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Introduction

Motivations:
a) Develop a general method for solving operator eqns, especially
ill-posed,
b) Develop a general method for constructing convergent iterative
processes for solving such eqns.

F (u)− f = 0 (1), F : H → H, ∃y : F (y)− f = 0

Original author’s assumptions were:

sup
u∈B(u0,R)

‖F (j)(u)‖ ≤Mj(R), j ≤ 2, B(u0, R) := {u : ‖u−u0‖ ≤ R}.

Current progress: in many cases j ≤ 1 is sufficient.
Well-posed (WP): sup

u∈B(u0,R)
‖[F ′(u)]−1‖ ≤ m(R)

Ill-posed (IP): not well-posed.
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DSM:

{
u̇ = Φ(t, u),

u(0) = u0.

(∗) ∃!u(t) on [0,∞); ∃u(∞); F (u(∞)) = f

For what classes of equations F (u) = f can one find Φ such that
(∗) holds?
How does one choose Φ?

In general, the solution u does not exist globally.
We give sufficient conditions for the global existence of u, among
many other things.
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Theorem 1. For any WP eq. (1) one can find Φ such that (∗)
holds and

‖u(t)− u(∞)‖ ≤ re−c1t;
‖F (u(t))− f‖ ≤ ‖F (u0)− f‖e−c1t. (∗∗)

Here c1, r > 0 are constants.
Examples:

a) Φ = −[F ′(u)]−1[F (u)− f ],

b) Φ = −[F ′(u0)]
−1[F (u)− f ],

c) Φ = −T−1A∗[F (u)− f ], A := F ′(u), T := A∗A,

d) Φ = −A∗[F (u)− f ].

a) Newton-type method, b) Modified Newton-type method,
c) Gauss-Newton-type method, d) gradient-type method.
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Theorem 2. For any linear IP equation:

Au− f = 0, (1)

where A is a linear, closed, densely defined operator, and equation
(1) is solvable, one can find Φ such that (∗) holds,

u(t) −→
t→∞

y

holds for any u0, and y is the unique minimal-norm element of the
set N := {u : Au− f = 0}.
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For instance, one can take (using a Newton-type method):

Φ = −u+ T−1ε(t)A
∗f, T = A∗A, Tε = T + εI,

0 < ε(t)↘ 0,

∫ ∞
ε(s)ds =∞.

For unbounded A the element f may not belong to D(A∗). In this
case, the element T−1ε(t)A

∗f , with ε(t) > 0, can be defined by

considering the closure of the operator T−1ε(t)A
∗ with the domain

D(A∗). This operator is closable, its closure is a bounded
operator, defined on all of H, and

||T−1ε(t)A
∗|| ≤ 1

2
√
ε(t)

, ε(t) > 0.
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It is possible to replace element T−1ε(t)A
∗f by the well defined

element A∗Q−1ε(t)f, with

Q := AA∗.

The operator A∗Q−1ε(t) is a bounded linear operator defined on all of
H, and

||A∗Q−1ε(t)|| ≤
1

2
√
ε(t)

, ε(t) > 0.

These assumptions allow one, among other things, to handle
differential operators on unbounded domains in the cases when the
spectrum of such operators is continuous and contains the point
λ = 0.
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An example.

If A = A∗ ≥ m > 0 and

u̇ = −(Au− f), u(0) = u0,

then

u = e−tAu0 +

∫ t

0
e−(t−s)Afds.

One has limt→∞ ||e−tAu0|| = 0 and

lim
t→∞

∫ t

0
e−(t−s)Afds = lim

t→∞

∫ ∞
m

dEλf(1− e−tλ)/λ = A−1f = y,

where Ay = f .
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Equations with monotone operators.

Theorem 3. For any eq. F (u) = f with F ′ ≥ 0, one can find Φ
such that the conclusion of Theorem 2 holds.
For example, one may take

Φ = −A−1ε(t)[F (u)− f + ε(t)u], A := F ′(u), Aε := A+ εI,

0 < ε↘ 0,
|ε̇|
ε
≤ 1

2
,
|ε̇|
ε
→ 0 as t→∞.

