, \mathrm{d}y & m = 1 \end{cases}$$

W2-gradient flow w.r.t this energy

- m = 1: For $\kappa \in (0, \infty)$ the free energy $\mathcal{F}_{\kappa}(\rho)$ has a smooth minimiser $\rho_{\kappa} \in C^{\infty}(\Omega) \cap \mathcal{P}(\Omega)$. For $\kappa \ll 1$ or $W \in \mathbb{H}_s$, \mathcal{F}_{κ} is strictly convex and ρ_{∞} is the unique minimiser.
- $1 < m < \infty$: For $\kappa \in (0, \infty)$ the free energy $\mathcal{F}_{\kappa}^{m}(\rho)$ has a minimiser $\rho_{\kappa} \in C^{0}(\Omega) \cap \mathcal{P}(\Omega)$. For $\kappa \ll 1$ or $W \in \mathbb{H}_{s}$, \mathcal{F}_{κ}^{m} is strictly convex and ρ_{∞} is the unique minimiser.

Problems & Motivation	Phase Transition driven by Diffusion/Interaction Ratio	Conclusions
	000000000000000000000000000000000000000	
The Terris case		

The equations have the following free energy, $\mathcal{F}_{\kappa}^{m}: \mathcal{P}(\Omega) \to \mathbb{R} \cup \{+\infty\}$, associated to them

$$\mathcal{F}_{\kappa}^{m} := \begin{cases} \frac{1}{m-1} \int_{\Omega} \rho^{m}(x) \, \mathrm{d}x - \frac{1}{m-1} + \frac{\kappa}{2} \int_{\Omega \times \Omega} W(x-y)\rho(x)\rho(y) \, \mathrm{d}x \, \mathrm{d}y & m > 1\\ \\ \int_{\Omega} (\rho \log \rho)(x) \, \mathrm{d}x + \frac{\kappa}{2} \int_{\Omega \times \Omega} W(x-y)\rho(x)\rho(y) \, \mathrm{d}x \, \mathrm{d}y & m = 1 \end{cases}$$

W2-gradient flow w.r.t this energy

- m = 1: For $\kappa \in (0, \infty)$ the free energy $\mathcal{F}_{\kappa}(\rho)$ has a smooth minimiser $\rho_{\kappa} \in C^{\infty}(\Omega) \cap \mathcal{P}(\Omega)$. For $\kappa \ll 1$ or $W \in \mathbb{H}_s$, \mathcal{F}_{κ} is strictly convex and ρ_{∞} is the unique minimiser.
- $1 < m < \infty$: For $\kappa \in (0, \infty)$ the free energy $\mathcal{F}_{\kappa}^{m}(\rho)$ has a minimiser $\rho_{\kappa} \in C^{0}(\Omega) \cap \mathcal{P}(\Omega)$. For $\kappa \ll 1$ or $W \in \mathbb{H}_{s}$, \mathcal{F}_{κ}^{m} is strictly convex and ρ_{∞} is the unique minimiser.

Problems & Motivation	Phase Transition driven by Diffusion/Interaction Ratio	Conclusions
	000000000000000000000000000000000000000	
The Terris case		

The equations have the following free energy, $\mathcal{F}_{\kappa}^{m}: \mathcal{P}(\Omega) \to \mathbb{R} \cup \{+\infty\}$, associated to them

$$\mathcal{F}_{\kappa}^{m} := \begin{cases} \frac{1}{m-1} \int_{\Omega} \rho^{m}(x) \, \mathrm{d}x - \frac{1}{m-1} + \frac{\kappa}{2} \int_{\Omega \times \Omega} W(x-y)\rho(x)\rho(y) \, \mathrm{d}x \, \mathrm{d}y & m > 1\\ \\ \int_{\Omega} (\rho \log \rho)(x) \, \mathrm{d}x + \frac{\kappa}{2} \int_{\Omega \times \Omega} W(x-y)\rho(x)\rho(y) \, \mathrm{d}x \, \mathrm{d}y & m = 1 \end{cases}$$

W2-gradient flow w.r.t this energy

- m = 1: For $\kappa \in (0, \infty)$ the free energy $\mathcal{F}_{\kappa}(\rho)$ has a smooth minimiser $\rho_{\kappa} \in C^{\infty}(\Omega) \cap \mathcal{P}(\Omega)$. For $\kappa \ll 1$ or $W \in \mathbb{H}_s$, \mathcal{F}_{κ} is strictly convex and ρ_{∞} is the unique minimiser.
- $1 < m < \infty$: For $\kappa \in (0, \infty)$ the free energy $\mathcal{F}_{\kappa}^{m}(\rho)$ has a minimiser $\rho_{\kappa} \in C^{0}(\Omega) \cap \mathcal{P}(\Omega)$. For $\kappa \ll 1$ or $W \in \mathbb{H}_{s}$, \mathcal{F}_{κ}^{m} is strictly convex and ρ_{∞} is the unique minimiser.

