DSM for solving operator equations

Alexander G. Ramm

Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA ramm@math.ksu.edu URL http://www.math.ksu.edu/~ramm

イロト イポト イヨト イヨト

Motivations:

a) Develop a general method for solving operator eqns, *especially ill-posed*,

b) Develop a general method for constructing convergent iterative processes for solving such eqns.

F(u) - f = 0 (1), $F: H \to H$, $\exists y: F(y) - f = 0$

Original author's assumptions were:

 $\sup_{u \in B(u_0,R)} \|F^{(j)}(u)\| \le M_j(R), j \le 2, \quad B(u_0,R) := \{u : \|u - u_0\| \le R\}.$

Current progress: in many cases $j \leq 1$ is sufficient. Well-posed (WP): $\sup_{u \in B(u_0,R)} ||[F'(u)]^{-1}|| \leq m(R)$ Ill-posed (IP): not well-posed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

DSM:
$$\begin{cases} \dot{u} &= \Phi(t, u), \\ u(0) &= u_0. \end{cases}$$
(*)
$$\exists ! u(t) \text{ on } [0, \infty); \quad \exists u(\infty); \quad F(u(\infty)) = f$$

For what classes of equations F(u) = f can one find Φ such that (*) holds? How does one choose Φ ?

In general, the solution u does not exist globally. We give sufficient conditions for the global existence of u, among many other things.

▶ ★ E ▶ ★ E ▶

Theorem 1. For any WP eq. (1) one can find Φ such that (*) holds and

$$\begin{aligned} \|u(t) - u(\infty)\| &\leq r e^{-c_1 t}; \\ \|F(u(t)) - f\| &\leq \|F(u_0) - f\| e^{-c_1 t}. \end{aligned}$$
(**)

Here $c_1, r > 0$ are constants. Examples:

a)
$$\Phi = -[F'(u)]^{-1}[F(u) - f],$$

b) $\Phi = -[F'(u_0)]^{-1}[F(u) - f],$
c) $\Phi = -T^{-1}A^*[F(u) - f], \quad A := F'(u), \quad T := A^*A,$
d) $\Phi = -A^*[F(u) - f].$

a) Newton-type method, b) Modified Newton-type method,c) Gauss-Newton-type method, d) gradient-type method.

伺 とうき とうとう

Theorem 2. For any linear IP equation:

$$Au - f = 0, \qquad (1)$$

where A is a linear, closed, densely defined operator, and equation (1) is solvable, one can find Φ such that (*) holds,

$$u(t) \xrightarrow[t \to \infty]{} y$$

holds for any u_0 , and y is the unique minimal-norm element of the set $N := \{u : Au - f = 0\}.$

() 이 물) 이 물) 문

For instance, one can take (using a Newton-type method):

$$\begin{split} \Phi &= -u + T_{\varepsilon(t)}^{-1} A^* f, \quad T = A^* A, \quad T_{\varepsilon} = T + \varepsilon I, \\ 0 &< \varepsilon(t) \searrow 0, \quad \int^{\infty} \varepsilon(s) ds = \infty. \end{split}$$

For unbounded A the element f may not belong to $D(A^*)$. In this case, the element $T_{\varepsilon(t)}^{-1}A^*f$, with $\varepsilon(t) > 0$, can be defined by considering the closure of the operator $T_{\varepsilon(t)}^{-1}A^*$ with the domain $D(A^*)$. This operator is closable, its closure is a bounded operator, defined on all of H, and

$$||T_{\varepsilon(t)}^{-1}A^*|| \leq \frac{1}{2\sqrt{\varepsilon(t)}}, \quad \varepsilon(t) > 0.$$

It is possible to replace element $T_{\varepsilon(t)}^{-1}A^*f$ by the well defined element $A^*Q_{\varepsilon(t)}^{-1}f,$ with

$$Q := AA^*.$$

The operator $A^*Q_{\varepsilon(t)}^{-1}$ is a bounded linear operator defined on all of H, and

$$||A^*Q_{\varepsilon(t)}^{-1}|| \le \frac{1}{2\sqrt{\varepsilon(t)}}, \quad \varepsilon(t) > 0.$$

These assumptions allow one, among other things, to handle differential operators on unbounded domains in the cases when the spectrum of such operators is continuous and contains the point $\lambda = 0$.

An example.

If
$$A=A^*\geq m>0$$
 and

$$\dot{u} = -(Au - f), \quad u(0) = u_0,$$

then

$$u = e^{-tA}u_0 + \int_0^t e^{-(t-s)A} f ds.$$

One has $\lim_{t\to\infty}||e^{-tA}u_0||=0$ and

$$\lim_{t \to \infty} \int_0^t e^{-(t-s)A} f ds = \lim_{t \to \infty} \int_m^\infty dE_\lambda f(1-e^{-t\lambda})/\lambda = A^{-1}f = y,$$

where Ay = f.

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Equations with monotone operators.

Theorem 3. For any eq. F(u) = f with $F' \ge 0$, one can find Φ such that the conclusion of Theorem 2 holds. For example, one may take

$$\Phi = -A_{\varepsilon(t)}^{-1}[F(u) - f + \varepsilon(t)u], \qquad A := F'(u), \quad A_{\varepsilon} := A + \varepsilon I,$$
$$0 < \varepsilon \searrow 0, \quad \frac{|\dot{\varepsilon}|}{\varepsilon} \le \frac{1}{2}, \quad \frac{|\dot{\varepsilon}|}{\varepsilon} \to 0 \quad as \quad t \to \infty.$$

Another choice (simple iterations):

$$\Phi = -[F(u) + a(t)u - f]$$

Yet another choice (gradient method):

$$\Phi = -(A^* + a(t)I)[F(u) + a(t)u - f],$$

where A := F'(u).