Another choice (simple iterations):

Φ = −[F (u) + a(t)u− f ]

Yet another choice (gradient method):

Φ = −(A∗ + a(t)I)[F (u) + a(t)u− f ],

where A := F ′(u).
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Noisy data 1

If fδ is given, ||fδ − f || < δ, then one solves the problem:

u̇δ(t) = −A−1ε(t)[F (uδ(t))− fδ + ε(t)uδ(t)], uδ(0) = u0,

sets uδ := uδ(tδ), and finds tδ from the equation (a discrepancy
principle):

||F (uδ(tδ)− fδ|| = Cδγ , C ∈ (1, 2), γ ∈ (0, 1). (D)

||F (uδ(t))− fδ|| > Cδγ , ∀t < tδ.
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Theorem 3’. (a posteriori stopping rule: discrepancy
principle)
If γ ∈ (0, 1), and ||F (u0)− fδ|| > Cδγ , then (D) has a unique
solution tδ such that tδ →∞ as δ → 0, and uδ converges to y,
i.e., limδ→0 ||uδ − y|| = 0, where y is the minimal-norm solution to
the eq. F (u) = f , uδ := uδ(tδ).
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Noisy data 2

Theorem 3”. (a priori stopping time rule)
If limδ→0

δ
ε(tδ)

= 0 and limδ→0 tδ =∞, then

limδ→0 ||uδ(tδ)− y|| = 0, where y is the minimal-norm solution to
the eq. F (u) = f .
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Theorem 4

Theorem 4. Consider the equation Au = f . In Theorem 2 the
DSM yields a stable approximation to y in the following sense: if
‖fδ − f‖ ≤ δ, and the data are {δ, fδ, A}, then there exists a tδ
such that lim

δ→0
‖uδ − y‖ = 0, where uδ := uδ(tδ), and uδ(t) solves

eq. (2) with f replaced by fδ.

E.g.,

{
u̇δ = −uδ + T−1ε(t)A

∗fδ,

uδ(0) = u0,
where T := A∗A, Tε = T + εI.
A priori and a posteriori stopping rules for finding tδ are found.
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Stopping rules

A priori stopping rule (an equation for finding tδ):

δ2q = ε(t), 0 < q < 1.

A posteriori stopping rule (a DP (discrepancy principle) ):

||Auδ(t)− fδ|| = Cδγ , C ∈ (1, 2), γ ∈ (0.9, 1).

In both cases the result is

lim
δ→0
||uδ(tδ)− y|| = 0.

There is actually no need to solve the DP equation for t = tδ,
because the DP equation can be checked as t grows.
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New discrepancy principle.

Theorem. Assume that A is a bounded linear operator in a Hilbert
space H, equation Au = f is solvable, y is its minimal-norm
solution, ||fδ − f || ≤ δ, and ||fδ|| > Cδ, where C > 1 is a
constant. Then equation ||Auδ,ε − fδ|| = Cδ (∗) is solvable for ε
for any fixed δ > 0, where uδ,ε is any element satisfying inequality
F (uδ,ε) ≤ m+ (C2 − 1− b)δ2, F (u) := ||A(u)− fδ||2 + ε||u||2,
m = m(δ, ε) := infuF (u), b = const > 0, and C2 > 1 + b.
If ε = ε(δ) solves (∗), and uδ := uδ,ε(δ), then limδ→0 ‖uδ − y‖ = 0.

Significance of this result:
One does not need the exact minimizer of the VR functional: an
approximate minimizer can be used in the discrepancy principle if it
gives to the functional value sufficiently close to the infimum.

Alexander G. Ramm DSM for solving operator equations



Spectral assumption

Assume that the set

{z : | arg z − π| ≤ δ < π/2, |z| ≤ ε0, ε0 = const > 0,

consists of the regular points of the operator A(u) := F ′(u). Let

F (u) + εu = f (1), F : X → X, X is a Banach space.