Characterisation of stationary solutions

• Self-consistency equation m = 1

$$F_{\kappa}(\rho) = \rho - \frac{1}{Z(\rho,\kappa)} e^{-\kappa W \star \rho}, \quad \text{with} \quad Z(\rho,\kappa) = \int_{\mathbb{T}_{L}^{d}} e^{-\kappa W \star \rho} \, \mathrm{d}xx \, .$$

• Self-consistency equation m > 1

$$F_{\kappa}^{m}(\rho) = \frac{m}{m-1}\rho^{m-1} + \kappa W \star \rho - C$$

for some constant C.

Definition (Weak stationary solution)

A weak stationary solution for m > 1 is a bounded, measurable function

 $\rho^{m}\in H^{1}(\Omega)$

such that

$$\int_{\Omega} (\nabla \rho^m \cdot \nabla \phi + \rho \nabla (W \star \rho) \cdot \nabla \phi) \, \mathrm{d}x = 0$$

for all $\phi \in H_0^1(\Omega)$.

Characterisation of stationary solutions

• Self-consistency equation m = 1

$$F_{\kappa}(\rho) = \rho - \frac{1}{Z(\rho,\kappa)} e^{-\kappa W \star \rho}, \quad \text{with} \quad Z(\rho,\kappa) = \int_{\mathbb{T}_{L}^{d}} e^{-\kappa W \star \rho} \, \mathrm{d}xx \, .$$

• Self-consistency equation m > 1

$$F_{\kappa}^{m}(\rho) = \frac{m}{m-1}\rho^{m-1} + \kappa W \star \rho - C$$

for some constant C.

Definition (Weak stationary solution)

A weak stationary solution for m > 1 is a bounded, measurable function

 $\rho^m \in H^1(\Omega)$

such that

$$\int_{\Omega} (\nabla \rho^m \cdot \nabla \phi + \rho \nabla (W \star \rho) \cdot \nabla \phi) \, \mathrm{d}x = 0$$

for all $\phi \in H_0^1(\Omega)$.

Characterisation of stationary solutions

Characterization of stationary states (m = 1): TFAE

- ρ is a classical stationary solution of $\Delta \rho + \kappa \nabla \cdot (\rho \nabla W \star \rho) = 0$
- ρ is a zero of $F_{\kappa}(\rho)$
- ρ is a critical point of $\mathcal{F}_{\kappa}(\rho)$.

Characterization of stationary states (m > 1): TFAE

- ρ is a weak stationary solution of $\Delta \rho^m + \kappa \nabla \cdot (\rho \nabla W \star \rho) = 0$
- For every connected component A of its support ρ satisfies the self-consistency equation, i.e.,

$$\frac{m}{m-1}\rho^{m-1} + \kappa W \star \rho = C(A,\rho)$$

• ρ is a critical point of $\mathcal{F}_{\kappa}^{m}(\rho)$.

 $\Rightarrow \rho_{\infty} \equiv L^{-d}$ is a stationary state for all $\kappa > 0$.

Characterisation of stationary solutions

Characterization of stationary states (m = 1): TFAE

- ρ is a classical stationary solution of $\Delta \rho + \kappa \nabla \cdot (\rho \nabla W \star \rho) = 0$
- ρ is a zero of $F_{\kappa}(\rho)$
- ρ is a critical point of $\mathcal{F}_{\kappa}(\rho)$.

Characterization of stationary states (m > 1): TFAE

- ρ is a weak stationary solution of $\Delta \rho^m + \kappa \nabla \cdot (\rho \nabla W \star \rho) = 0$
- For every connected component A of its support ρ satisfies the self-consistency equation, i.e.,

$$\frac{m}{m-1}\rho^{m-1} + \kappa W \star \rho = C(A,\rho)$$

• ρ is a critical point of $\mathcal{F}_{\kappa}^{m}(\rho)$.

 $\Rightarrow \rho_{\infty} \equiv L^{-d}$ is a stationary state for all $\kappa > 0$.

Nontrivial solutions to the stationary McKean–Vlasov eq'n?

