Stationary Euler flows near the Kolmogorov and Poiseuille flows

Workshop on Partial differential equations describing far-from-equilibrium open systems

Michele Coti Zelati joint with T.M. Elgindi and K. Widmayer September 24, 2020

Imperial College London

- 1. Longtime dynamics in 2d fluids
- 2. The Kolmogorov flow
- 3. Remarks and consequences

Longtime dynamics in 2d fluids

The Navier-Stokes and Euler equations

In a 2d domain, consider

$$\begin{cases} \partial_t \boldsymbol{U} + (\boldsymbol{U} \cdot \nabla) \boldsymbol{U} + \nabla \boldsymbol{P} = \nu \Delta \boldsymbol{U}, \\ \nabla \cdot \boldsymbol{U} = 0. \end{cases}$$

- $\boldsymbol{U} = (U_1, U_2)$ is the velocity field of the fluid
- *P* is the scalar pressure

The Navier-Stokes and Euler equations

In a 2d domain, consider

$$\begin{cases} \partial_t \boldsymbol{U} + (\boldsymbol{U} \cdot \nabla) \boldsymbol{U} + \nabla \boldsymbol{P} = \nu \Delta \boldsymbol{U}, \\ \nabla \cdot \boldsymbol{U} = 0. \end{cases}$$

- $\boldsymbol{U} = (U_1, U_2)$ is the velocity field of the fluid
- *P* is the scalar pressure
- $\nu \ge 0$ is the inverse Reynolds number
 - $\nu = 0$: Inviscid fluid \rightarrow Euler equations
 - $\nu > 0$: Viscous fluid \rightarrow Navier-Stokes equations

The Navier-Stokes and Euler equations

In a 2d domain, consider

$$\begin{cases} \partial_t \boldsymbol{U} + (\boldsymbol{U} \cdot \nabla) \boldsymbol{U} + \nabla \boldsymbol{P} = \nu \Delta \boldsymbol{U}, \\ \nabla \cdot \boldsymbol{U} = 0. \end{cases}$$

- $\boldsymbol{U} = (U_1, U_2)$ is the velocity field of the fluid
- P is the scalar pressure
- $\nu \ge 0$ is the inverse Reynolds number
 - $\nu = 0$: Inviscid fluid \rightarrow Euler equations
 - $\nu > 0$: Viscous fluid \rightarrow Navier-Stokes equations

In vorticity formulation $\Omega = \nabla^{\perp} \cdot \boldsymbol{U} = -\partial_y U_1 + \partial_x U_2$:

$$\begin{cases} \partial_t \Omega + \boldsymbol{U} \cdot \nabla \Omega = \nu \Delta \Omega, \\ \boldsymbol{U} = \nabla^{\perp} \Psi, \quad \Delta \Psi = \Omega. \end{cases}$$

- Smooth solutions remain smooth and are global $(\nu \ge 0)$
- All L^p norms are conserved $(\nu = 0)$

What happens as $t \to \infty$?

- In (bounded) domains, all mean-zero solutions decay to 0 ($\nu > 0$)
- For $\nu = 0$, the dynamics can be very complicated: there is no global relaxation mechanism

Mixing can be thought of as a cascading process in which information travels to smaller and smaller spatial scales.

Figure 1: No diffusion (Doering et al.)

Understanding this fundamental process sheds light on:

- Relaxation towards stationary states and coherent structures
- Meta-stable behavior in ocean/atmospheric models
- The derivation of turbulence scaling laws (Kolmogorov, Batchelor)

Longtime behavior for 2D Euler

The generic solution to the 2D Euler equations in vorticity form on \mathbb{T}^2 is such that the orbit $\{\Omega(t) : t \in \mathbb{R}\}$ is not precompact in $L^2(\mathbb{T}^2)$.

- All solutions that experience some vorticity mixing as $t \to \infty$ are not precompact (very hard to prove in general!)
- Understand the dynamics near steady states such as shear flows and vortices
- Understand the (local) structure of known steady states

- Bedrossian, Masmoudi '13: sufficiently smooth, non-shear perturbations of the Couette flow U = (y, 0) undergo vorticity mixing and inviscid damping.
- Same for monotonic flows U = (u(y), 0) on T × [−1, 1] (lonescu, Jia '19 and Masmoudi, Zhao '19)
- Same for the point-vortex (lonescu, Jia '19)