If f_{δ} is given, $||f_{\delta} - f|| < \delta$, then one solves the problem:

$$\dot{u}_{\delta}(t) = -A_{\varepsilon(t)}^{-1}[F(u_{\delta}(t)) - f_{\delta} + \varepsilon(t)u_{\delta}(t)], \quad u_{\delta}(0) = u_{0},$$

sets $u_{\delta} := u_{\delta}(t_{\delta})$, and finds t_{δ} from the equation (a discrepancy principle):

$$\begin{aligned} ||F(u_{\delta}(t_{\delta}) - f_{\delta}|| &= C\delta^{\gamma}, \quad C \in (1,2), \ \gamma \in (0,1). \end{aligned} (D) \\ ||F(u_{\delta}(t)) - f_{\delta}|| &> C\delta^{\gamma}, \quad \forall t < t_{\delta}. \end{aligned}$$

イロト イヨト イヨト イヨト 三日

Theorem 3'. (a posteriori stopping rule: discrepancy principle)

If $\gamma \in (0, 1)$, and $||F(u_0) - f_{\delta}|| > C\delta^{\gamma}$, then (D) has a unique solution t_{δ} such that $t_{\delta} \to \infty$ as $\delta \to 0$, and u_{δ} converges to y, i.e., $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$, where y is the minimal-norm solution to the eq. F(u) = f, $u_{\delta} := u_{\delta}(t_{\delta})$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem 3". (a priori stopping time rule) If $\lim_{\delta\to 0} \frac{\delta}{\epsilon(t_{\delta})} = 0$ and $\lim_{\delta\to 0} t_{\delta} = \infty$, then $\lim_{\delta\to 0} ||u_{\delta}(t_{\delta}) - y|| = 0$, where y is the minimal-norm solution to the eq. F(u) = f.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

3

Theorem 4. Consider the equation Au = f. In Theorem 2 the DSM yields a stable approximation to y in the following sense: if $||f_{\delta} - f|| \leq \delta$, and the data are $\{\delta, f_{\delta}, A\}$, then there exists a t_{δ} such that $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$, where $u_{\delta} := u_{\delta}(t_{\delta})$, and $u_{\delta}(t)$ solves eq. (2) with f replaced by f_{δ} . E.g., $\begin{cases} \dot{u}_{\delta} = -u_{\delta} + T_{\varepsilon(t)}^{-1}A^*f_{\delta}, \\ u_{\delta}(0) = u_{0}, \end{cases}$, where $T := A^*A$, $T_{\varepsilon} = T + \varepsilon I$.

A priori and a posteriori stopping rules for finding t_{δ} are found.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A priori stopping rule (an equation for finding t_{δ}):

$$\delta^{2q} = \epsilon(t), \quad 0 < q < 1.$$

A posteriori stopping rule (a DP (discrepancy principle)):

$$||Au_{\delta}(t) - f_{\delta}|| = C\delta^{\gamma}, \quad C \in (1,2), \quad \gamma \in (0.9,1).$$

In both cases the result is

$$\lim_{\delta \to 0} ||u_{\delta}(t_{\delta}) - y|| = 0.$$

There is actually no need to solve the DP equation for $t = t_{\delta}$, because the DP equation can be checked as t grows.

向下 イヨト イヨト

Theorem. Assume that A is a bounded linear operator in a Hilbert space H, equation Au = f is solvable, y is its minimal-norm solution, $||f_{\delta} - f|| \leq \delta$, and $||f_{\delta}|| > C\delta$, where C > 1 is a constant. Then equation $||Au_{\delta,\epsilon} - f_{\delta}|| = C\delta$ (*) is solvable for ϵ for any fixed $\delta > 0$, where $u_{\delta,\epsilon}$ is any element satisfying inequality $F(u_{\delta,\epsilon}) \leq m + (C^2 - 1 - b)\delta^2$, $F(u) := ||A(u) - f_{\delta}||^2 + \epsilon ||u||^2$, $m = m(\delta, \epsilon) := inf_u F(u)$, b = const > 0, and $C^2 > 1 + b$. If $\epsilon = \epsilon(\delta)$ solves (*), and $u_{\delta} := u_{\delta,\epsilon(\delta)}$, then $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$.

Significance of this result:

One does not need the exact minimizer of the VR functional: an approximate minimizer can be used in the discrepancy principle if it gives to the functional value sufficiently close to the infimum.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume that the set

$$\{z: |\arg z - \pi| \le \delta < \pi/2, \quad |z| \le \varepsilon_0, \quad \varepsilon_0 = const > 0,$$

consists of the regular points of the operator A(u) := F'(u). Let

$$\begin{split} F(u) + \varepsilon u &= f \quad (1), \ F: X \to X, \qquad X \text{ is a Banach space.} \\ (S) \quad & \text{Spectral assumption: } \|A_{\varepsilon}^{-1}\| \leq \frac{c}{\varepsilon}, \quad c = const > 0, \quad 0 < \varepsilon < \varepsilon_0, \end{split}$$

$$A = F'(u), \qquad A_{\varepsilon} := A + \varepsilon I.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem 6. If (S) holds and eq. (1) has a solution, then it can be solved by a DSM, that is, (*) holds.

For example, one can take

$$\Phi = -A_{\varepsilon}^{-1}(F(u) + \varepsilon u - f).$$

同 とう ほ とう ほんし

Theorem 7. If (S) holds and F(y) = 0, then one can choose w such that equation

$$F(u_{\varepsilon}) + \varepsilon(u_{\varepsilon} - w) = 0$$

is solvable for every $\varepsilon \in (0, \varepsilon_0)$, and $\lim_{\varepsilon \to 0} \|u_{\varepsilon} - y\| = 0.$

Example of the choice of w:

$$y - w = \tilde{A}v, \quad ||v|| < 2M_2c(1+c)^{-1}, \quad \tilde{A} := F'(y).$$

If F(u) = Lu + g(u), L is linear, closed, densely defined operator, and $||L^{-1}|| \le m$, then equation F(u) = 0 is equivalent to

$$u + L^{-1}g(u) = 0. (1')$$

向下 イヨト イヨト

Example (semilinear elliptic problems):

$$L = -\nabla^2$$
, $g(u) = u^3$, $H = L^2(D)$.