- $W \notin \mathbb{H}_s$ needs to be a necessary condition
- Numerical experiments indicate one, multiple, or possibly infinite solutions
- What determines the number of nontrivial solutions?
- Birfurcation analysis of $\rho \mapsto F_{\kappa}(\rho)$

Example: Kuramoto model:

 $W(x) = -\sqrt{\frac{2}{L}}\cos(2\pi x/L)$

Bifurcation diagram for the Kuramoto model

The clustered solution

Local bifurcation result m = 1

$$F_{\kappa}(\rho) = \rho - \mathcal{T}\rho = \rho - \frac{1}{Z(\rho,\kappa)} e^{-\kappa W \star \rho}, \quad \text{with} \quad Z(\rho,\kappa) = \int_{\mathbb{T}_{L}^{d}} e^{-\kappa W \star \rho} \, \mathrm{d}xx \, .$$

Theorem ([C.-Gvalani-Pavliotis-Schlichting ARMA '20])

Consider $F: L_s^2(\mathbb{T}_L^d) \times \mathbb{R}_{>0} \to L_s^2(\mathbb{T}_L^d)$ with $F(u, \kappa) = F_{\kappa}(u + \rho_{\infty})$ and $W \in L_s^2(\mathbb{T}_L^d)$ with $L_s^2(\mathbb{T}_L^d)$ the subspace of coordinate-wise even functions. Assume there exists $k^* \in \mathbb{N}^d$, such that:

Then, $(0, \kappa_*)$ is a bifurcation point of $F(u, \kappa) = 0$, where, $\kappa_* = -\frac{L^{\frac{d}{2}} \Theta(k^*)}{\hat{W}(k^*)}$. The branch of solutions $(\rho_s^*, \kappa(s))$ has the following form

$$\rho_s^* = \rho_\infty + sw_{k^*} + r(\kappa(s), s) \; .$$

for $s \in (-\delta, \delta)$ and $r \sim o(s)$. Also, $\kappa(0) = \kappa_*$, $\kappa'(0) = 0$, and $\kappa''(0) = 1$.

Use Crandall–Rabinowitz theorem and Look at higher order Fréchet derivatives of F to study structure of the branch
Local bifurcation result m = 1

$$F_{\kappa}(\rho) = \rho - \mathcal{T}\rho = \rho - \frac{1}{Z(\rho,\kappa)} e^{-\kappa W \star \rho}, \quad \text{with} \quad Z(\rho,\kappa) = \int_{\mathbb{T}_{L}^{d}} e^{-\kappa W \star \rho} \, \mathrm{d}xx \, .$$

Theorem ([C.-Gvalani-Pavliotis-Schlichting ARMA '20])

Consider $F: L_s^2(\mathbb{T}_L^d) \times \mathbb{R}_{>0} \to L_s^2(\mathbb{T}_L^d)$ with $F(u, \kappa) = F_{\kappa}(u + \rho_{\infty})$ and $W \in L_s^2(\mathbb{T}_L^d)$ with $L_s^2(\mathbb{T}_L^d)$ the subspace of coordinate-wise even functions. Assume there exists $k^* \in \mathbb{N}^d$, such that:

Then, $(0, \kappa_*)$ is a bifurcation point of $F(u, \kappa) = 0$, where, $\kappa_* = -\frac{L^{\frac{d}{2}} \Theta(k^*)}{\hat{W}(k^*)}$. The branch of solutions $(\rho_s^*, \kappa(s))$ has the following form

$$\rho_s^* = \rho_\infty + sw_{k^*} + r(\kappa(s), s) \; .$$

for $s \in (-\delta, \delta)$ and $r \sim o(s)$. Also, $\kappa(0) = \kappa_*$, $\kappa'(0) = 0$, and $\kappa''(0) = 1$.

Use Crandall–Rabinowitz theorem and Look at higher order Fréchet derivatives of *F* to study structure of the branch

Local bifurcation result m > 1

Define the map, $F: H^n_{0,s}(\Omega) \times \mathbb{R}_+ \to H^n_{0,s}(\Omega)$ for n > d/2 which is given by

$$F(\eta,\kappa) := \frac{m}{m-1} (\rho_{\infty} + \eta)^{m-1} + \kappa W \star \eta - \frac{m}{|\Omega| (m-1)} \|\rho_{\infty} + \eta\|_{L^{m-1}(\Omega)}^{m-1}.$$

Theorem ([C.-Gvalani, preprint])

Consider the map $F : H_{0,s}^n(\Omega) \times \mathbb{R}_+ \to H_{0,s}^n(\Omega)$ for n > d/2 as defined above with its trivial branch $(0, \kappa)$. Assume there exists $k^* \in \mathbb{N}^d$, $k \neq 0$ such that the following two conditions are satisfied

then $(0, \kappa_*)$ is a bifurcation point of $(0, \kappa)$ with $\kappa_* = -\frac{\sqrt{2m\rho_{\infty}^{n-3/2}}}{\hat{W}(k^*)}$, there exists a neigbourhood N of $(0, \kappa_*)$ and a curve $(\eta(s), \kappa(s)) \in N, s \in (-\delta, \delta), \delta > 0$ such that $F(\eta(s), \kappa(s)) = 0$. Additionally $\eta(s)$ has the form

$$\eta(s) = se_{k_*} + r(se_{k_*}, \kappa s), \qquad (1)$$

where $\|r\|_{H^n_{0,s}(\Omega)} = o(s)$ as $s \to 0$.

