Computing disconnected bifurcation diagrams of partial differential equations

P. E. Farrell¹

C. Beentjes¹, Á. Birkisson¹, S. J. Chapman¹, M. Croci¹, T. Surowiec²

 1 University of Oxford

²Philipps-Universität Marburg

September 22, 2020

Section 1

Introduction

Can you conduct an experiment twice

and get two different answers?

Can you conduct an experiment twice

and get two different answers?

Axial displacement test of an Embraer aircraft stiffener.

Can you conduct an experiment twice ...

and get two different answers?

Two different, stable configurations.

P. E. Farrell (Oxford)

Deflated continuation

A PDE with two unknown solutions

Start from some initial guess

We converge to one solution, our prediction

But nature has chosen another (unknown) solution!

Mathematical formulation

Compute the multiple solutions \boldsymbol{u} of an equation

$$f(u,\lambda) = 0$$
$$f: V \times \mathbb{R} \to V^*$$

as a function of a parameter λ .

Section 2

The classical algorithm

Step I: continuation

Step II: continuation

Step III: detect bifurcation point

Step IV: compute eigenvectors and switch

Step V: continuation on branches

Disconnected diagrams

The algorithm only computes branches connected to the initial datum.

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

Scaling

The computational kernel is exactly the same as Newton's method.

Section 3

Deflation

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a new nonlinear problem $\mathcal{G}: V \to V^*$ such that:

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a new nonlinear problem $\mathcal{G}: V \to V^*$ such that:

• (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a **new nonlinear problem** $\mathcal{G}: V \to V^*$ such that:

- (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$
- (Deflation property) Newton's method applied to G will never converge to r again, starting from any initial guess.

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a **new nonlinear problem** $\mathcal{G}: V \to V^*$ such that:

- (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$
- (Deflation property) Newton's method applied to G will never converge to r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.

Finding many solutions from the same guess

Finding many solutions from the same guess

Step I: Newton from initial guess

Finding many solutions from the same guess

Step II: deflate solution found

Finding many solutions from the same guess

Step I: Newton from initial guess

Finding many solutions from the same guess

Step II: deflate solution found

Finding many solutions from the same guess

Step I: Newton from initial guess

Finding many solutions from the same guess

Step II: deflate solution found

Finding many solutions from the same guess

Step III: termination on nonconvergence

Finding many solutions from the same guess

Step III: termination on nonconvergence
Construction of deflated problems

A nonlinear transformation

$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

Construction of deflated problems

A nonlinear transformation

$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

A deflation operator

We say $\mathcal{M}(u; r)$ is a deflation operator if for any sequence $u \to r$ $\liminf_{u \to r} \|\mathcal{G}(u)\|_{V^*} = \liminf_{u \to r} \|\mathcal{M}(u; r)\mathcal{F}(u)\|_{V^*} > 0$

Construction of deflated problems

A nonlinear transformation

$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

A deflation operator

We say $\mathcal{M}(u; r)$ is a deflation operator if for any sequence $u \to r$ $\liminf_{u \to r} \|\mathcal{G}(u)\|_{V^*} = \liminf_{u \to r} \|\mathcal{M}(u; r)\mathcal{F}(u)\|_{V^*} > 0$

Theorem (F., Birkisson, Funke, 2014)

This is a deflation operator for $p \ge 1$:

$$\mathcal{M}(u;r) = \left(\frac{1}{\|u-r\|^p} + 1\right)$$

Step I: continuation

Deflated continuation

Step III+: solve deflated problem

Deflated continuation

Deflated continuation

Step III+: solve deflated problem

Step IV: continuation on branches

Deflated continuation

A disconnected diagram.

An example: the winged cusp

The winged cusp for $x \in \mathbb{R}$

$$f(x,\lambda) = x^3 - 2\lambda x + \lambda^2 - 2\lambda + 1 = 0$$

Section 4

Computations

Computations

Newton-Krylov

A question

How do we solve the deflated problem?