Theorem 8. Assume that

$$\sup_{u \in B(u_0,R)} \| [I + L^{-1}g'(u)]^{-1} \| \le m_1(R),$$

and

$$||u_0 + L^{-1}g(u_0)||m_1(R) \le R.$$

Then (*) holds for the problem:

$$\begin{cases} \dot{u} = -[I + L^{-1}g'(u)]^{-1}[u + L^{-1}g(u)], \\ u(0) = u_0. \end{cases}$$

イロン スロン イヨン イヨン

æ

Theorem 9. If F is monotone, i.e., $(F(u) - F(v), u - v) \ge 0$, hemicontinuous, D(F) = H, and F(y) = f, then (*) holds for the problem:

$$\begin{cases} \dot{u} = -F(u) - \varepsilon(t)u + f, \\ u(0) = u_0, \end{cases}$$

where $0 < \varepsilon(t) \searrow 0$, $\varepsilon(t) = \frac{c_1}{(c_0 + t)^b}$, 0 < b < 1, $c_0, c_1 = const > 0$.

(本間) (本語) (本語) (二語

Theorem 10. If

$$\sup_{R>0} \frac{R}{m(R)} = \infty,$$

then eq. F(u) = f is solvable for any $f \in H$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 11. If

$$||[F'(u)]^{-1}|| \le \psi(||u||),$$

where ψ is a continuous positive function, and $\int_0^\infty \frac{ds}{\psi(s)} = \infty$, then F is a global homeomorphism of H onto H.

There are many examples of local homeomorphisms which are not global ones. There are examples of global homeomorphisms F for which F' is compact.

$$u_{n+1} = u_n + h_n \Phi(t_n, u_n), \quad t_{n+1} = t_n + h_n.$$

Theorem 12. Any well-posed eq. F(u) = 0 can be solved by a convergent iterative process with $h_n = h = const$ and $\Phi = \Phi(u)$. The process converges at an exponential rate.

Other iterative schemes can be constructed, e.g., Runge-Kutta's type, et al.

伺下 イヨト イヨト

Assume that $||A^{-1}|| \leq m$. We want to solve an equation:

$$F(u) = 0.$$

 $A = F'(u), \ T = A^*A, \ T_{\epsilon} = T + \epsilon I.$

(2')
$$\begin{cases} \dot{u} = -QF(u), \\ \dot{Q} = -TQ + A^*, \\ u(0) = u_0, \quad Q(0) = Q_0, \end{cases}$$

Theorem 13. For problem (2') conclusion (*) holds.

<回 > < 注 > < 注 > … 注

Ill-posed problem:

(2")
$$\begin{cases} \dot{u} &= -Q[A^*F(u) + \varepsilon(t)(u-z)], \\ \dot{Q} &= -T_{\varepsilon(t)}Q + I, \\ u(0) &= u_0, \quad Q(0) = Q_0. \end{cases}$$

Assume: $0 < \varepsilon(t) \searrow 0$, $0 < \frac{|\dot{\varepsilon}|}{\varepsilon} \le c$, $T(y) \neq 0$, y - z = T(y)v, ||v|| is sufficiently small.

Theorem 14. Under the above assumptions conditions (*) hold for problem (2'').

周 医 金属 医金属 医白白素

Theorem 15A. Let

$$\dot{g}(t) \le -\gamma(t)g(t) + \alpha(t,g(t)) + \beta(t), \qquad t \ge t_0, \quad \dot{g} = \frac{dg}{dt}, \quad g \ge 0,$$
(1)

 $0 \leq \alpha(t, y)$ is a nondecreasing function of y on $[0, \infty]$ and $\alpha(t, y), \gamma(t), \beta(t)$ are continuous with respect to t on $[t_0, \infty)$. Suppose there exists a function $\mu(t) > 0$, $\mu \in C^1[t_0, \infty)$, such that

$$\alpha\left(t,\frac{1}{\mu(t)}\right) + \beta(t) \le \frac{1}{\mu(t)} \left[\gamma(t) - \frac{\dot{\mu}(t)}{\mu(t)}\right], \qquad t \ge t_0.$$
 (2)

向下 イヨト イヨト

Let

$$\mu(t_0)g(t_0) < 1.$$

Then g(t) exists globally and the following estimate holds:

$$0 \le g(t) < \frac{1}{\mu(t)}, \qquad \forall t \ge t_0.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Ð,

$$\dot{u} = f(t, u) = A_1(t)u + A_2(t, u) + A_0(t).$$

$$||u(t)|| := g(t), \qquad ||A_0(t)|| \le \beta(t), \qquad (A_1u, u) \le -\gamma(t)g^2,$$

$$(A_2, u) \le \alpha(t, g)g.$$

Now we get the basic inequality:

$$\dot{g} \leq -\gamma(t)g + \alpha(t,g) + \beta(t).$$

The choice of $\mu(t)$ is often easy.

B 1 4 B 1

How does one apply this inequality to stability theory?

Lyapunov stability known result says: if

$$u' = f(u), \quad u(0) = u_0, \quad (1)$$

 $u \in \mathbb{R}^n$, A = f'(0), $(Au, u) \leq -a ||u||^2$, a > 0, $||f(u) - Au|| \leq c_2 ||u||^2$, then the solution to (1) is exponentially stable.

Our theory allows one to get this and new results by using Theorem 15A. Let g(t) := ||u||. From (1) we get

$$g' \le -ag + c_2 g^2.$$

Let $\mu = \mu_0 e^{bt}$, b < a. Conditions of Theorem 15A are: $c_2/\mu \leq (a - b)$, $\mu_0 g(0) < 1$. These inequalities are satisfied if $c_2/\mu_0 \leq a - b$, $g(0) < 1/\mu_0$. Thus, by Theorem 15A, the solution to (1) exists for all $t \geq 0$ and $||u(t)|| \leq c e^{-bt}$ for any b < a.

