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Longtime dynamics in 2d fluids



The Navier-Stokes and Euler equations

In a 2d domain, consider{
∂tU + (U · ∇)U +∇P = ν∆U ,

∇ ·U = 0.

• U = (U1,U2) is the velocity field of the fluid

• P is the scalar pressure

• ν ≥ 0 is the inverse Reynolds number

• ν = 0: Inviscid fluid → Euler equations

• ν > 0: Viscous fluid → Navier-Stokes equations

In vorticity formulation Ω = ∇⊥ ·U = −∂yU1 + ∂xU2:{
∂tΩ + U · ∇Ω = ν∆Ω,

U = ∇⊥Ψ, ∆Ψ = Ω.
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Main features

• Smooth solutions remain smooth and are global (ν ≥ 0)

• All Lp norms are conserved (ν = 0)

What happens as t →∞?

• In (bounded) domains, all mean-zero solutions decay to 0 (ν > 0)

• For ν = 0, the dynamics can be very complicated: there is no global

relaxation mechanism
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Vorticity mixing

Mixing can be thought of as a cascading process in which information

travels to smaller and smaller spatial scales.

Figure 1: No diffusion (Doering et al.)

Understanding this fundamental process

sheds light on:

• Relaxation towards stationary states

and coherent structures

• Meta-stable behavior in

ocean/atmospheric models

• The derivation of turbulence scaling

laws (Kolmogorov, Batchelor)
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A conjecture

Longtime behavior for 2D Euler

The generic solution to the 2D Euler equations in vorticity form on T2

is such that the orbit {Ω(t) : t ∈ R} is not precompact in L2(T2).

• All solutions that experience some vorticity mixing as t →∞ are not

precompact (very hard to prove in general!)

• Understand the dynamics near steady states such as shear flows and

vortices

• Understand the (local) structure of known steady states
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Long-time dynamics

• Bedrossian, Masmoudi ’13: sufficiently smooth, non-shear

perturbations of the Couette flow U = (y , 0) undergo vorticity

mixing and inviscid damping.

• Same for monotonic flows U = (u(y), 0) on T× [−1, 1] (Ionescu,

Jia ’19 and Masmoudi, Zhao ’19)

• Same for the point-vortex (Ionescu, Jia ’19)
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Local structure of steady states

• Lin, Zeng ’10: there are steady states near Couette in Hs (s < 3/2),

with cat’s eye structure (i.e. nontrivial x-dependence). All steady

states near Couette in Hs (s > 3/2) are shears.

• Choffrut, Sverak ’12: Neighborhoods of non-degenerate steady

states in an annulus can contain only non-degenerate steady states.

• Constantin, Drivas, Ginsberg ’20: there are perturbations of

non-degenerate Arnold stable steady states that are non-degenerate

Arnold stable
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Local vs global degeneracies

Write Euler near a shear (u(y), 0):

u∂xω − u′′∆−1∂xω + u · ∇ω = 0

• Local degeneracy: u has a (simple) critical point

• Global degeneracy: The kernel of the linear operator

Lu = u∂x − u′′∆−1∂x

is ”big” (does not only contain shears)

Question: what is the role of degeneracies in the local structure of steady

states?
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Examples

• Couette: v(y) = y , on T× [−1, 1], is non-degenerate

• Poiseuille: v(y) = y2, on T× [−1, 1], is locally degenerate but the

kernel of

LP = y2∂x − 2∆−1∂x

only contains shears

• Kolmogorov: v(y) = sin y , on T2 is both locally and globally

degenerate, since the kernel of

LK = sin y(1 + ∆−1)∂x

contains also {sin x , cos x}. This does not happen on a rectangular

torus T2
δ := [0, 2πδ]× [0, 2π], δ > 0 with δ 6∈ N.
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The Kolmogorov flow



Steady Euler flows

Any steady Euler flows U = ∇⊥Ψ satisfies

∇⊥Ψ · ∇∆Ψ = 0.

Hence, if

∆Ψ = F (Ψ), F ∈ C 1,

then Ψ is a steady solution. Kolmogorov flow is UK = (sin y , 0), hence

ΨK := cos(y), and

∆ΨK = FK (ΨK ), FK (z) = −z .
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Structures near Kolmogorov

Structures near Kolmogorov [CZ, Elgindi, Widmayer ’20]

There exists ε0 > 0 such that for any 0 < ε ≤ ε0 there exist analytic

functions Ψε ∈ Cω(T2) and Fε ∈ Cω(R) satisfying

∆Ψε = Fε(Ψε) (1)

and

‖cos(y)−Ψε‖Cω(T2) = O(ε), (2)

with

〈Ψε, cos(x) cos(4y)〉 = −ε2 π
2

128
+ O(ε3). (3)

• Fε is a polynomial of degree 5, so if Ψε ∈ H2 then, by elliptic

regularity, it is analytic.