(S) Spectral assumption: ‖A−1ε ‖ ≤
c

ε
, c = const > 0, 0 <

ε < ε0,

A = F ′(u), Aε := A+ εI.
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Solvability theorem

Theorem 6. If (S) holds and eq. (1) has a solution, then it can be
solved by a DSM, that is, (*) holds.

For example, one can take

Φ = −A−1ε (F (u) + εu− f).
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Singular perturbation problem: convergence as ε→ 0.

Theorem 7. If (S) holds and F (y) = 0, then one can choose w
such that equation

F (uε) + ε(uε − w) = 0

is solvable for every ε ∈ (0, ε0), and
lim
ε→0
‖uε − y‖ = 0.

Example of the choice of w:

y − w = Ãv, ||v|| < 2M2c(1 + c)−1, Ã := F ′(y).
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Unbounded F . Semilinear elliptic problems

If F (u) = Lu+ g(u), L is linear, closed, densely
defined operator, and ‖L−1‖ ≤ m,
then equation F (u) = 0 is equivalent to

u+ L−1g(u) = 0. (1′)

Example (semilinear elliptic problems):

L = −∇2, g(u) = u3, H = L2(D).
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Theorem 8. Assume that

sup
u∈B(u0,R)

‖[I + L−1g′(u)]−1‖ ≤ m1(R),

and
‖u0 + L−1g(u0)‖m1(R) ≤ R.

Then (∗) holds for the problem:{
u̇ = −[I + L−1g′(u)]−1[u+ L−1g(u)],

u(0) = u0.
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Non-smooth F

Theorem 9. If F is monotone, i.e., (F (u)− F (v), u− v) ≥ 0,
hemicontinuous, D(F ) = H, and F (y) = f ,
then (∗) holds for the problem:{

u̇ = −F (u)− ε(t)u+ f,

u(0) = u0,

where 0 < ε(t)↘ 0, ε(t) =
c1

(c0 + t)b
, 0 < b < 1,

c0, c1 = const > 0.
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Criteria for surjectivity and global homeomorphism

Theorem 10. If

sup
R>0

R

m(R)
=∞,

then eq. F (u) = f is solvable for any f ∈ H.
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Theorem 11. If
‖[F ′(u)]−1‖ ≤ ψ(‖u‖),

where ψ is a continuous positive function, and

∫ ∞
0

ds

ψ(s)
=∞,

then F is a global homeomorphism of H onto H.

There are many examples of local homeomorphisms which are not
global ones. There are examples of global homeomorphisms F for
which F ′ is compact.
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Construction of convergent iterative processes.

un+1 = un + hnΦ(tn, un), tn+1 = tn + hn.

Theorem 12. Any well-posed eq. F (u) = 0 can be solved by a
convergent iterative process with hn = h = const and Φ = Φ(u).
The process converges at an exponential rate.

Other iterative schemes can be constructed, e.g., Runge-Kutta’s
type, et al.
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Getting rid of the inversion of the derivative.

Assume that ||A−1|| ≤ m. We want to solve an equation:

F (u) = 0.

A = F ′(u), T = A∗A, Tε = T + εI.

(2′)


u̇ = −QF (u),

Q̇ = −TQ+A∗,

u(0) = u0, Q(0) = Q0,

Theorem 13. For problem (2’) conclusion (∗) holds.
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Ill-posed problem:

(2′′)


u̇ = −Q[A∗F (u) + ε(t)(u− z)],
Q̇ = −Tε(t)Q+ I,

u(0) = u0, Q(0) = Q0.

Assume: 0 < ε(t)↘ 0, 0 <
|ε̇|
ε
≤ c, T (y) 6= 0, y − z = T (y)v,

||v|| is sufficiently small.