Discrete version. Let

$$\frac{g_{n+1} - g_n}{h_n} \le -\gamma_n g_n + \alpha(n, g_n) + \beta_n, \qquad h_n > 0, \quad 0 < h_n \gamma_n < 1,$$

so

 $g_{n+1} \leq (1-\gamma_n h_n)g_n + h_n \alpha(n,g_n) + h_n \beta_n, \quad n \geq 0, \qquad 0 < \gamma_n h_n < 1,$

holds, where g_n, β_n and γ_n are positive sequences of real numbers.

. Assume that

$$\frac{g_{n+1} - g_n}{h_n} \le -\gamma_n g_n + \alpha(n, g_n) + \beta_n, \qquad h_n > 0, \quad 0 < h_n \gamma_n < 1,$$
(3)

or, equivalently,

$$g_{n+1} \le g_n(1 - h_n \gamma_n) + h_n \alpha(n, g_n) + h_n \beta_n, \qquad h_n > 0, \quad (4)$$

where $0 < h_n \gamma_n < 1$.

If there is a sequence of positive numbers $(\mu_n)_{n=1}^\infty,$ such that the following conditions hold:

・ 同 ト ・ ヨ ト ・ ヨ ト

3

$$\alpha(n, \frac{1}{\mu_n}) + \beta_n \le \frac{1}{\mu_n} \left(\gamma_n - \frac{\mu_{n+1} - \mu_n}{\mu_n h_n} \right),$$

$$g_0 \le \frac{1}{\mu_0},$$
(5)

then

$$0 \le g_n \le \frac{1}{\mu_n} \qquad \forall n \ge 0. \tag{7}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

크

Therefore, if $\lim_{n\to\infty} \mu_n = \infty$, then $\lim_{n\to\infty} g_n = 0$. **Remark.** The result holds with $h_n = 1$ and $0 < \gamma_n < 1$. **Theorem 16.** If Q(t), G(t) and T(t) are linear operator-functions from $[0, \infty) \rightarrow H$, where H is a Hilbert space, and

$$\begin{cases} \dot{Q} &= -T(t)Q + G(t), \\ Q(0) &= Q_0, \end{cases}$$

where $(Th, h) \ge \varepsilon(t) ||h||^2$, $\varepsilon(t) \ge 0$, then, with $a(t) := e^{\int_0^t \varepsilon(s) ds}$, one has:

$$||Q(t)|| \le a^{-1}(t) ||Q_0|| + a^{-1}(t) \int_0^t a(s) ||G(s)|| ds.$$

周 医 金属 医金属 医白白素

Selected Proofs.

 $F(u) = 0 \quad (1), \quad \begin{cases} \dot{u} = \Phi(t, u), \\ u(0) = u_0. \end{cases}$ (2) Theorem 17. If 1) $(F'\Phi, F) \leq -c_1 ||F||^2, \forall u \in H, c_1 = const > 0$ 2) $\|\Phi\| < c_2 \|F\|$. 3) r < R, where $r := \frac{c_2}{c_1} ||F_0||.$ $F_0 = F(u_0),$ then (*) and (**) hold, where

(**)
$$||u(t) - u(\infty)|| \le re^{-c_1 t}, ||F(u(t))|| \le ||F_0||e^{-c_1 t}.$$

向下 イヨト イヨト

크

Proof. Let g(t) := ||F(u(t))||. Then $g\dot{g} = (F'\Phi, F) \leq -c_1g^2$. Thus

$$g(t) \le g(0)e^{-c_1t} = ||F_0||e^{-c_1t},$$

$$\|\dot{u}\| \le \|\Phi\| \le c_2 \|F_0\| e^{-c_1 t}.$$

So, with
$$r := \frac{c_2}{c_1} ||F_0||$$
, $r \le R$, one gets:
 $||u(t) - u(\infty)|| \le re^{-c_1 t}$,
 $||u(t) - u(0)|| \le r \le R$.
Theorem 17 is proved.

イロト イヨト イヨト イヨト 三日

a)
$$\Phi = -[F'(u)]^{-1}F \Rightarrow c_1 = 1, c_2 = m, |m||F_0|| \le R.$$

b) $\Phi = -[F'(u_0)]^{-1}F \Rightarrow c_2 = m, -((F'(u) - F'(u_0) + F'(u_0))[F'(u_0)]^{-1}F, F) \le -||F||^2 + mM_2R||F||^2, c_1 = 1 - mM_2R, c_2 = m, m||F_0||/(1 - mM_2R) \le R.$
If $R = \frac{1}{2mM_2}$ then $4m^2M_2||F_0|| \le 1.$
c) $\Phi = -T^{-1}A^*F \Rightarrow c_1 = 1, c_2 = m^2M_1, m^2M_1||F_0|| \le R.$
d) $\Phi = -A^*F \Rightarrow c_1 = m^{-2}, c_2 = M_1, m^2M_1||F_0|| \le R.$

・ロト ・回ト ・ヨト ・ヨト 三日

Linear III-posed Problems.

$$\begin{cases} \dot{u} &= -u + T_{\varepsilon(t)}^{-1} A^* f, \quad T = A^* A. \\ u(0) &= u_0 \\ 0 < \varepsilon(t) \searrow 0, \int^{\infty} \varepsilon ds = \infty. \\ u = u_0 e^{-t} + \int_0^t e^{-(t-s)} T_{\varepsilon(s)}^{-1} Ty \, ds \\ \text{Lemma 1. } \lim_{t \to \infty} \int_0^t e^{-(t-s)} h(s) ds = h(\infty) \text{ (if } \exists h(\infty).) \\ \text{Lemma 2. } \lim_{\varepsilon \to 0} T_{\varepsilon}^{-1} Ty = y \text{ if } y \perp N(T) = N(A). \\ \text{Otherwise the limit is } y - P_{N(T)} y. \end{cases}$$