- Lin, Zeng '10: there are steady states near Couette in H^s (s < 3/2), with cat's eye structure (i.e. nontrivial x-dependence). All steady states near Couette in H^s (s > 3/2) are shears.
- Choffrut, Sverak '12: Neighborhoods of non-degenerate steady states in an annulus can contain only non-degenerate steady states.
- Constantin, Drivas, Ginsberg '20: there are perturbations of non-degenerate Arnold stable steady states that are non-degenerate Arnold stable

Write Euler near a shear (u(y), 0):

$$u\partial_{\mathbf{x}}\omega - u''\Delta^{-1}\partial_{\mathbf{x}}\omega + \mathbf{u}\cdot\nabla\omega = 0$$

- Local degeneracy: *u* has a (simple) critical point
- Global degeneracy: The kernel of the linear operator

$$\mathcal{L}_u = u\partial_x - u''\Delta^{-1}\partial_x$$

is "big" (does not only contain shears)

Question: what is the role of degeneracies in the local structure of steady states?

Examples

- Couette: v(y) = y, on $\mathbb{T} \times [-1, 1]$, is non-degenerate
- Poiseuille: v(y) = y², on T × [−1, 1], is locally degenerate but the kernel of

$$\mathcal{L}_P = y^2 \partial_x - 2\Delta^{-1} \partial_x$$

only contains shears

Kolmogorov: v(y) = sin y, on T² is both locally and globally degenerate, since the kernel of

$$\mathcal{L}_{K}= {
m sin} \, y(1+\Delta^{-1}) \partial_{x}$$

contains also $\{\sin x, \cos x\}$. This does not happen on a rectangular torus $\mathbb{T}^2_{\delta} := [0, 2\pi\delta] \times [0, 2\pi], \ \delta > 0$ with $\delta \notin \mathbb{N}$.

The Kolmogorov flow

Any steady Euler flows $\boldsymbol{U} = \nabla^{\perp} \Psi$ satisfies

 $\nabla^{\perp}\Psi\cdot\nabla\Delta\Psi=0.$

Hence, if

$$\Delta \Psi = F(\Psi), \qquad F \in C^1,$$

then Ψ is a steady solution. Kolmogorov flow is $U_{\mathcal{K}} = (\sin y, 0)$, hence $\Psi_{\mathcal{K}} := \cos(y)$, and

$$\Delta \Psi_{\mathcal{K}} = F_{\mathcal{K}}(\Psi_{\mathcal{K}}), \qquad F_{\mathcal{K}}(z) = -z.$$

Structures near Kolmogorov

Structures near Kolmogorov [CZ, Elgindi, Widmayer '20]

There exists $\varepsilon_0 > 0$ such that for any $0 < \varepsilon \leq \varepsilon_0$ there exist analytic functions $\Psi_{\varepsilon} \in C^{\omega}(\mathbb{T}^2)$ and $F_{\varepsilon} \in C^{\omega}(\mathbb{R})$ satisfying

$$\Delta \Psi_{\varepsilon} = F_{\varepsilon}(\Psi_{\varepsilon}) \tag{1}$$

and

$$\|\cos(y) - \Psi_{\varepsilon}\|_{C^{\omega}(\mathbb{T}^2)} = O(\varepsilon), \qquad (2)$$

with

$$\langle \Psi_{\varepsilon}, \cos(x)\cos(4y) \rangle = -\varepsilon^2 \frac{\pi^2}{128} + O(\varepsilon^3).$$
 (3)

Structures near Kolmogorov

Structures near Kolmogorov [CZ, Elgindi, Widmayer '20]

There exists $\varepsilon_0 > 0$ such that for any $0 < \varepsilon \leq \varepsilon_0$ there exist analytic functions $\Psi_{\varepsilon} \in C^{\omega}(\mathbb{T}^2)$ and $F_{\varepsilon} \in C^{\omega}(\mathbb{R})$ satisfying

$$\Delta \Psi_{\varepsilon} = F_{\varepsilon}(\Psi_{\varepsilon}) \tag{1}$$

and

$$\|\cos(y) - \Psi_{\varepsilon}\|_{C^{\omega}(\mathbb{T}^2)} = O(\varepsilon), \qquad (2)$$

with

$$\langle \Psi_{\varepsilon}, \cos(x)\cos(4y) \rangle = -\varepsilon^2 \frac{\pi^2}{128} + O(\varepsilon^3).$$
 (3)

*F*_ε is a polynomial of degree 5, so if Ψ_ε ∈ *H*² then, by elliptic regularity, it is analytic.