• There are families of non-trivial (i.e. not in the kernel of LK ),

non-shear and stationary solutions Uε := ∇⊥Ψε : T2 → R2 of the

incompressible Euler equations.
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The general strategy

To find a larger class of solutions near Kolmogorov, we make the ansatz

Ψε = ΨK + εψ, Fε = FK + εf ,

which yields a nonlinear elliptic equation for ψ, with f to be determined

as well,

∆ψ + ψ = f (ΨK + εψ).

GOAL

Find (f , ψ), with ψ even in x and y separately, such that

∆ψ + ψ = f (cos(y) + ε cos(x) + εψ), with ψ ⊥ ker(∆ + 1),

with f as a quintic polynomial (with coefficients A,B ∈ R to be

determined as functionals of ψ and ε > 0)

f (A,B; s) = As + Bs3 +
1

5
s5.
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The resulting steady state

• Ψε can be computed to have the expansion

Ψε = cos(y) + ε [cos(x) + c0 cos(3y)− c1 cos(5y)]

+ ε2
[
−c2 cos(x) cos(4y)− 1

32
b1 cos(3y)− c3 cos(7y) + c4 cos(9y)

]
+ O(ε3).

• Many such families (Ψε)ε exist. Modify the functions Fε by adding

polynomials with coefficients of order ε2.
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Explicitly

This amounts to solve

∆ψ + ψ = A cos(y) + B cos3(y) +
1

5
cos5(y)

+ εψ
(
A + 3B cos2(y) + cos4(y)

)
+ ε cos(x)

(
A + 3B cos2(y) + cos4(y)

)
+ R(B, ψ, ε; x , y),

with R(B, ψ, ε; x , y) = O(ε2).

Solvability conditions (SC)

〈f (A,B; cos(y) + ε cos(x) + εψ), cos(x)〉 = 0

〈f (A,B; cos(y) + ε cos(x) + εψ), cos(y)〉 = 0.

14



The contraction set-up

The space is

X :=
{
ψ ∈ H2 : ψ(−x , y) = ψ(x ,−y) = ψ(x , y), ψ ⊥ cos(y), cos(x),∣∣〈ψ, cos2(y) cos(x)〉

∣∣+
∣∣〈ψ, cos4(y) cos(x)〉

∣∣ ≤ 1

100
, ‖ψ‖H2 ≤ 10

}
.

The coefficients

For ψ ∈ X and ε small, for 0 ≤ ε ≤ ε1, (SC) inductively define

(aj(ψ))j≥0, (bj(ψ))j≥0 ⊂ R such that

A(ψ; ε) :=
∑
j≥0

aj(ψ)εj , B(ψ; ε) :=
∑
j≥0

bj(ψ)εj

are well-defined, uniformly bounded for ψ ∈ X , and satisfy (SC). The

maps ψ 7→ aj(ψ), ψ 7→ bj(ψ) are Lipschitz on L2 and the maps

ψ 7→ a0(ψ), ψ 7→ b0(ψ), are Lipschitz on Ḣ2 with constant L̃0 ≤ 1
4π .

15



The contraction set-up

The map Kε : X → H2

We look for a fixed point of

ψ 7→
[
(x , y) 7→ (1 + ∆)−1f (A(ψ; ε),B(ψ, ε); cos(y) + ε cos(x) + εψ)

]
The contraction property boils down to∥∥(a0(ψ1)− a0(ψ2)) cos(y) + (b0(ψ1)− b0(ψ2)) cos3(y)

∥∥
L2

≤ 1

4π

[
‖cos(y)‖L2 +

∥∥cos3(y)
∥∥
L2

]
‖ψ1 − ψ2‖Ḣ2

=

√
2

4

[
1 +

√
5

8

]
‖ψ1 − ψ2‖Ḣ2 ≤

2

3
‖ψ1 − ψ2‖H2 ,

This shows that

‖Kε(ψ1)− Kε(ψ2)‖H2 ≤
(

2

3
+ O(ε)

)
‖ψ1 − ψ2‖H2 ,

and for ε > 0 sufficiently small we thus obtain a contraction.
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Non-triviality of steady states

Recall that Ψε = cos(y) + ε cos(x) + εψε and

∆ψε + ψε = − 1

48
cos(3y) +

1

80
cos(5y)

+ ε(ψε|ε=0 + cos(x))
1

8
cos(4y) + ε cos(y)

[
a1 +

3

4
b1

]
+ ε cos(3y)

[
1

4
b1

]
+ O(ε2).