ヘロア 人間 アメヨア 人間 アー

æ

Assume $||f_{\delta} - f|| < \delta$. Then $||u_{\delta}(t_{\delta}) - y|| \le ||u_{\delta}(t_{\delta}) - u(t_{\delta})|| + ||u(t_{\delta}) - y||.$ $\lim_{t_{\delta} \to \infty} \|u(t_{\delta}) - y\| = 0$ $\|u_{\delta}(t_{\delta}) - u(t_{\delta})\| \le \|\int_{0}^{t_{\delta}} e^{-(t_{\delta}-s)} T_{\varepsilon(s)}^{-1} A^{*}(f_{\delta}-f)\|$ $\leq \frac{\delta}{2\sqrt{\varepsilon(t_{\delta})}}$ **Rule 1:** If $\lim_{\delta \to 0} \frac{\delta}{\sqrt{\varepsilon(t_{\delta})}} = 0$ and $\lim_{\delta \to 0} t_{\delta} = \infty$, then $\lim_{\delta \to 0} \|u_{\delta}(t_{\delta}) - y\| = 0.$

伺 ト イ ヨ ト イ ヨ ト

크

Theorem. Assume that A is a bounded linear operator in a Hilbert space H, equation Au = f is solvable, y is its minimal-norm solution, $||f_{\delta} - f|| \leq \delta$, and $||f_{\delta}|| > C\delta$, where C > 1 is a constant. Then equation $||Au_{\delta,\epsilon} - f_{\delta}|| = C\delta$ (*) is solvable for ϵ for any fixed $\delta > 0$, where $u_{\delta,\epsilon}$ is any element satisfying inequality $F(u_{\delta,\epsilon}) \leq m + (C^2 - 1 - b)\delta^2$, $F(u) := ||A(u) - f_{\delta}||^2 + \epsilon ||u||^2$, $m = m(\delta, \epsilon) := inf_u F(u)$, b = const > 0, and $C^2 > 1 + b$. If $\epsilon = \epsilon(\delta)$ solves (*), and $u_{\delta} := u_{\delta,\epsilon(\delta)}$, then $\lim_{\delta \to 0} ||u_{\delta} - y|| = 0$.

The point: One does not need the exact minimizer of the VR functional: an approximate minimizer can be used in the discrepancy principle if it gives to the functional value sufficiently close to the infimum.

イロト イポト イヨト イヨト

Nonlinear operator equations with monotone operators.

$$\begin{split} \dot{u} &= -A_{a(t)}^{-1}[F(u) + a(t)u - f], \quad u(0) = u_0.\\ &z := F(u) + a(t)u - f,\\ \dot{z} &= -z + \dot{a}u = -z + \frac{\dot{a}}{a}a(u - V) + \dot{a}V.\\ F(V) + aV - f &= 0. \qquad ||z|| := g, \qquad u - V := h, \qquad a||h|| \le g.\\ &\dot{g} \le -g(1 - \frac{|\dot{a}|}{a}) + c|\dot{a}|, \qquad c = \max_{t \ge 0} ||V||.\\ &\lim_{t \to \infty} V(t) = y. \end{split}$$

We prove:

$$\lim_{t \to \infty} g = 0, \qquad \lim_{t \to \infty} \frac{g}{a} = 0.$$

< ∃⇒

Theorem. If F is a monotone, continuously Fréchet differentiable operator in H, equation F(y) = f has a solution, y is its (unique) minimal-norm solution, and a(t) > 0 is a monotonically decaying function such that

$$\lim_{t \to \infty} a(t) = 0, \qquad \lim_{t \to \infty} \frac{|\dot{a}|}{a} = 0, \qquad \frac{|\dot{a}|}{a} < 1/2,$$

then

$$\lim_{t \to \infty} u(t) = y.$$

The convergence is global: it holds for any initial element u_0 .

向下 イヨト イヨト

Nonlinear operator equations with monotone operators/earlier version.

$$\dot{u} = -A_{a(t)}^{-1}[F(u) + a(t)u], \quad u(0) = u_0.$$

Assume that a(t) > 0 decays monotonically to zero as $t \to \infty$, $|\dot{a}|/a < 1/2$, and $|\dot{a}|/a^2 \le 1$. Let F(v) + a(t)v = 0. This eq. is uniquely solvable, and we prove:

$$||v|| \le ||y||, \quad ||\dot{v}|| \le ||y|||\dot{a}|/a, \quad ||v(t) - y|| \to 0,$$

as $t \to \infty$. We want to prove that u(t) exists on $[0, \infty)$ and $||u(t) - y|| \to 0$ as $t \to \infty$. It is sufficient to prove $||w(t)|| \to 0$ as $t \to \infty$, where w := u(t) - v(t).

(1月) (3日) (3日) 日

One has:

$$\dot{w} = -\dot{v} - A_{a(t)}^{-1}[F(u) - F(v) + a(t)w].$$

Let g = g(t) := ||w||. Then one derives the inequality:

$$\dot{g} \le -g + \frac{c_0}{a(t)}g^2 + c_1\frac{|\dot{a}|}{a(t)}.$$

Choose $\mu = \frac{c}{a(t)}, \ c = const > 0,$ and check conditions of the basic lemma.

$$c_1 \frac{|\dot{a}|}{a(t)} + \frac{c_0}{a(t)} \mu^{-2} \le \mu^{-1} (1 - \frac{\dot{\mu}}{\mu}),$$
$$g(0)\mu(0) < 1.$$