Theorem 14. Under the above assumptions conditions (∗) hold
for problem (2′′).
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Auxiliary results: Basic Inequalities

Theorem 15A. Let

ġ(t) ≤ −γ(t)g(t)+α(t, g(t))+β(t), t ≥ t0, ġ =
dg

dt
, g ≥ 0,

(1)
0 ≤ α(t, y) is a nondecreasing function of y on [0,∞] and
α(t, y), γ(t), β(t) are continuous with respect to t on [t0,∞).
Suppose there exists a function µ(t) > 0, µ ∈ C1[t0,∞), such that

α

(
t,

1

µ(t)

)
+ β(t) ≤ 1

µ(t)

[
γ(t)− µ̇(t)

µ(t)

]
, t ≥ t0. (2)
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Let
µ(t0)g(t0) < 1.

Then g(t) exists globally and the following estimate holds:

0 ≤ g(t) <
1

µ(t)
, ∀t ≥ t0.
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How does one apply this inequality?

u̇ = f(t, u) = A1(t)u+A2(t, u) +A0(t).

||u(t)|| := g(t), ||A0(t)|| ≤ β(t), (A1u, u) ≤ −γ(t)g2,

(A2, u) ≤ α(t, g)g.

Now we get the basic inequality:

ġ ≤ −γ(t)g + α(t, g) + β(t).

The choice of µ(t) is often easy.
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How does one apply this inequality to stability
theory?

Lyapunov stability known result says: if

u′ = f(u), u(0) = u0, (1)

u ∈ Rn, A = f ′(0), (Au, u) ≤ −a‖u‖2, a > 0,
‖f(u)−Au‖ ≤ c2‖u‖2, then the solution to (1) is exponentially
stable.
Our theory allows one to get this and new results by using
Theorem 15A. Let g(t) := ‖u‖. From (1) we get

g′ ≤ −ag + c2g
2.

Let µ = µ0e
bt, b < a. Conditions of Theorem 15A are:

c2/µ ≤ (a− b), µ0g(0) < 1. These inequalities are satisfied if
c2/µ0 ≤ a− b, g(0) < 1/µ0. Thus, by Theorem 15A, the solution
to (1) exists for all t ≥ 0 and ‖u(t)‖ ≤ ce−bt for any b < a.
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Discrete version.
Let

gn+1 − gn
hn

≤ −γngn+α(n, gn)+βn, hn > 0, 0 < hnγn < 1,

so

gn+1 ≤ (1−γnhn)gn+hnα(n, gn)+hnβn, n ≥ 0, 0 < γnhn < 1,

holds, where gn, βn and γn are positive sequences of real numbers.
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Theorem 15B.
Theorem 15B

. Assume that

gn+1 − gn
hn

≤ −γngn + α(n, gn) + βn, hn > 0, 0 < hnγn < 1,

(3)

or, equivalently,

gn+1 ≤ gn(1− hnγn) + hnα(n, gn) + hnβn, hn > 0, (4)

where 0 < hnγn < 1.
If there is a sequence of positive numbers (µn)∞n=1, such that the
following conditions hold:
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α(n,
1

µn
) + βn ≤

1

µn

(
γn −

µn+1 − µn
µnhn

)
, (5)

g0 ≤
1

µ0
, (6)

then

0 ≤ gn ≤
1

µn
∀n ≥ 0. (7)

Therefore, if limn→∞ µn =∞, then limn→∞ gn = 0.
Remark. The result holds with hn = 1 and 0 < γn < 1.
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Theorem 16. If Q(t), G(t) and T (t) are linear operator-functions
from [0,∞)→ H, where H is a Hilbert space, and{

Q̇ = −T (t)Q+G(t),

Q(0) = Q0,

where (Th, h) ≥ ε(t)‖h‖2, ε(t) ≥ 0, then, with

a(t) := e
∫ t
0 ε(s)ds, one has:

‖Q(t)‖ ≤ a−1(t) ‖Q0‖+ a−1(t)

∫ t

0
a(s)‖G(s)‖ds.
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Selected Proofs.