Structures near Kolmogorov

Structures near Kolmogorov [CZ, Elgindi, Widmayer '20]

There exists $\varepsilon_0 > 0$ such that for any $0 < \varepsilon \leq \varepsilon_0$ there exist analytic functions $\Psi_{\varepsilon} \in C^{\omega}(\mathbb{T}^2)$ and $F_{\varepsilon} \in C^{\omega}(\mathbb{R})$ satisfying

$$\Delta \Psi_{\varepsilon} = F_{\varepsilon}(\Psi_{\varepsilon}) \tag{1}$$

and

$$\|\cos(y) - \Psi_{\varepsilon}\|_{C^{\omega}(\mathbb{T}^2)} = O(\varepsilon), \qquad (2)$$

with

$$\langle \Psi_{\varepsilon}, \cos(x)\cos(4y) \rangle = -\varepsilon^2 \frac{\pi^2}{128} + O(\varepsilon^3).$$
 (3)

- *F*_ε is a polynomial of degree 5, so if Ψ_ε ∈ *H*² then, by elliptic regularity, it is analytic.
- There are families of non-trivial (i.e. not in the kernel of L_K), non-shear and stationary solutions U_ε := ∇[⊥]Ψ_ε : T² → ℝ² of the incompressible Euler equations.

The general strategy

To find a larger class of solutions near Kolmogorov, we make the ansatz

$$\Psi_{\varepsilon} = \Psi_{K} + \varepsilon \psi, \qquad F_{\varepsilon} = F_{K} + \varepsilon f,$$

which yields a nonlinear elliptic equation for ψ , with f to be determined as well,

$$\Delta \psi + \psi = f(\Psi_{\mathcal{K}} + \varepsilon \psi).$$

GOAL

Find (f, ψ) , with ψ even in x and y separately, such that

$$\Delta \psi + \psi = f(\cos(y) + \varepsilon \cos(x) + \varepsilon \psi), \quad \text{with } \psi \perp \ker(\Delta + 1),$$

with f as a quintic polynomial (with coefficients $A, B \in \mathbb{R}$ to be determined as functionals of ψ and $\varepsilon > 0$)

$$f(A, B; s) = As + Bs^3 + \frac{1}{5}s^5.$$

• Ψ_{ε} can be computed to have the expansion

$$egin{aligned} \Psi_arepsilon &= \cos(y) + arepsilon \left[\cos(x) + c_0\cos(3y) - c_1\cos(5y)
ight] \ &+ arepsilon^2 \left[-c_2\cos(x)\cos(4y) - rac{1}{32}b_1\cos(3y) - c_3\cos(7y) + c_4\cos(9y)
ight] \ &+ O(arepsilon^3). \end{aligned}$$

Many such families (Ψ_ε)_ε exist. Modify the functions F_ε by adding polynomials with coefficients of order ε².

Explicitly

This amounts to solve

$$\begin{aligned} \Delta \psi + \psi &= A \cos(y) + B \cos^3(y) + \frac{1}{5} \cos^5(y) \\ &+ \varepsilon \psi \Big(A + 3B \cos^2(y) + \cos^4(y) \Big) \\ &+ \varepsilon \cos(x) \Big(A + 3B \cos^2(y) + \cos^4(y) \Big) \\ &+ R(B, \psi, \varepsilon; x, y), \end{aligned}$$

with $R(B, \psi, \varepsilon; x, y) = O(\varepsilon^2)$.

Solvability conditions (SC)

$$\langle f(A, B; \cos(y) + \varepsilon \cos(x) + \varepsilon \psi), \cos(x) \rangle = 0$$

 $\langle f(A, B; \cos(y) + \varepsilon \cos(x) + \varepsilon \psi), \cos(y) \rangle = 0.$

The contraction set-up

The space is

$$\begin{split} X &:= \Big\{ \psi \in H^2 : \psi(-x,y) = \psi(x,-y) = \psi(x,y), \quad \psi \perp \cos(y), \cos(x), \\ & \left| \langle \psi, \cos^2(y) \cos(x) \rangle \right| + \left| \langle \psi, \cos^4(y) \cos(x) \rangle \right| \leq \frac{1}{100}, \quad \|\psi\|_{H^2} \leq 10 \Big\}. \end{split}$$

The coefficients

For $\psi \in X$ and ε small, for $0 \le \varepsilon \le \varepsilon_1$, **(SC)** inductively define $(a_j(\psi))_{j\ge 0}, (b_j(\psi))_{j\ge 0} \subset \mathbb{R}$ such that

$$A(\psi;\varepsilon) := \sum_{j\geq 0} a_j(\psi)\varepsilon^j, \qquad B(\psi;\varepsilon) := \sum_{j\geq 0} b_j(\psi)\varepsilon^j$$

are well-defined, uniformly bounded for $\psi \in X$, and satisfy **(SC)**. The maps $\psi \mapsto a_j(\psi), \psi \mapsto b_j(\psi)$ are Lipschitz on L^2 and the maps $\psi \mapsto a_0(\psi), \psi \mapsto b_0(\psi)$, are Lipschitz on \dot{H}^2 with constant $\tilde{L}_0 \leq \frac{1}{4\pi}$.