Hence

Ψε = cos(y) + ε [cos(x) + c0 cos(3y)− c1 cos(5y)]

+ ε2
[
−c2 cos(x) cos(4y)− 1

32
b1 cos(3y)− c3 cos(7y) + c4 cos(9y)

]
+ O(ε3).
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Remarks and consequences



Inviscid damping

{
∂tω + LKω = −u · ∇ω,
u = ∇⊥ψ, ∆ψ = ω.

• Wei, Zhang, Zhao ’17: there is linear inviscid damping, namely,

linearly all modes away from the kernel of LK decay.

• CZ, Elgindi, Widmayer ’20: the result cannot be extended

perturbatively at the nonlinear level, no matter the regularity. The

dynamics near Kolmogorov on T2 is much richer.
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Obstructions on the Square Torus

Not all directions are good! There are elements of kerLK which cannot

arise as projections of stationary states.

Obstructions on the Torus

If for some ` ∈ N, ` ≥ 2,

PK (Ω∗ − cos(y))

‖PK (Ω∗ − cos(y))‖L2

= sin(`y) + cos(x),

then there exists ε0 > 0 small so that if ‖Ω∗ − cos(y)‖H6 = ε < ε0,

then Ω∗ is not a stationary solution to the 2d Euler equations.
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Rigidity on Rectangular Tori

Rigidity near Kolmogorov on a rectangular torus

Consider the stationary solution UK (x , y) = (sin(y), 0) on T2
δ, δ > 0

with δ 6∈ N. There exists ε0 > 0 (depending on δ) such that if

U : T2
δ → R2 is a further stationary solution to the Euler equations with

‖U − UK‖H3 ≤ ε0,

then U = U(y) is necessarily a shear flow.
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Rigidity near Poiseuille flow

Near Poiseuille flow, even any nearby travelling wave solution must

simply be a shear flow.

Rigidity near Poiseuille

Let s > 5, and consider the 2d Euler equations on T× [−1, 1]

∂tU + U · ∇U +∇P = 0, ∇ · U = 0, U2(x ,±1) = 0.

There exists ε0 > 0 such that if U(x − ct, y), with c ∈ R, is any

traveling wave solution that satisfies

‖Ω + 2y‖Hs ≤ ε0, where U = ∇⊥Ψ, ∆Ψ = Ω,

then it follows that U ≡ (U1, 0), that is, U is necessarily a shear flow.
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Enhanced Dissipation near Bar States on T2

The linearization of the Navier-Stokes equations near the bar states

Ωbar = −e−νt cos(y) is then given by

∂t f + e−νtLK f = ν∆f .

Ibrahim, Maekawa and Masmoudi ’17 and Wei, Zhang, Zhao ’17 showed

that

‖PDf (t)‖L2 . e−c1ν
1/2t ‖PDf (0)‖L2 , ∀t ≤ τ

ν
, D := (kerLK )⊥.

Typical nonlinear transition threshold

At the nonlinear level, there exists γ ≥ 0 such that if

‖PDωin‖X . νγ ⇒ ‖PDω(t)‖L2 . e−c1ν
1/2t
∥∥PDωin

∥∥
L2

• True for rectangular tori (Wei, Zhang, Zhao ’17 )

• True for Poiseuille flow (CZ, Elgindi, Widmayer ’19)
22



No Threshold near Bar States on T2

No nonlinear threshold

For any ν > 0 there exists 0 < ε0 � ν with the following property: let

0 < ε ≤ ε0 and let Ωε = ∆Ψε be the vorticity of the stationary Euler

flow found before. Then PDΩε is not dissipated at an enhanced rate:

i.e. the solution Ων of the initial value problem{
∂tΩ

ν + Uν · ∇Ων = ν∆Ων ,

Ων(0) = Ωε,

on T2 satisfies for all t ∈ [ 1
2ν ,

1
ν ] the lower bound

‖PDΩν(t)‖L2 & ‖PDΩε‖L2 .
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THANK YOU
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