F (u) = 0 (1),

{
u̇ = Φ(t, u),

u(0) = u0.
(2)

Theorem 17. If
1) (F ′Φ, F ) ≤ −c1‖F‖2, ∀u ∈ H, c1 = const > 0
2) ‖Φ‖ ≤ c2‖F‖,
3) r ≤ R,
where
r :=

c2
c1
‖F0‖. F0 = F (u0),

then (∗) and (∗∗) hold, where

(∗∗) ‖u(t)− u(∞)‖ ≤ re−c1t, ‖F (u(t))‖ ≤ ‖F0‖e−c1t.
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Proof. Let g(t) := ‖F (u(t))‖.
Then
gġ = (F ′Φ, F ) ≤ −c1g2.
Thus

g(t) ≤ g(0)e−c1t = ‖F0‖e−c1t,

‖u̇‖ ≤ ‖Φ‖ ≤ c2‖F0‖e−c1t.

So, with r := c2
c1
||F0||, r ≤ R, one gets:

‖u(t)− u(∞)‖ ≤ re−c1t,
‖u(t)− u(0)‖ ≤ r ≤ R.
Theorem 17 is proved. 2
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Examples

a) Φ = −[F ′(u)]−1F ⇒ c1 = 1, c2 = m, m‖F0‖ ≤ R.

b) Φ = −[F ′(u0)]
−1F ⇒ c2 = m,

−((F ′(u)− F ′(u0) + F ′(u0))[F
′(u0)]

−1F, F ) ≤
−‖F‖2 +mM2R‖F‖2,
c1 = 1−mM2R, c2 = m, m‖F0‖/(1−mM2R) ≤ R.
If R = 1

2mM2
then 4m2M2‖F0‖ ≤ 1.

c) Φ = −T−1A∗F ⇒ c1 = 1, c2 = m2M1, m
2M1‖F0‖ ≤ R.

d) Φ = −A∗F ⇒ c1 = m−2, c2 = M1, m
2M1‖F0‖ ≤ R.
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Linear Ill-posed Problems.

{
u̇ = −u+ T−1ε(t)A

∗f, T = A∗A.

u(0) = u0

0 < ε(t)↘ 0,

∫ ∞
εds =∞.

u = u0e
−t +

∫ t

0
e−(t−s)T−1ε(s)Ty ds

Lemma 1. lim
t→∞

∫ t

0
e−(t−s)h(s)ds = h(∞) (if ∃h(∞).)

Lemma 2. lim
ε→0

T−1ε Ty = y if y ⊥ N(T ) = N(A).

Otherwise the limit is y − PN(T )y.
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Stopping rules 1.

Assume ‖fδ − f‖ ≤ δ. Then
‖uδ(tδ)− y‖ ≤ ‖uδ(tδ)− u(tδ)‖+ ‖u(tδ)− y‖.
lim
tδ→∞

‖u(tδ)− y‖ = 0

‖uδ(tδ)− u(tδ)‖ ≤ ‖
∫ tδ

0
e−(tδ−s)T−1ε(s)A

∗(fδ − f)‖

≤ δ

2
√
ε(tδ)

Rule 1: If lim
δ→0

δ√
ε(tδ)

= 0 and lim
δ→0

tδ =∞,

then lim
δ→0
‖uδ(tδ)− y‖ = 0.
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New discrepancy principle.

Theorem. Assume that A is a bounded linear operator in a Hilbert
space H, equation Au = f is solvable, y is its minimal-norm
solution, ||fδ − f || ≤ δ, and ||fδ|| > Cδ, where C > 1 is a
constant. Then equation ||Auδ,ε − fδ|| = Cδ (∗) is solvable for ε
for any fixed δ > 0, where uδ,ε is any element satisfying inequality
F (uδ,ε) ≤ m+ (C2 − 1− b)δ2, F (u) := ||A(u)− fδ||2 + ε||u||2,
m = m(δ, ε) := infuF (u), b = const > 0, and C2 > 1 + b.
If ε = ε(δ) solves (∗), and uδ := uδ,ε(δ), then limδ→0 ‖uδ − y‖ = 0.