Examples of birfucations results

• Kuramoto-type of models: $W(x) = -w_k(x)$ in d = 1

$$\hat{W}(k) = -1,$$

satisfying both conditions. Thus we have that $\kappa_* = \sqrt{2L}$

• For $W(x) = \frac{x^2}{2}$ holds

$$\hat{W}(k) = rac{L^{5/2}\cos(\pi k)}{2\sqrt{2}\pi k^2}$$

satisfying both conditions for odd values of k. Hence, every odd k is birfucation point $\kappa_* = \frac{4k^2}{L^2}$.

• $W^{s}(x) = -\sum_{k=1}^{\infty} \frac{1}{k^{2s+2}} w_{k}(x)$ For $s \ge 1$: $W^{s}(x) \in H^{s}(\mathbb{T}_{L}^{d})$ $\forall k > 0$: conditions (1) and (2) ok Infinitely many bifurcation points

Further examples of bifurcation results

Corollary (Keller-Segel)

Consider the stationary parabolic-elliptic Keller–Segel equation, i.e., $W \star \rho = -(-\Delta)^{-s}\rho$. For $d \leq 2$ and $s \in (\frac{1}{2}, 1]$, it has smooth solutions and its trivial branch (ρ_{∞}, κ) has infinitely many bifurcation points.

Corollary (Liquid crystals)

We have the following results for $W_{\ell}(x) = |*| \sin(2\pi x/L)^{\ell}, \ell \in \mathbb{N}$:

- The trivial branch of the Onsager model, $W_1(x)$, has infinitely many bifurcation points.
- The trivial branch of the Maiers–Saupe model, W₂(x), has exactly one bifurcation point.
- The trivial branch of the model $W_{\ell}(x)$ for ℓ even has at least $\frac{\ell}{4}$ bifurcation points if $\frac{\ell}{2}$ is even and $\frac{\ell}{4} + \frac{1}{2}$ bifurcation points if $\frac{\ell}{2}$ is odd.
- The trivial branch of the model $W_{\ell}(x)$ for ℓ odd has infinitely many bifurcation points if $\frac{\ell-1}{2}$ is even and at least $\frac{\ell+1}{4}$ bifurcation points if $\frac{\ell-1}{2}$ is odd.

Further examples of bifurcation results

Corollary (Keller-Segel)

Consider the stationary parabolic-elliptic Keller–Segel equation, i.e., $W \star \rho = -(-\Delta)^{-s}\rho$. For $d \leq 2$ and $s \in (\frac{1}{2}, 1]$, it has smooth solutions and its trivial branch (ρ_{∞}, κ) has infinitely many bifurcation points.

Corollary (Liquid crystals)

We have the following results for $W_{\ell}(x) = |\sin(2\pi x/L)|^{\ell}, \ell \in \mathbb{N}$:

- The trivial branch of the Onsager model, $W_1(x)$, has infinitely many bifurcation points.
- The trivial branch of the Maiers–Saupe model, W₂(x), has exactly one bifurcation point.
- The trivial branch of the model $W_{\ell}(x)$ for ℓ even has at least $\frac{\ell}{4}$ bifurcation points if $\frac{\ell}{2}$ is even and $\frac{\ell}{4} + \frac{1}{2}$ bifurcation points if $\frac{\ell}{2}$ is odd.
- The trivial branch of the model $W_{\ell}(x)$ for ℓ odd has infinitely many bifurcation points if $\frac{\ell-1}{2}$ is even and at least $\frac{\ell+1}{4}$ bifurcation points if $\frac{\ell-1}{2}$ is odd.

Outline

Minimizing Free Energies

2 Phase Transition driven by Diffusion/Interaction Ratio

- Local Cucker-Smale Model
- The Torus case
- Transition Points

Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers.

Question: When do we get new minimisers? Definition (Transition point [Chayes-Panferov '10])

A parameter value $\kappa_c > 0$ is said to be a transition point of an energy E_{κ} if it satisfies the following conditions,

If For $0 < \kappa < \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$

(a) For
$$\kappa = \kappa_c$$
: ρ_{∞} is a minimiser of $E_{\kappa}(\rho)$

So For $\kappa > \kappa_c$: $\exists \rho_{\kappa} \neq \rho_{\infty}$, such that ρ_{κ} is a minimiser of $E_{\kappa}(\rho)$

Definition (Continuous and discontinuous transition point)

A transition point $\kappa_c > 0$ is a continuous transition point of \mathcal{F}_{κ} if

- **1** For $\kappa = \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$
- For any family of minimizers $\{
 ho_\kappa
 eq
 ho_\infty\}_{\kappa > \kappa_c}$ it holds

$$\limsup_{\kappa\downarrow\kappa_c}\|\rho_\kappa-\rho_\infty\|_X=0$$

Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers. Question: When do we get new minimisers?