The contraction set-up

The map $K_{\varepsilon}: X \to H^2$

We look for a fixed point of

$$\psi \mapsto \left[(x, y) \mapsto (1 + \Delta)^{-1} f(A(\psi; \varepsilon), B(\psi, \varepsilon); \cos(y) + \varepsilon \cos(x) + \varepsilon \psi) \right]$$

The contraction property boils down to

$$\begin{split} \left| \left(a_0(\psi_1) - a_0(\psi_2) \right) \cos(y) + \left(b_0(\psi_1) - b_0(\psi_2) \right) \cos^3(y) \right|_{L^2} \\ &\leq \frac{1}{4\pi} \left[\left\| \cos(y) \right\|_{L^2} + \left\| \cos^3(y) \right\|_{L^2} \right] \left\| \psi_1 - \psi_2 \right\|_{\dot{H}^2} \\ &= \frac{\sqrt{2}}{4} \left[1 + \sqrt{\frac{5}{8}} \right] \left\| \psi_1 - \psi_2 \right\|_{\dot{H}^2} \leq \frac{2}{3} \left\| \psi_1 - \psi_2 \right\|_{H^2}, \end{split}$$

This shows that

$$\|\kappa_{\varepsilon}(\psi_1) - \kappa_{\varepsilon}(\psi_2)\|_{H^2} \le \left(\frac{2}{3} + O(\varepsilon)\right) \|\psi_1 - \psi_2\|_{H^2},$$

and for $\varepsilon>0$ sufficiently small we thus obtain a contraction.

Non-triviality of steady states

Recall that $\Psi_{\varepsilon} = \cos(y) + \varepsilon \cos(x) + \varepsilon \psi_{\varepsilon}$ and

$$\begin{split} \Delta\psi_{\varepsilon} + \psi_{\varepsilon} &= -\frac{1}{48}\cos(3y) + \frac{1}{80}\cos(5y) \\ &+ \varepsilon(\psi_{\varepsilon}|_{\varepsilon=0} + \cos(x))\frac{1}{8}\cos(4y) + \varepsilon\cos(y)\left[a_1 + \frac{3}{4}b_1\right] \\ &+ \varepsilon\cos(3y)\left[\frac{1}{4}b_1\right] \\ &+ O(\varepsilon^2). \end{split}$$

Hence

$$\begin{split} \Psi_{\varepsilon} &= \cos(y) + \varepsilon \left[\cos(x) + c_0 \cos(3y) - c_1 \cos(5y) \right] \\ &+ \varepsilon^2 \left[-c_2 \cos(x) \cos(4y) - \frac{1}{32} b_1 \cos(3y) - c_3 \cos(7y) + c_4 \cos(9y) \right] \\ &+ O(\varepsilon^3). \end{split}$$

Remarks and consequences

$$\begin{cases} \partial_t \omega + \mathcal{L}_{\mathcal{K}} \omega = -\mathbf{u} \cdot \nabla \omega, \\ \mathbf{u} = \nabla^{\perp} \psi, \quad \Delta \psi = \omega. \end{cases}$$

- Wei, Zhang, Zhao '17: there is linear inviscid damping, namely, linearly all modes away from the kernel of L_K decay.
- CZ, Elgindi, Widmayer '20: the result cannot be extended perturbatively at the nonlinear level, no matter the regularity. The dynamics near Kolmogorov on T² is much richer.

Not all directions are good! There are elements of ker $\mathcal{L}_{\mathcal{K}}$ which cannot arise as projections of stationary states.

Obstructions on the Torus

If for some $\ell \in \mathbb{N}$, $\ell \geq 2$,

$$\frac{\mathbb{P}_{K}(\Omega_{*} - \cos(y))}{\left\|\mathbb{P}_{K}(\Omega_{*} - \cos(y))\right\|_{L^{2}}} = \sin(\ell y) + \cos(x),$$

then there exists $\varepsilon_0 > 0$ small so that if $\|\Omega_* - \cos(y)\|_{H^6} = \varepsilon < \varepsilon_0$, then Ω_* is not a stationary solution to the 2*d* Euler equations.