The point: One does not need the exact minimizer of the VR
functional: an approximate minimizer can be used in the
discrepancy principle if it gives to the functional value sufficiently
close to the infimum.
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Nonlinear operator equations with monotone operators.

u̇ = −A−1a(t)[F (u) + a(t)u− f ], u(0) = u0.

z := F (u) + a(t)u− f,

ż = −z + ȧu = −z +
ȧ

a
a(u− V ) + ȧV.

F (V )+aV −f = 0. ||z|| := g, u−V := h, a||h|| ≤ g.

ġ ≤ −g(1− |ȧ|
a

) + c|ȧ|, c = maxt≥0||V ||.

lim
t→∞

V (t) = y.

We prove:

lim
t→∞

g = 0, limt→∞
g

a
= 0.
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Global convergence theorem.

Theorem. If F is a monotone, continuously Fréchet differentiable
operator in H, equation F (y) = f has a solution, y is its (unique)
minimal-norm solution, and a(t) > 0 is a monotonically decaying
function such that

lim
t→∞

a(t) = 0, lim
t→∞

|ȧ|
a

= 0,
|ȧ|
a
< 1/2,

then
lim
t→∞

u(t) = y.

The convergence is global: it holds for any initial element u0.
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Nonlinear operator equations with monotone
operators/earlier version.

u̇ = −A−1a(t)[F (u) + a(t)u], u(0) = u0.

Assume that a(t) > 0 decays monotonically to zero as t→∞,
|ȧ|/a < 1/2, and |ȧ|/a2 ≤ 1.
Let F (v) + a(t)v = 0. This eq. is uniquely solvable, and we prove:

||v|| ≤ ||y||, ||v̇|| ≤ ||y|||ȧ|/a, ||v(t)− y|| → 0,

as t→∞.
We want to prove that u(t) exists on [0,∞) and ||u(t)− y|| → 0
as t→∞.
It is sufficient to prove ||w(t)|| → 0 as t→∞, where
w := u(t)− v(t).
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One has:
ẇ = −v̇ −A−1a(t)[F (u)− F (v) + a(t)w].

Let g = g(t) := ||w||. Then one derives the inequality:

ġ ≤ −g +
c0
a(t)

g2 + c1
|ȧ|
a(t)

.

Choose µ = c
a(t) , c = const > 0, and check conditions of the basic

lemma.

c1
|ȧ|
a(t)

+
c0
a(t)

µ−2 ≤ µ−1(1− µ̇

µ
),

g(0)µ(0) < 1.
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These inequalities are satisfied if µ = ca−1(t) and a := a(t) is
chosen so that

cg(0)a−1(0) < 1,

and

c1c
|ȧ|
a2(t)

+ c0c
−1a2(t) +

|ȧ|
a(t)

≤ 1.

Clearly, there are many a(t) which satisfy the above inequalities. If
a(t) satisfies these inequalities, then

g <
a(t)

c

and
lim
t→∞

u(t) = y.
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In the earlier papers I took µ = λ
a(t) , λ = const > 0, and checked

the conditions of the earlier lemma. First condition:

c0
a(t)

≤ λ

2a(t)
(1− 1/2) =

λ

4a(t)
.

This holds if λ = 4c0.
Second condition:

c1|ȧ|/a ≤
a

4λ
.

The scaling transformation: a→ νa allows one to satisfy the
above inequality. Here ν > 0 is a constant.
Third condition: g(0)µ(0) < 1 holds if ν is sufficiently large.
We have proved that ||w|| < a(t)/λ. Thus ||u(t)− y|| → 0 as
t→∞.
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Nonlinear operator equations without monotonicity
assumptions.