A Newton step

$$J_F(u)\Delta u_F = -F(u)$$

A Newton step

$$J_F(u)\Delta u_F = -F(u)$$

A deflated Newton step

$$J_G(u)\Delta u_G = -G(u)$$

A Newton step

$$J_F(u)\Delta u_F = -F(u)$$

A deflated Newton step

$$J_G(u)\Delta u_G = -G(u)$$

Deflated residual

$$G(u) = M(u; r)F(u)$$

A Newton step

$$J_F(u)\Delta u_F = -F(u)$$

A deflated Newton step

$$J_G(u)\Delta u_G = -G(u)$$

Deflated Jacobian

$$J_G(u) = M(u;r)J_F(u) + F(u)M'(u;r)^{\top}$$

A Newton step

$$J_F(u)\Delta u_F = -F(u)$$

A deflated Newton step

$$J_G(u)\Delta u_G = -M(u)F(u)$$

Deflated Jacobian

$$J_G(u) = M(u;r)J_F(u) + F(u)M'(u;r)^{\top}$$

A Newton step

$$J_F(u)\Delta u_F = -F(u)$$

A deflated Newton step

$$J_G(u)\Delta u_G = -G(u)$$

Sherman-Morrison-Woodbury

$$\Delta u_G = \tau \Delta u_F$$

where $\tau \in \mathbb{R}$ is a simple function of $J_F^{-1}F, M$, and M'.

Computations

Newton-Krylov

Scaling of deflated continuation

With a good preconditioner, you can do bifurcation analysis at scale.

Section 5

Applications

Carrier's problem (Carrier 1970, Bender & Orszag 1999)

$$\varepsilon^2 y'' + 2(1-x^2)y + y^2 - 1 = 0, \quad y(-1) = 0 = y(1).$$

Pitchfork bifurcations

$$\varepsilon \approx \frac{0.472537}{n}$$

Pitchfork bifurcations

$$\varepsilon \approx \frac{0.472537}{n}$$

Connected	Computed	Asymptotic	Relative
component	ε	estimate	error
1	0.46886251	0.472537	0.7837%
2	0.23472529	0.236269	0.6574%
3	0.15703946	0.157512	0.3012%
4	0.11798359	0.118134	0.1278%

Computed and estimated parameter values for the first four pitchfork bifurcations.

Fold bifurcations

$$\varepsilon \approx \frac{0.472537}{n - \frac{0.8344}{n}}$$

Fold bifurcations

$$\varepsilon \approx \frac{0.472537}{n - \frac{0.8344}{n}}$$

Connected	Computed	Asymptotic	Relative
component	ε	estimate	error
2	0.28522538	0.298545	4.670%
3	0.17186970	0.173608	1.011%
4	0.12421206	0.124634	0.3397%
5	0.09762446	0.0977706	0.1497%

Computed and estimated parameter values for the first four fold bifurcations.

Problem

Problem

Problem

Problem

Application: wrinkling of elastic bilayers

Problem

Incompressible neo-Hookean hyperelasticity with growth (morphoelasticity)

Application: wrinkling of elastic bilayers

Problem

Incompressible neo-Hookean hyperelasticity with growth (morphoelasticity)

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu=6.$ A vortex line and a planar dark soliton.

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. A pair of vortex lines.

P. E. Farrell (Oxford)

Deflated continuation

September 22, 2020 23 / 30

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. A vortex star.

P. E. Farrell (Oxford)

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. Four vortex lines of alternating charge.

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. A vortex ring with two "handles".

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. Two bent vortex rings?

P. E. Farrell (Oxford)

Deflated continuation

September 22, 2020 23 / 30

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. Two vortex rings and five lines?

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + \frac{x^2 + y^2 + z^2}{2}\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Solutions for $\mu = 6$. A vortex ring cage?

P. E. Farrell (Oxford)

Deflated continuation

September 22, 2020 23 / 30

Smectic-A liquid crystals

An exotic state of matter with properties between fluids and crystalline solids.

Increasing opacity

Source: Averill & Eldridge (2011).