< 同 > < 臣 > < 臣 > … 臣

These inequalities are satisfied if $\mu=ca^{-1}(t)$ and a:=a(t) is chosen so that

$$cg(0)a^{-1}(0) < 1,$$

and

$$c_1 c \frac{|\dot{a}|}{a^2(t)} + c_0 c^{-1} a^2(t) + \frac{|\dot{a}|}{a(t)} \le 1.$$

Clearly, there are many a(t) which satisfy the above inequalities. If a(t) satisfies these inequalities, then

$$g < \frac{a(t)}{c}$$

and

$$\lim_{t \to \infty} u(t) = y.$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

In the earlier papers I took $\mu = \frac{\lambda}{a(t)}$, $\lambda = const > 0$, and checked the conditions of the earlier lemma. First condition:

$$\frac{c_0}{a(t)} \le \frac{\lambda}{2a(t)}(1-1/2) = \frac{\lambda}{4a(t)}.$$

This holds if $\lambda = 4c_0$. Second condition:

$$c_1|\dot{a}|/a \le \frac{a}{4\lambda}.$$

The scaling transformation: $a \to \nu a$ allows one to satisfy the above inequality. Here $\nu > 0$ is a constant. Third condition: $g(0)\mu(0) < 1$ holds if ν is sufficiently large. We have proved that $||w|| < a(t)/\lambda$. Thus $||u(t) - y|| \to 0$ as $t \to \infty$.

Nonlinear operator equations without monotonicity assumptions.

Theorem. If $\widetilde{A} := F'(y) \neq 0$, then for the problem

$$\begin{cases} \dot{u} &= -T_{\varepsilon(t)}^{-1} (A^*F + \varepsilon(u-z)), \\ u(0) &= u_0, \end{cases}$$

conclusions (*) hold, where z is suitably chosen.

• • = • • = •

Proof.

$$\begin{split} u - y &= w, \|w\| = g, \ F(u) - F(y) = Aw + K, \\ \|K\| \leq \frac{M_2}{2}g^2, \ u - z = u - y + y - z \\ \dot{w} &= -T_{\varepsilon}^{-1}(A^*Aw + \varepsilon w + A^*K + \varepsilon(y - z)) \\ &= -w - T_{\varepsilon}^{-1}A^*K - \varepsilon T_{\varepsilon}^{-1}(y - z) \\ \dot{w} &= -w - T_{\varepsilon}^{-1}A^*K - \varepsilon T_{\varepsilon}^{-1}\widetilde{T}v, \ \|v\| \ll 1; \\ \widetilde{T}v &= y - z \text{ if } \widetilde{T} \neq 0. \\ g\dot{g} \leq -g^2 + \frac{c_0g^3}{\sqrt{\varepsilon(t)}} + \varepsilon(T_{\varepsilon}^{-1} - \widetilde{T}_{\varepsilon}^{-1} + \widetilde{T}_{\varepsilon}^{-1})\widetilde{T}v. \\ \varepsilon \|\widetilde{T}_{\varepsilon}^{-1}\widetilde{T}v\| \leq \varepsilon \|v\|, \\ \varepsilon \|T_{\varepsilon}^{-1}(A^*A - \widetilde{A}^*A)\widetilde{T}_{\varepsilon}^{-1}\widetilde{T}\| \ \|v\|, \\ &\leq 2M_2M_1g\|v\|; \ 2M_1M_2\|v\| = \frac{1}{2}. \end{split}$$

Thus $\dot{g} \leq -\frac{1}{2}g + \frac{c_0 g^2}{\sqrt{\varepsilon(t)}} + \varepsilon \|v\|; \quad \mu = \frac{\lambda}{\sqrt{\varepsilon(t)}}, \quad \frac{\dot{\mu}}{\mu} = \frac{1}{2}\frac{|\dot{\varepsilon}|}{\varepsilon} \leq \frac{1}{4},$ 1) $\frac{c_0}{\sqrt{\varepsilon(t)}} \leq \frac{\lambda}{2\sqrt{\varepsilon}} \frac{1}{4}; \quad \lambda = 8c_0.$ 2) $\varepsilon(t) \|v\| \le \frac{\sqrt{\varepsilon(t)}}{2\lambda} \frac{1}{4}; \qquad 8\lambda \|v\| \sqrt{\varepsilon(t)} \le 1$ 3) $g(0)\frac{\lambda}{\sqrt{\varepsilon(0)}} < 1$ If $\varepsilon(0) > 8g(0)c_0$, then condition 3) holds. If $\|v\| < \frac{1}{8\lambda\sqrt{\varepsilon(0)}}$, then 2) holds. Theorem is proved.

크

• • = • • = •

$$\begin{split} F(u) &= 0 \quad (1) \qquad \| [F'(u)]^{-1} \| \leq m, \quad F(y) = 0. \\ \text{Theorem. Let} \\ \begin{cases} \dot{u} &= -QF, \qquad (2) \\ \dot{Q} &= -TQ + A^*, \quad u(0) = u_0, \quad Q(0) = Q_0. \\ \text{If } u_0 \text{ and } Q_0 \text{ are properly chosen then } (*) \text{ holds, and} \\ \lim_{t \to \infty} \| Q(t) - \tilde{A}^{-1} \| = 0. \end{split}$$

Here, as earlier, $T := A^*A$, A := F'(u), $\tilde{A} := F'(y)$.

