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Introduction
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Introduction

Can you conduct an experiment twice . . .

and get two different answers?
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Introduction

Can you conduct an experiment twice . . .

and get two different answers?

Two different, stable configurations.
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Introduction

Why worry?

F

F

A PDE with two unknown solutions
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Introduction

Why worry?

F

F

Start from some initial guess
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Introduction

Why worry?

F

F

F

We converge to one solution, our prediction
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Introduction

Why worry?

F

FF

But nature has chosen another (unknown) solution!

P. E. Farrell (Oxford) Deflated continuation September 22, 2020 4 / 30



Introduction

Mathematical formulation

Compute the multiple solutions u of an equation

f(u, λ) = 0

f : V × R→ V ∗

as a function of a parameter λ.
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The classical algorithm

Section 2

The classical algorithm
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The classical algorithm

Branch switching

λ

u

Starting solution
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The classical algorithm

Branch switching

λ

u

Step I: continuation
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The classical algorithm

Branch switching

λ

u

Step II: continuation
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The classical algorithm

Branch switching

λ

u

Step III: detect bifurcation point
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The classical algorithm

Branch switching

λ

u

Step IV: compute eigenvectors and switch
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The classical algorithm

Branch switching

λ

u

Step V: continuation on branches
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The classical algorithm

Branch switching

λ

u

A disconnected diagram.
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The classical algorithm

Branch switching

Disconnected diagrams

The algorithm only computes branches connected to the initial datum.
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The classical algorithm

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.
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The classical algorithm

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

Scaling

The computational kernel is exactly the same as Newton’s method.
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Deflation

Section 3

Deflation
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Deflation

The core idea

Deflation

Fix parameter λ. Given

I a Fréchet differentiable residual F : V → V ∗

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

construct a new nonlinear problem G : V → V ∗ such that:

I (Preservation of solutions) F(r̃) = 0 ⇐⇒ G(r̃) = 0 ∀ r̃ 6= r;

I (Deflation property) Newton’s method applied to G will never converge
to r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.
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Deflation

Finding many solutions from the same guess

F

F

F

Starting setup
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Deflation

Finding many solutions from the same guess

F

F

F

F

Step I: Newton from initial guess
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Deflation

Finding many solutions from the same guess

F

F

F

F

Step II: deflate solution found
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Deflation

Finding many solutions from the same guess

F

F

F

F

F

F

Step II: deflate solution found
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Deflation

Finding many solutions from the same guess

F

F

F

F

F

F

Step III: termination on nonconvergence
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Deflation

Finding many solutions from the same guess

F

F

F

F

F

F
F

Step III: termination on nonconvergence
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Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)
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Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

We say M(u; r) is a deflation operator if for any sequence u→ r

lim inf
u→r

‖G(u)‖V ∗ = lim inf
u→r

‖M(u; r)F(u)‖V ∗ > 0
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Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

We say M(u; r) is a deflation operator if for any sequence u→ r

lim inf
u→r

‖G(u)‖V ∗ = lim inf
u→r

‖M(u; r)F(u)‖V ∗ > 0

Theorem (F., Birkisson, Funke, 2014)

This is a deflation operator for p ≥ 1:

M(u; r) =

(
1

‖u− r‖p + 1

)
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Deflation

Deflated continuation

λ

u

Starting solution

P. E. Farrell (Oxford) Deflated continuation September 22, 2020 13 / 30



Deflation

Deflated continuation

λ

u

Step I: continuation
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Deflation

Deflated continuation

λ

u

Step II: continuation
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Deflation

Deflated continuation

λ

u

Step III: deflate
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Deflation

Deflated continuation

λ

u

Step III+: solve deflated problem
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Deflation

Deflated continuation

λ

u

Step III: deflate
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Deflation

Deflated continuation

λ

u

Step III+: solve deflated problem
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Deflation

Deflated continuation

λ

u

Step IV: continuation on branches
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Deflation

Deflated continuation

λ

u

A disconnected diagram.
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Deflation

An example: the winged cusp

The winged cusp for x ∈ R

f(x, λ) = x3 − 2λx+ λ2 − 2λ+ 1 = 0
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Computations

Section 4

Computations
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Computations

Newton–Krylov

A question

How do we solve the deflated problem?
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Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)
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Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

A deflated Newton step

JG(u)∆uG = −G(u)

Deflated residual

G(u) = M(u; r)F (u)
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Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

A deflated Newton step

JG(u)∆uG = −G(u)

Deflated Jacobian

JG(u) = M(u; r)JF (u) + F (u)M ′(u; r)>
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Computations

Newton–Krylov

A Newton step

JF (u)∆uF = −F (u)

A deflated Newton step

JG(u)∆uG = −G(u)

Sherman–Morrison–Woodbury

∆uG = τ∆uF

where τ ∈ R is a simple function of J−1
F F,M, and M ′.