Definition (Transition point [Chayes-Panferov '10])

A parameter value $\kappa_c > 0$ is said to be a transition point of an energy E_{κ} if it satisfies the following conditions,

• For $0 < \kappa < \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$

If $For \kappa = \kappa_c$: ρ_{∞} is a minimiser of $E_{\kappa}(\rho)$

(a) For $\kappa > \kappa_c$: $\exists \rho_{\kappa} \neq \rho_{\infty}$, such that ρ_{κ} is a minimiser of $E_{\kappa}(\rho)$

Definition (Continuous and discontinuous transition point)

A transition point $\kappa_c > 0$ is a continuous transition point of \mathcal{F}_{κ} if

- **1** For $\kappa = \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$
 - For any family of minimizers $\{\rho_{\kappa} \neq \rho_{\infty}\}_{\kappa > \kappa_{c}}$ it holds

$$\limsup_{\kappa\downarrow\kappa_c}\|\rho_\kappa-\rho_\infty\|_X=0$$

Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers. Question: When do we get new minimisers? Definition (Transition point [Chayes-Panferov '10])

A parameter value $\kappa_c > 0$ is said to be a transition point of an energy E_{κ} if it satisfies the following conditions,

• For $0 < \kappa < \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$

2 For
$$\kappa = \kappa_c$$
: ρ_{∞} is a minimiser of $E_{\kappa}(\rho)$

So For $\kappa > \kappa_c$: $\exists \rho_{\kappa} \neq \rho_{\infty}$, such that ρ_{κ} is a minimiser of $E_{\kappa}(\rho)$

Definition (Continuous and discontinuous transition point)

A transition point $\kappa_c > 0$ is a continuous transition point of \mathcal{F}_{κ} if

() For
$$\kappa = \kappa_c$$
: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$

For any family of minimizers $\{\rho_{\kappa} \neq \rho_{\infty}\}_{\kappa > \kappa_{c}}$ it holds

$$\limsup_{\kappa\downarrow\kappa_c}\|\rho_\kappa-\rho_\infty\|_X=0$$

Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers. Question: When do we get new minimisers? Definition (Transition point [Chayes-Panferov '10])

A parameter value $\kappa_c > 0$ is said to be a transition point of an energy E_{κ} if it satisfies the following conditions,

• For $0 < \kappa < \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$

2) For
$$\kappa = \kappa_c$$
: ρ_{∞} is a minimiser of $E_{\kappa}(\rho)$

So For $\kappa > \kappa_c$: $\exists \rho_{\kappa} \neq \rho_{\infty}$, such that ρ_{κ} is a minimiser of $E_{\kappa}(\rho)$

Definition (Continuous and discontinuous transition point)

A transition point $\kappa_c > 0$ is a continuous transition point of \mathcal{F}_{κ} if

- For $\kappa = \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$
- Solution For any family of minimizers $\{\rho_{\kappa} \neq \rho_{\infty}\}_{\kappa > \kappa_{c}}$ it holds

$$\limsup_{\kappa\downarrow\kappa_c}\|\rho_\kappa-\rho_\infty\|_X=0$$

Transition points: Change in the set of minimizers

New stationary solutions obtain via local bifurcation need not be new minimisers. Question: When do we get new minimisers? Definition (Transition point [Chayes-Panferov '10])

A parameter value $\kappa_c > 0$ is said to be a transition point of an energy E_{κ} if it satisfies the following conditions,

• For $0 < \kappa < \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$

2) For
$$\kappa = \kappa_c$$
: ρ_{∞} is a minimiser of $E_{\kappa}(\rho)$

So For $\kappa > \kappa_c$: $\exists \rho_{\kappa} \neq \rho_{\infty}$, such that ρ_{κ} is a minimiser of $E_{\kappa}(\rho)$

Definition (Continuous and discontinuous transition point)

A transition point $\kappa_c > 0$ is a continuous transition point of \mathcal{F}_{κ} if

- For $\kappa = \kappa_c$: ρ_{∞} is the unique minimiser of $E_{\kappa}(\rho)$
- Solution For any family of minimizers $\{\rho_{\kappa} \neq \rho_{\infty}\}_{\kappa > \kappa_{c}}$ it holds

$$\limsup_{\kappa\downarrow\kappa_c}\|\rho_\kappa-\rho_\infty\|_X=0$$

Basic properties of transition points, m = 1

Summary of critical points:

- κ_c transition point
- κ_{*} bifurcation point
- κ_{\sharp} point of linear stability, i.e., $\kappa_{\sharp} = -\frac{L^{\frac{d}{2}}}{\min_{k} \hat{W}(k)/\Theta(k)}$.

If $k_{\sharp} = \arg \min \hat{W}(k)$ is unique, then $\kappa_{\sharp} = \kappa_*$ is a bifurcation point.