Smectic-A liquid crystals

A new model, proposed by Xia, F., et al.:

Energy functional for smectic liquid crystals

$$\begin{split} J(\mathbf{Q},\delta\rho) &= \int_{\Omega} \left(\frac{a}{2} (\delta\rho)^2 + \frac{b}{3} (\delta\rho)^3 + \frac{c}{4} (\delta\rho)^4 \right) \\ &+ \int_{\Omega} B \left[D^2 \delta\rho + q^2 (\mathbf{Q} + I/3) \delta\rho \right]^2 \\ &+ \int_{\Omega} \left(\frac{K}{2} |\nabla \mathbf{Q}|^2 - \frac{\ell}{2} (\operatorname{tr}(\mathbf{Q}^2)) - \frac{\ell}{3} (\operatorname{tr}(\mathbf{Q}^3)) + \frac{\ell}{2} (\operatorname{tr}(\mathbf{Q}^2))^2 \right) \\ &+ \int_{\operatorname{bottom}} \frac{w}{2} \left(\nu \cdot (\mathbf{Q} + I/3) \nu \right) - \int_{\operatorname{top}} \frac{w}{2} \left(\nu \cdot (\mathbf{Q} + I/3) \nu \right). \end{split}$$

Here $\mathbf{Q}(x) \in \mathbb{R}^{2 \times 2}$ is symmetric and traceless and $\delta \rho(x) \in \mathbb{R}$.

Parameters: $a = -10, b = 0, c = 10, B = 10^{-5}, K = 0.3, q = 30, \ell = 30, w = 3.$

P. E. Farrell (Oxford)

Smectic-A liquid crystals

A toroidal focal conic domain, captured numerically for the first time.

P. E. Farrell (Oxford)

26/30

Nonlinear PDEs

Smectic-A liquid crystals

Two solutions for the same parameter values.

Semismooth equations

Semismooth equations

Deflation works for semismooth problems (variational inequalities).

Semismooth equations

Semismooth equations

Deflation works for semismooth problems (variational inequalities).

Theorem (F., Surowiec, 2017)

Let $F: V \to V^*$ be a semismooth map between a Banach space and its dual. Let $r \in V$ be a root of F. Suppose r satisfies the assumptions required for superlinear convergence of the semismooth Newton method given in Hintermüller, Ito and Kunisch (2002). Then the operator

$$\mathcal{M}(u;r) = \left(\frac{1}{\|u-r\|^p} + 1\right) \mathcal{I}_{V^*}$$

is a deflation operator for $p \ge 1$.

Neo-Hookean compressible hyperelasticity

$$\begin{array}{ll} \underset{u \in H^1(\Omega; \mathbb{R}^2)}{\text{minimise}} & \Pi(u) = \int_{\Omega} \psi(u) \ \mathrm{d}x - \int_{\Omega} B \cdot u \ \mathrm{d}x \\ \text{subject to} & u|_{\text{left}} = (0,0), \ u|_{\text{right}} = (-\varepsilon,0), \\ & \operatorname{tr}(u_y) \in [a,b] \text{ a.e. in } \Gamma_{\text{top}}, \Gamma_{\text{bottom}}. \end{array}$$

Neo-Hookean compressible hyperelasticity

$$\begin{array}{ll} \underset{u \in H^1(\Omega; \mathbb{R}^2)}{\text{minimise}} & \Pi(u) = \int_{\Omega} \psi(u) \ \mathrm{d}x - \int_{\Omega} B \cdot u \ \mathrm{d}x \\ \text{subject to} & u|_{\text{left}} = (0,0), \ u|_{\text{right}} = (-\varepsilon,0), \\ & \operatorname{tr}(u_y) \in [a,b] \text{ a.e. in } \Gamma_{\text{top}}, \Gamma_{\text{bottom}}. \end{array}$$

Strain energy density

$$\psi(u) = \frac{\mu}{2}(\operatorname{tr}(C) - 2) - \mu \log(\det(C)) + \frac{\lambda}{2} \log(\det(C))^2,$$

where

$$C = (I + \nabla u)^{\top} (I + \nabla u).$$

P. E. Farrell (Oxford)

P. E. Farrell (Oxford)

P. E. Farrell (Oxford)

Multiple solutions are ubiquitous and important in physics.

Conclusions

- Multiple solutions are ubiquitous and important in physics.
- Deflation is a **useful technique** for finding them.

Conclusions

- Multiple solutions are ubiquitous and important in physics.
- Deflation is a useful technique for finding them.
- Deflated problems can be solved efficiently.