Theorem. If Ã := F ′(y) 6= 0, then for the problem{
u̇ = −T−1ε(t)(A

∗F + ε(u− z)),
u(0) = u0,

conclusions (∗) hold, where z is suitably chosen.
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Proof.

u− y = w, ‖w‖ = g, F (u)− F (y) = Aw +K,

‖K‖ ≤ M2

2
g2, u− z = u− y + y − z

ẇ = −T−1ε (A∗Aw + εw +A∗K + ε(y − z))
= −w − T−1ε A∗K − εT−1ε (y − z)

ẇ = −w − T−1ε A∗K − εT−1ε T̃ v, ‖v‖ � 1;

T̃ v = y − z if T̃ 6= 0.

gġ ≤ −g2 +
c0g

3√
ε(t)

+ ε(T−1ε − T̃−1ε + T̃−1ε )T̃ v.

ε‖T̃−1ε T̃ v‖ ≤ ε‖v‖,

ε‖T−1ε (A∗A− Ã∗A)T̃−1ε T̃‖ ‖v‖,

≤ 2M2M1g‖v‖; 2M1M2‖v‖ =
1

2
.
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Thus

ġ ≤ −1

2
g +

c0g
2√

ε(t)
+ ε‖v‖; µ =

λ√
ε(t)

,
µ̇

µ
=

1

2

|ε̇|
ε
≤ 1

4.

1)
c0√
ε(t)
≤ λ

2
√
ε

1

4
; λ = 8c0.

2) ε(t)‖v‖ ≤
√
ε(t)

2λ

1

4
; 8λ‖v‖

√
ε(t) ≤ 1

3) g(0)
λ√
ε(0)

< 1

If ε(0) > 8g(0)c0, then condition 3) holds.
If ‖v‖ < 1

8λ
√
ε(0)

, then 2) holds.

Theorem is proved. 2
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Getting rid of the inversion of the derivative operator.

F (u) = 0 (1) ‖[F ′(u)]−1‖ ≤ m, F (y) = 0.
Theorem. Let{
u̇ = −QF, (2)

Q̇ = −TQ+A∗, u(0) = u0, Q(0) = Q0.

If u0 and Q0 are properly chosen then (∗) holds, and
limt→∞ ||Q(t)− Ã−1|| = 0.

Here, as earlier, T := A∗A, A := F ′(u), Ã := F ′(y).
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Proof. T ≥ ε > 0, ε = const. Thus

‖Q(t)‖ ≤ ‖Q0‖e−εt + e−εt
∫ t

0
eεsM1ds

≤ ‖Q0‖+
M1

ε
:= c0.

u− y = w, ‖w‖ = g(t); F (u)− F (y) = Ãw +K,

Ã = F ′(y), ‖K‖ ≤ M2

2
g2,

ẇ = −w + w −Q(F (u)− F (y)) = −w + Λw −QK,

Λ = I −QÃ.

gġ ≤ −g2 + (Λw,w) + c1g
3, c1 =

c0M2

2
,
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Lemma.

Lemma:
|(Λw,w)| ≤ q‖w‖2, 0 < q < 1.

Assume:

ġ ≤ −γg + c1g
2, 0 < γ := 1− q < 1, c1g(0) < 1.

Then

g(t) ≤ c2e−γt, c2 =
g(0)

1− c1g(0)
, g(0) = ||u0 − y||.

Theorem is proved. 2
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Proof of the Lemma.

Λ̇ = −Q̇Ã = TQÃ−A∗Ã = −TΛ +A∗(A− Ã).

‖Λ‖ ≤ ‖Λ0‖e−εt + e−εt
∫ t

0
eεsM1M2c2e

−γsds

≤ ‖Λ0‖+ c3‖u0 − y‖ < q < 1,

provided that Λ0 = I −Q0Ã and ‖u0 − y‖ are sufficiently small.
The Lemma is proved. 2
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Iterative processes.