Proof. $T \ge \varepsilon > 0$, $\varepsilon = const$. Thus

$$\begin{split} \|Q(t)\| &\leq \|Q_0\| e^{-\varepsilon t} + e^{-\varepsilon t} \int_0^t e^{\varepsilon s} M_1 ds \\ &\leq \|Q_0\| + \frac{M_1}{\varepsilon} := c_0. \\ u - y &= w, \|w\| = g(t); \ F(u) - F(y) = \widetilde{A}w + K, \\ \widetilde{A} &= F'(y), \|K\| \leq \frac{M_2}{2}g^2, \\ \dot{w} &= -w + w - Q(F(u) - F(y)) = -w + \Lambda w - QK, \\ \Lambda &= I - Q\widetilde{A}. \\ g\dot{g} &\leq -g^2 + (\Lambda w, w) + c_1g^3, \qquad c_1 = \frac{c_0M_2}{2}, \end{split}$$

(日)

Lemma:

$$|(\Lambda w, w)| \le q \|w\|^2, \quad 0 < q < 1.$$

Assume:

$$\dot{g} \le -\gamma g + c_1 g^2, \ 0 < \gamma := 1 - q < 1, \quad c_1 g(0) < 1.$$

Then

$$g(t) \le c_2 e^{-\gamma t}, \ c_2 = \frac{g(0)}{1 - c_1 g(0)}, \ g(0) = ||u_0 - y||.$$

Theorem is proved.

П

Ð,

ヘロア 人間 アメヨア 人間 アー

$$\begin{split} \dot{\Lambda} &= -\dot{Q}\widetilde{A} = TQ\widetilde{A} - A^*\widetilde{A} = -T\Lambda + A^*(A - \widetilde{A}).\\ \|\Lambda\| &\leq \|\Lambda_0\| e^{-\varepsilon t} + e^{-\varepsilon t} \int_0^t e^{\varepsilon s} M_1 M_2 c_2 e^{-\gamma s} ds\\ &\leq \|\Lambda_0\| + c_3 \|u_0 - y\| < q < 1, \end{split}$$

provided that $\Lambda_0=I-Q_0\tilde{A}$ and $\|u_0-y\|$ are sufficiently small. The Lemma is proved.

æ

同下 くほと くほとう

(1)
$$F(u) = 0$$

(2)
$$u_{n+1} = u_n + h\Phi(u_n)$$

there exists y such that F(y) = 0, and

$$\|\Phi(u) - \Phi(v)\| \le L_2 \|u - v\|.$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

Theorem. If a) $(F'\Phi, F) \leq -c_1 ||F||^2$, b) $||\Phi|| \leq c_2 ||F||$, and c) $r \leq R$, where $r = \frac{c_2}{c_1} ||F_0||$ and $F_0 = F(u_0)$, then $||u_n - y|| \leq re^{-chn}$, $||F(u_n)|| \leq ||F_0||e^{-chn}$, where $0 < c < c_1$.

御 とうきょう きょうしき

Proof. Let $\begin{cases} \dot{w}_{n+1}(t) &= \Phi(w_{n+1}) \\ w_{n+1}(t_n) &= u_n, \ t_n = hn. \end{cases}$ Then $||w_{n+1}(t) - y|| \le \frac{c_2}{c_1} ||F_n|| e^{-c_1(t-t_n)}$ $< re^{-chn-c_1(t-t_n)}, \quad t > hn.$ $||u_{n+1} - y|| < ||u_{n+1} - w_{n+1}|| + ||w_{n+1} - y||.$ $||u_{n+1} - w_{n+1}|| \le \int_{t}^{t_n+h} ||\Phi(u_n) - \Phi(w_{n+1}(s))|| ds$ $\leq L_1 \int_{1}^{t_n+h} \|u_n - w_{n+1}(s)\| ds$ $\leq L_1 h \int_{t}^{t_n+h} \|\Phi(w_{n+1}(s))\| ds$ $\leq L_1 h c_2 \int_{t}^{t_n+h} \|F(w_{n+1}(s))\| ds$ $< L_1 h^2 c_2 ||F(u_n)|| < L_1 c_2 h^2 ||F_0|| e^{-chn}$ $= L_1 c_1 h^2 r e^{-chn}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

臣

Thus $||u_{n+1} - y|| \le re^{-chn}(e^{-c_1h} + L_1c_1h^2) \le re^{-ch(n+1)}$ provided that $c < c_1$ and h is such that $e^{-c_1h} + L_1c_1h^2 < e^{ch}$.

$$\begin{aligned} \|F(u_{n+1})\| &\leq \|F(u_{n+1}) - F(w_{n+1}(t_{n+1}))\| \\ &+ \|F(w_{n+1}(t_{n+1}))\|; \\ \|F(w_{n+1}(t_{n+1}))\| &\leq \|F(u_n)\|e^{-c_1h} \leq \|F_0\|e^{-chn-c_1h}; \\ \|F(u_{n+1}) - F(w_{n+1}(t_{n+1}))\| \leq M_1L_1c_1h^2re^{-chn} \\ &= \|F_0\|e^{-chn}M_1L_1c_2h^2. \end{aligned}$$

Thus

$$||F(u_{n+1})|| \le ||F_0||e^{-chn}(e^{c_1h} + M_1L_1c_2h^2)$$

$$\le ||F_0||e^{-ch(n+1)}.$$

Theorem is proved.

< 同 > < 臣 > < 臣 > … 臣

Lemma. Let f(t, w), g(t, u) be continuous in the region $[0, T) \times D$ $(D \subset R, T \leq \infty)$ and $f(t, w) \leq g(t, u)$ if $w \leq u, t \in (0, T)$, $w, u \in D$. Assume that g(t, u) is such that the Cauchy problem

$$\dot{u} = g(t, u), \quad u(0) = u_0, \quad u_0 \in D,$$

has a unique solution. If

$$\dot{w} \le f(t, w), \quad w(0) = w_0 \le u_0, \quad w_0 \in D,$$

then $u(t) \ge w(t)$ for all t for which u(t) and w(t) are defined.