Results from [Gates-Penrose 1970] and [Chayes-Panferov '10]

- \mathcal{F}_{κ} has a transition point κ_c iff $W \notin \mathbb{H}_s$
- min \mathcal{F}_{κ} is non-increasing as a function of κ
- If for some κ': ρ_∞ is no longer the unique minimiser, then ∀κ > κ': ρ_∞ is no longer a minimizer
- If κ_c is continuous, then $\kappa_c = \kappa_{\sharp}$

Conclusion:

- To prove a discontinuous transition: Show ρ_{∞} is no longer global minimizer at κ_{\sharp} .
- To prove a continuous transition:
 Sufficient to show that ρ_∞ at κ_# is the unique global minimizer.

Basic properties of transition points, m = 1

Summary of critical points:

- κ_c transition point
- κ_{*} bifurcation point
- κ_{\sharp} point of linear stability, i.e., $\kappa_{\sharp} = -\frac{L^{\frac{d}{2}}}{\min_{k} \hat{W}(k)/\Theta(k)}$.

If $k_{\sharp} = \arg \min \hat{W}(k)$ is unique, then $\kappa_{\sharp} = \kappa_*$ is a bifurcation point.

Results from [Gates-Penrose 1970] and [Chayes-Panferov '10]

- \mathcal{F}_{κ} has a transition point κ_c iff $W \notin \mathbb{H}_s$
- min *F_κ* is non-increasing as a function of *κ*
- If for some κ': ρ_∞ is no longer the unique minimiser, then ∀κ > κ': ρ_∞ is no longer a minimizer
- If κ_c is continuous, then $\kappa_c = \kappa_{\sharp}$

Conclusion:

- To prove a discontinuous transition: Show ρ_{∞} is no longer global minimizer at κ_{\sharp} .
- To prove a continuous transition:
 Sufficient to show that ρ_∞ at κ_# is the unique global minimizer.

Conditions for continuous and discontinuous phase transition

Theorem ([C.-Gvalani-Pavliotis-Schlichting ARMA '20])

Let $W(x) \in \mathbb{H}_{s}^{c}$.

 If there exist (near)-resonating dominant modes: That is for δ small enough

$$k^{a}, k^{b}, k^{c} \in \left\{k' \in \mathbb{N}^{d} : \frac{\hat{W}(k')}{\Theta(k')} \leq \min_{k \in \mathbb{N}^{d}} \frac{\hat{W}(k)}{\Theta(k)} + \delta\right\} := K^{\delta}$$

satisfying $k^a = k^b + k^c$, then there exists a discontinuous transition point $\kappa_c < \kappa_{\sharp}$.

 If there is only one dominant unstable mode k*: For α > 0 small enough holds

 $\alpha \tilde{W}(k^{\sharp}) \leq \tilde{W}(k) \quad \text{for all } k \neq k^{\sharp} : \tilde{W}(k) < 0 ,$

then the transition point $\kappa_c = \kappa_{\sharp} = \kappa_*$ is continuous.

Problems & Motivation

Phase Transition driven by Diffusion/Interaction Ratio

Conclusions O

Transition Points

Conditions for continuous and discontinuous phase transition

The near resonating dominant modes scenario

The dominant mode scenario

What can we say for m > 1?

Can we reproduce the results obtained with linear diffusion?

Proposition ([C.-Gvalani, preprint])

Assume that $W \in \mathbb{H}^c_s$. Then \mathcal{F}^m_{κ} has a transition point at some $\kappa_c \leq \kappa_{\sharp}$ where $\kappa_{\sharp} = -\frac{\sqrt{2m}\rho_{\infty}^{m-3/2}}{\min_{k \in \mathbb{N}} \tilde{W}(k)}$ is the point of linear stability. If κ_c is continuous, then $\kappa_c = \kappa_{\sharp}$.

Lemma ([C.-Gvalani, preprint])

Assume κ_c is a discontinuous transition point. Then, there exists $\rho_{\kappa_c} \neq \rho_{\infty}$ such that $\mathcal{F}_{\kappa_c}^m(\rho_{\kappa_c}) = \mathcal{F}_{\kappa_c}^m(\rho_{\infty})$, i.e., there exists a nontrivial minimiser at $\kappa = \kappa_c$.

What can we say for m > 1?

Can we reproduce the results obtained with linear diffusion?

Proposition ([C.-Gvalani, preprint])

Assume that $W \in \mathbb{H}_{s}^{c}$. Then \mathcal{F}_{κ}^{m} has a transition point at some $\kappa_{c} \leq \kappa_{\sharp}$ where $\kappa_{\sharp} = -\frac{\sqrt{2m\rho_{\infty}^{m-3/2}}}{\min_{k \in \mathbb{N}} \tilde{W}(k)}$ is the point of linear stability. If κ_{c} is continuous, then $\kappa_{c} = \kappa_{\sharp}$.