Rigidity near Kolmogorov on a rectangular torus

Consider the stationary solution $U_{\mathcal{K}}(x, y) = (\sin(y), 0)$ on \mathbb{T}^2_{δ} , $\delta > 0$ with $\delta \notin \mathbb{N}$. There exists $\varepsilon_0 > 0$ (depending on δ) such that if $U : \mathbb{T}^2_{\delta} \to \mathbb{R}^2$ is a further stationary solution to the Euler equations with

$$\|U-U_K\|_{H^3}\leq\varepsilon_0,$$

then U = U(y) is necessarily a shear flow.

Near Poiseuille flow, even any nearby travelling wave solution must simply be a shear flow.

Rigidity near Poiseuille

Let s>5, and consider the 2d Euler equations on $\mathbb{T} imes [-1,1]$

$$\partial_t U + U \cdot \nabla U + \nabla P = 0, \qquad \nabla \cdot U = 0, \qquad U_2(x, \pm 1) = 0.$$

There exists $\varepsilon_0 > 0$ such that if U(x - ct, y), with $c \in \mathbb{R}$, is any traveling wave solution that satisfies

$$\|\Omega + 2y\|_{H^s} \leq \varepsilon_0$$
, where $U = \nabla^{\perp} \Psi$, $\Delta \Psi = \Omega$,

then it follows that $U \equiv (U_1, 0)$, that is, U is necessarily a shear flow.

Enhanced Dissipation near Bar States on \mathbb{T}^2

The linearization of the Navier-Stokes equations near the bar states $\Omega_{bar} = -e^{-\nu t} \cos(y)$ is then given by

$$\partial_t f + \mathrm{e}^{-\nu t} \mathcal{L}_K f = \nu \Delta f.$$

Ibrahim, Maekawa and Masmoudi '17 and Wei, Zhang, Zhao '17 showed that

$$\|\mathbb{P}_{\mathcal{D}}f(t)\|_{L^2}\lesssim \mathrm{e}^{-\mathsf{c}_1
u^{1/2}t} \,\|\mathbb{P}_{\mathcal{D}}f(0)\|_{L^2}\,,\qquad orall t\leq rac{ au}{
u},\qquad \mathcal{D}:=(\ker\mathcal{L}_{\mathcal{K}})^{\perp}.$$

Typical nonlinear transition threshold

At the nonlinear level, there exists $\gamma \geq 0$ such that if

$$\|\mathbb{P}_{\mathcal{D}}\omega^{in}\|_{X} \lesssim \nu^{\gamma} \qquad \Rightarrow \qquad \|\mathbb{P}_{\mathcal{D}}\omega(t)\|_{L^{2}} \lesssim \mathrm{e}^{-c_{1}\nu^{1/2}t} \left\|\mathbb{P}_{\mathcal{D}}\omega^{in}\right\|_{L^{2}}$$

- True for rectangular tori (Wei, Zhang, Zhao '17)
- True for Poiseuille flow (CZ, Elgindi, Widmayer '19)

No nonlinear threshold

For any $\nu > 0$ there exists $0 < \varepsilon_0 \ll \nu$ with the following property: let $0 < \varepsilon \leq \varepsilon_0$ and let $\Omega_{\varepsilon} = \Delta \Psi_{\varepsilon}$ be the vorticity of the stationary Euler flow found before. Then $\mathbb{P}_{\mathcal{D}}\Omega_{\varepsilon}$ is not dissipated at an enhanced rate: i.e. the solution Ω^{ν} of the initial value problem

$$\begin{cases} \partial_t \Omega^{\nu} + U^{\nu} \cdot \nabla \Omega^{\nu} = \nu \Delta \Omega^{\nu}, \\ \Omega^{\nu}(0) = \Omega_{\varepsilon}, \end{cases}$$

on \mathbb{T}^2 satisfies for all $t \in [\frac{1}{2\nu}, \frac{1}{\nu}]$ the lower bound

 $\left\| \mathbb{P}_{\mathcal{D}} \Omega^{
u}(t)
ight\|_{L^2} \gtrsim \left\| \mathbb{P}_{\mathcal{D}} \Omega_{arepsilon}
ight\|_{L^2}.$

THANK YOU