Proof of Theorem 15A

Inequality in Theorem 15A can be written as

$$\frac{d(1/\mu)}{dt} \ge -\gamma(t)(1/\mu) + \alpha(t, 1/\mu) + \beta(t),$$

and

$$0 \le g(t_0) \le 1/\mu(t_0).$$

Thus, $1/\mu(t)$ is an upper solution to the Cauchy problem

$$\dot{w} = -\gamma(t)w + \alpha(t, w) + \beta(t), \qquad w(t_0) = g_0,$$

while g(t) is its lower solution. If the above Cauchy problem has at most one solution, then

$$0 \le g(t) \le 1/\mu(t) \qquad \forall t \ge t_0.$$

Theorem 15A is proved. \Box

Results for a numerical experiment from [15]. $\int_0^t k(t-s)u(s)ds = f(t), \ k(t) = (2\pi^{1/2})^{-1}t^{-1.5}e^{-\frac{1}{4t}}.$

Table: Numerical results for $\delta_{rel} = 0.05$, n = 10i, $i = \overline{1, 10}$.

	DSM		VR_i		VR_n	
n	n _{iter}	$\frac{\ u_{\delta} - y\ _2}{\ y\ _2}$	n _{iter}	$\frac{\ u_{\delta} - y\ _2}{\ y\ _2}$	n _{iter}	$\frac{\ u_{\delta} - y\ _2}{\ y\ _2}$
10	3	0.1971	1	0.2627	5	0.2117
20	4	0.3359	1	0.4589	5	0.3551
30	4	0.3729	1	0.4969	5	0.3843
40	4	0.3856	1	0.5071	5	0.3864
50	5	0.3158	1	0.4789	6	0.3141
60	6	0.2892	1	0.4909	6	0.3060
70	7	0.2262	1	0.4792	8	0.2156
80	6	0.2623	1	0.4809	7	0.2600
90	5	0.2856	1	0.4816	7	0.2715
100	7	0.2358	1	0.4826	7	0.3405

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Bibliography

- A. G. Ramm, Dynamical Systems Method (DSM) for solving operator equations, Elsevier, Amsterdam, 2007.
- [2] _____, Dynamical systems method for solving nonlinear operator equations, International Jour. of Applied Math. Sci., 1, N1, (2004), 97-110.
- [3] _____, Dynamical systems method for solving operator equations, Communic. in Nonlinear Sci. and Numer. Simulation, 9, N2, (2004), 383-402.
- [4] _____, Dynamical systems method and surjectivity of nonlinear maps, Communic. in Nonlinear Sci. and Numer. Simulation, 10, N8, (2005),931-934.
- [5] _____, DSM for ill-posed equations with monotone operators, Comm. in Nonlinear Sci. and Numer. Simulation, 10, N8, (2005),935-940.
- [6] _____, Dynamical systems method (DSM) for unbounded operators, Proc. Amer. Math. Soc., 134, N4, (2006), 159-1063.
- [7] ______, Discrepancy principle for the dynamical systems method, Communic. in Nonlinear Sci. and Numer. Simulation, 10, N1, (2005), 95-101.

- [8] _____, Dynamical systems method and a homeomorphism theorem, Amer. Math. Monthly,113, N10, (2006), 98-933.
- [9] _____, Dynamical systems method for nonlinear equations in Banach spaces, Communic. in Nonlinear Sci. and Numer. Simulation, 11, (2006), 306-310.
- [10] _____, Dynamical systems method (DSM) and nonlinear problems, in the book: Spectral Theory and Nonlinear Analysis, World Scientific Publishers, Singapore, 2005., pp. 201-228 (ed J. Lopez-Gomez).

[11] _____, Inverse problems, Springer, New York, 2005.

- [12] ______, Dynamical systems and discrete methods for solving nonlinear ill-posed problems, Appl. Math. Reviews, vol. 1, Ed. G. Anastassiou, World Sci. Publishers, 2000, pp. 491-536. isbn 981-02-4339-1. (with R. Airapetyan)
- [13] _____, Solving ill-conditioned linear algebraic systems by the dynamical systems method (DSM), Inverse Problems in Sci. and Engineering, 16, N5, (2008), 617-630. (with N.S.Hoang)
- [14] _____, Dynamical systems gradient method for solving ill-conditioned linear algebraic systems, Acta Appl. Math., (2010), (with N.S. Hoang)
- [15] ______, Dynamical systems method for solving linear finite-rank operator equations, Ann. Polon. Math., 95, N1, (2008), 77-93. (with N.S. Hoang).
- [16]_____, Dynamical systems method for solving nonlinear equations with monotone operators, Math. of Computations, 79, 269, (2010), 239-258.

(with N.S. Hoang).

イロン イロン イヨン イヨン 三日

- [17] ______, Convergence rates of the continuous regularized Gauss-Newton method, Jour. Inv. III-Posed Probl., 10, N3, (2002), 261-280. (with B. Kaltenbacher and A. Neubauer).
- [18] _____, Global convergence for ill-posed equations with monotone operators: the dynamical systems method, J.Phys. A, 36, (2003), L249-254.
- [19] _____, On stable numerical differentiation, Australian J. Math. Anal. Appl., 5, N1, (2008), Article 5, pp.1-7. (with Hoang. N.S)
- [20] _____, Dynamical Systems Method (DSM) for solving equations with monotone operators without smoothness assumptions on F'(u), J. Math. Anal. Appl., 367, N2, (2010), 508-515. (with N.S.Hoang)
- [21] _____, The Dynamical Systems Method for solving nonlinear equations with monotone operators, Asian Europ. Math. Journ., 3, N1, (2010), 57-105. (with N.S.Hoang)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- [22]_____, DSM of Newton-type for solving operator equations F(u) = f with minimal smoothness assumptions on F, International Journ. Comp.Sci. and Math. (IJCSM), 3, N1/2, (2010), 3-55. (with N.Hoang)
- [23]_____, Justification of the Dynamical Systems Method (DSM) for global homeomorphisms, Eurasian Math. Journ (EMJ), 1, N4, (2010), 116-123.
- [24] _____, Dynamical systems method and applications. Theoretical developments and numerical experiments, Wiley, Hoboken, 2012. (with N.Hoang) ISBN-13 978-1-118-02428-7

イロト イヨト イヨト イヨト 三日