P. E. Farrell (Oxford) Deflated continuation September 22, 2020 17 / 30



Computations

Newton–Krylov

Scaling of deflated continuation

With a good preconditioner, you can do bifurcation analysis at scale.
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Applications

Section 5

Applications
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Applications Nonlinear PDEs

Application: Carrier’s problem

Carrier’s problem (Carrier 1970, Bender & Orszag 1999)

ε2y′′ + 2(1− x2)y + y2 − 1 = 0, y(−1) = 0 = y(1).
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Applications Nonlinear PDEs

Application: Carrier’s problem
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Applications Nonlinear PDEs

Application: Carrier’s problem

Pitchfork bifurcations

ε ≈ 0.472537

n
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Applications Nonlinear PDEs

Application: Carrier’s problem

Pitchfork bifurcations

ε ≈ 0.472537

n

Connected Computed Asymptotic Relative
component ε estimate error

1 0.46886251 0.472537 0.7837%
2 0.23472529 0.236269 0.6574%
3 0.15703946 0.157512 0.3012%
4 0.11798359 0.118134 0.1278%

Computed and estimated parameter values for the first four pitchfork bifurcations.
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Applications Nonlinear PDEs

Application: Carrier’s problem

Fold bifurcations

ε ≈ 0.472537

n− 0.8344
n
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Applications Nonlinear PDEs

Application: Carrier’s problem

Fold bifurcations

ε ≈ 0.472537

n− 0.8344
n

Connected Computed Asymptotic Relative
component ε estimate error

2 0.28522538 0.298545 4.670%
3 0.17186970 0.173608 1.011%
4 0.12421206 0.124634 0.3397%
5 0.09762446 0.0977706 0.1497%

Computed and estimated parameter values for the first four fold bifurcations.
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Applications Nonlinear PDEs

Application: wrinkling of elastic bilayers

Problem

Incompressible neo-Hookean hyperelasticity with growth (morphoelasticity)
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Applications Nonlinear PDEs

Application: wrinkling of elastic bilayers

Problem

Incompressible neo-Hookean hyperelasticity with growth (morphoelasticity)
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A vortex line and a planar dark soliton.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A pair of vortex lines.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A vortex star.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. Four vortex lines of alternating charge.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A vortex ring with two “handles”.
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. Two bent vortex rings?
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. Two vortex rings and five lines?
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Applications Nonlinear PDEs

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+

x2 + y2 + z2

2
φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Solutions for µ = 6. A vortex ring cage?

P. E. Farrell (Oxford) Deflated continuation September 22, 2020 23 / 30



Applications Nonlinear PDEs

Smectic-A liquid crystals

An exotic state of matter with properties between fluids and crystalline
solids.

Source: Averill & Eldridge (2011).
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Applications Nonlinear PDEs

Smectic-A liquid crystals

A new model, proposed by Xia, F., et al.:

Energy functional for smectic liquid crystals

J(Q, δρ) =

∫
Ω

(
a

2
(δρ)2 +

b

3
(δρ)3 +

c

4
(δρ)4

)
+

∫
Ω
B
[
D2δρ+ q2(Q + I/3)δρ

]2
+

∫
Ω

(
K

2
|∇Q|2 − `

2
(tr(Q2))− `

3
(tr(Q3)) +

`

2
(tr(Q2))2

)
+

∫
bottom

w

2
(ν · (Q + I/3)ν)−

∫
top

w

2
(ν · (Q + I/3)ν) .

Here Q(x) ∈ R2×2 is symmetric and traceless and δρ(x) ∈ R.

Parameters: a = −10, b = 0, c = 10, B = 10−5,K = 0.3, q = 30, ` = 30, w = 3.
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Applications Nonlinear PDEs

Smectic-A liquid crystals

A toroidal focal conic domain, captured numerically for the first time.
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Applications Nonlinear PDEs

Smectic-A liquid crystals

Two solutions for the same parameter values.
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Applications Semismooth equations

Semismooth equations

Semismooth equations

Deflation works for semismooth problems (variational inequalities).
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Applications Semismooth equations

Semismooth equations

Semismooth equations

Deflation works for semismooth problems (variational inequalities).

Theorem (F., Surowiec, 2017)

Let F : V → V ∗ be a semismooth map between a Banach space and its
dual. Let r ∈ V be a root of F . Suppose r satisfies the assumptions
required for superlinear convergence of the semismooth Newton method
given in Hintermüller, Ito and Kunisch (2002). Then the operator

M(u; r) =

(
1

‖u− r‖p + 1

)
IV ∗

is a deflation operator for p ≥ 1.
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Applications Semismooth equations

Buckling of a hyperelastic beam with contact constraints

Neo–Hookean compressible hyperelasticity

minimise
u∈H1(Ω;R2)

Π(u) =

∫
Ω
ψ(u) dx−

∫
Ω
B · u dx

subject to u|left = (0, 0), u|right = (−ε, 0),

tr(uy) ∈ [a, b] a.e. in Γtop,Γbottom.
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Applications Semismooth equations

Buckling of a hyperelastic beam with contact constraints

Neo–Hookean compressible hyperelasticity

minimise
u∈H1(Ω;R2)

Π(u) =

∫
Ω
ψ(u) dx−

∫
Ω
B · u dx

subject to u|left = (0, 0), u|right = (−ε, 0),

tr(uy) ∈ [a, b] a.e. in Γtop,Γbottom.

Strain energy density

ψ(u) =
µ

2
(tr(C)− 2)− µlog(det(C)) +

λ

2
log(det(C))2,

where
C = (I +∇u)>(I +∇u).
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Applications Semismooth equations

Buckling of a hyperelastic beam with contact constraints
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Applications Semismooth equations

Buckling of a hyperelastic beam with contact constraints
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Conclusion

Conclusions

I Multiple solutions are ubiquitous and important in physics.

I Deflation is a useful technique for finding them.

I Deflated problems can be solved efficiently.
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