Lemma ([C.-Gvalani, preprint])

Assume κ_c is a discontinuous transition point. Then, there exists $\rho_{\kappa_c} \neq \rho_{\infty}$ such that $\mathcal{F}_{\kappa_c}^m(\rho_{\kappa_c}) = \mathcal{F}_{\kappa_c}^m(\rho_{\infty})$, i.e., there exists a nontrivial minimiser at $\kappa = \kappa_c$.

What can we say for m > 1?

Can we reproduce the results obtained with linear diffusion?

Proposition ([C.-Gvalani, preprint])

Assume that $W \in \mathbb{H}_{s}^{c}$. Then \mathcal{F}_{κ}^{m} has a transition point at some $\kappa_{c} \leq \kappa_{\sharp}$ where $\kappa_{\sharp} = -\frac{\sqrt{2m\rho_{\infty}^{m-3/2}}}{\min_{k \in \mathbb{N}} \hat{W}(k)}$ is the point of linear stability. If κ_{c} is continuous, then $\kappa_{c} = \kappa_{\sharp}$.

Lemma ([C.-Gvalani, preprint])

Assume κ_c is a discontinuous transition point. Then, there exists $\rho_{\kappa_c} \neq \rho_{\infty}$ such that $\mathcal{F}_{\kappa_c}^m(\rho_{\kappa_c}) = \mathcal{F}_{\kappa_c}^m(\rho_{\infty})$, i.e., there exists a nontrivial minimiser at $\kappa = \kappa_c$.

What can we say for m > 1?

Theorem (Stability of discontinuous transition points around m = 1)

Let W be such that \mathcal{F}_{κ}^{m} has a discontinuous transition point for m = 1 and $\kappa_{c} < \kappa_{\sharp}^{1}$. Then for $1 \leq m < 1 + \varepsilon$ for some $\varepsilon > 0$ small enough, \mathcal{F}_{κ}^{m} has a discontinuous transition point at $\kappa_{c}^{m} < \kappa_{\sharp}^{m}$.

Theorem ([C.-Gvalani, preprint])

Let $W(x) \in \mathbb{H}_{s^*}^c$. If there exist (near)-resonating dominant modes: That is for δ small enough

$$k^{a}, k^{b}, k^{c} \in \left\{k' \in \mathbb{N}^{d} : \frac{\hat{W}(k')}{\Theta(k')} \le \min_{k \in \mathbb{N}^{d}} \frac{\hat{W}(k)}{\Theta(k)} + \delta\right\} := K'$$

satisfying $k^a = k^b + k^c$, then there exists a discontinuous transition point $\kappa_c < \kappa_{\sharp}$.

Assume $W \in \mathbb{H}_s^c$ such that β_c is a transition point of \mathcal{F}_{β}^m . Then if $m \in [2, 3]$, β_c is a discontinuous transition point.

What can we say for m > 1?

Theorem (Stability of discontinuous transition points around m = 1)

Let W be such that \mathcal{F}_{κ}^{m} has a discontinuous transition point for m = 1 and $\kappa_{c} < \kappa_{\sharp}^{1}$. Then for $1 \leq m < 1 + \varepsilon$ for some $\varepsilon > 0$ small enough, \mathcal{F}_{κ}^{m} has a discontinuous transition point at $\kappa_{c}^{m} < \kappa_{\sharp}^{m}$.

Theorem ([C.-Gvalani, preprint])

Let $W(x) \in \mathbb{H}_{s}^{c}$. If there exist (near)-resonating dominant modes: That is for δ small enough

$$k^{a}, k^{b}, k^{c} \in \left\{k' \in \mathbb{N}^{d} : \frac{\hat{W}(k')}{\Theta(k')} \leq \min_{k \in \mathbb{N}^{d}} \frac{\hat{W}(k)}{\Theta(k)} + \delta\right\} := K^{\delta}$$

satisfying $k^a = k^b + k^c$, then there exists a discontinuous transition point $\kappa_c < \kappa_{\sharp}$.

Assume $W \in \mathbb{H}^{c}_{s}$ such that β_{c} is a transition point of \mathcal{F}^{m}_{β} . Then if $m \in [2, 3]$, β_{c} is a discontinuous transition point.

What can we say for m > 1?

Theorem (Stability of discontinuous transition points around m = 1)

Let W be such that \mathcal{F}_{κ}^{m} has a discontinuous transition point for m = 1 and $\kappa_{c} < \kappa_{\sharp}^{1}$. Then for $1 \leq m < 1 + \varepsilon$ for some $\varepsilon > 0$ small enough, \mathcal{F}_{κ}^{m} has a discontinuous transition point at $\kappa_{c}^{m} < \kappa_{\sharp}^{m}$.

Theorem ([C.-Gvalani, preprint])

Let $W(x) \in \mathbb{H}_{s}^{c}$. If there exist (near)-resonating dominant modes: That is for δ small enough

$$k^{a}, k^{b}, k^{c} \in \left\{k' \in \mathbb{N}^{d} : \frac{\hat{W}(k')}{\Theta(k')} \leq \min_{k \in \mathbb{N}^{d}} \frac{\hat{W}(k)}{\Theta(k)} + \delta\right\} := K^{\delta}$$

satisfying $k^a = k^b + k^c$, then there exists a discontinuous transition point $\kappa_c < \kappa_{\sharp}$.

Assume $W \in \mathbb{H}_{s}^{c}$ such that β_{c} is a transition point of \mathcal{F}_{β}^{m} . Then if $m \in [2, 3]$, β_{c} is a discontinuous transition point.

What can we say for m > 1?

Theorem (Stability of discontinuous transition points around m = 1)

Let W be such that \mathcal{F}_{κ}^{m} has a discontinuous transition point for m = 1 and $\kappa_{c} < \kappa_{\sharp}^{1}$. Then for $1 \leq m < 1 + \varepsilon$ for some $\varepsilon > 0$ small enough, \mathcal{F}_{κ}^{m} has a discontinuous transition point at $\kappa_{c}^{m} < \kappa_{\sharp}^{m}$.

Theorem ([C.-Gvalani, preprint])

Let $W(x) \in \mathbb{H}_{s}^{c}$. If there exist (near)-resonating dominant modes: That is for δ small enough

$$k^{a}, k^{b}, k^{c} \in \left\{k' \in \mathbb{N}^{d} : \frac{\hat{W}(k')}{\Theta(k')} \leq \min_{k \in \mathbb{N}^{d}} \frac{\hat{W}(k)}{\Theta(k)} + \delta\right\} := K^{\delta}$$

satisfying $k^a = k^b + k^c$, then there exists a discontinuous transition point $\kappa_c < \kappa_{\sharp}$.

Assume $W \in \mathbb{H}_{s}^{c}$ such that β_{c} is a transition point of \mathcal{F}_{β}^{m} . Then if $m \in [2, 3]$, β_{c} is a discontinuous transition point.

- Aggregation-diffusion equations can lead to complicated phase transitions and bifurcations diagrams.
- General conditions for continuous or discontinuous phase transitions depending on the interaction potential.
- Nonlinear diffusion lead to particular effects: persistence of discontinuous phase transitions and one parameter families of solutions a bifurcation points.
- References:
 - I Barbaro-Cañizo-C.-Degond (SIAM MMS 2016).
 - C.-Chen-Wang-Wang-Zhang (SIAM J. Applied Mathematics 2020).
 - Sc.-Gvalani-Pavliotis-Schlichting (ARMA 2020).
 - C.-Gvalani (preprint 2019).

- Aggregation-diffusion equations can lead to complicated phase transitions and bifurcations diagrams.
- General conditions for continuous or discontinuous phase transitions depending on the interaction potential.
- Nonlinear diffusion lead to particular effects: persistence of discontinuous phase transitions and one parameter families of solutions a bifurcation points.
- References:
 - I Barbaro-Cañizo-C.-Degond (SIAM MMS 2016).
 - C.-Chen-Wang-Wang-Zhang (SIAM J. Applied Mathematics 2020).
 - Sc.-Gvalani-Pavliotis-Schlichting (ARMA 2020).
 - C.-Gvalani (preprint 2019).

- Aggregation-diffusion equations can lead to complicated phase transitions and bifurcations diagrams.
- General conditions for continuous or discontinuous phase transitions depending on the interaction potential.
- Nonlinear diffusion lead to particular effects: persistence of discontinuous phase transitions and one parameter families of solutions and bifurcation points.

• References:

- Barbaro-Cañizo-C.-Degond (SIAM MMS 2016).
- C.-Chen-Wang-Wang-Zhang (SIAM J. Applied Mathematics 2020).
- C.-Gvalani-Pavliotis-Schlichting (ARMA 2020).
- C.-Gvalani (preprint 2019).

- Aggregation-diffusion equations can lead to complicated phase transitions and bifurcations diagrams.
- General conditions for continuous or discontinuous phase transitions depending on the interaction potential.
- Nonlinear diffusion lead to particular effects: persistence of discontinuous phase transitions and one parameter families of solutions and bifurcation points.
- References:
 - Barbaro-Cañizo-C.-Degond (SIAM MMS 2016).
 - C.-Chen-Wang-Wang-Zhang (SIAM J. Applied Mathematics 2020).
 - Sc.-Gvalani-Pavliotis-Schlichting (ARMA 2020).
 - C.-Gvalani (preprint 2019).