(1) F (u) = 0

(2) un+1 = un + hΦ(un)

there exists y such that F (y) = 0, and

‖Φ(u)− Φ(v)‖ ≤ L2‖u− v‖.
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Theorem. If

a) (F ′Φ, F ) ≤ −c1‖F‖2,
b) ‖Φ‖ ≤ c2‖F‖, and

c) r ≤ R,

where
r =

c2
c1
‖F0‖ and F0 = F (u0),

then
‖un − y‖ ≤ re−chn, ‖F (un)‖ ≤ ‖F0‖e−chn,
where 0 < c < c1.
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Proof.

Let

{
ẇn+1(t) = Φ(wn+1)

wn+1(tn) = un, tn = hn.

Then
‖wn+1(t)− y‖ ≤ c2

c1
‖Fn‖e−c1(t−tn)

≤ re−chn−c1(t−tn), t > hn,

‖un+1 − y‖ ≤ ‖un+1 − wn+1‖+ ‖wn+1 − y‖,

‖un+1 − wn+1‖ ≤
∫ tn+h

tn

‖Φ(un)− Φ(wn+1(s))‖ds

≤ L1

∫ tn+h

tn

‖un − wn+1(s)‖ds

≤ L1h

∫ tn+h

tn

‖Φ(wn+1(s))‖ds

≤ L1hc2

∫ tn+h

tn

‖F (wn+1(s))‖ds

≤ L1h
2c2‖F (un)‖ ≤ L1c2h

2‖F0‖e−chn

= L1c1h
2re−chn.
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Thus ‖un+1 − y‖ ≤ re−chn(e−c1h + L1c1h
2) ≤ re−ch(n+1)

provided that
c < c1 and h is such that e−c1h + L1c1h

2 < ech.

‖F (un+1)‖ ≤ ‖F (un+1)− F (wn+1(tn+1))‖
+ ‖F (wn+1(tn+1))‖;

‖F (wn+1(tn+1))‖ ≤ ‖F (un)‖e−c1h ≤ ‖F0‖e−chn−c1h;

‖F (un+1)− F (wn+1(tn+1))‖ ≤M1L1c1h
2re−chn

= ‖F0‖e−chnM1L1c2h
2.

Thus
‖F (un+1)‖ ≤ ‖F0‖e−chn(ec1h +M1L1c2h

2)

≤ ‖F0‖e−ch(n+1).

Theorem is proved. 2
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Proof of Theorem 15A

Lemma. Let f(t, w), g(t, u) be continuous in the region [0, T )×D
(D ⊂ R, T ≤ ∞) and f(t, w) ≤ g(t, u) if w ≤ u, t ∈ (0, T ),
w, u ∈ D. Assume that g(t, u) is such that the Cauchy problem

u̇ = g(t, u), u(0) = u0, u0 ∈ D,

has a unique solution. If

ẇ ≤ f(t, w), w(0) = w0 ≤ u0, w0 ∈ D,

then u(t) ≥ w(t) for all t for which u(t) and w(t) are defined.
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Proof of Theorem 15A

Inequality in Theorem 15A can be written as

d(1/µ)

dt
≥ −γ(t)(1/µ) + α(t, 1/µ) + β(t),

and
0 ≤ g(t0) ≤ 1/µ(t0).

Thus, 1/µ(t) is an upper solution to the Cauchy problem

ẇ = −γ(t)w + α(t, w) + β(t), w(t0) = g0,

while g(t) is its lower solution. If the above Cauchy problem has at
most one solution, then

0 ≤ g(t) ≤ 1/µ(t) ∀t ≥ t0.

Theorem 15A is proved. 2
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Results for a numerical experiment from [15].∫ t
0 k(t− s)u(s)ds = f(t), k(t) = (2π1/2)−1t−1.5e−

1
4t .

Table: Numerical results for δrel = 0.05, n = 10i, i = 1, 10.

DSM VRi VRn

n niter
‖uδ−y‖2
‖y‖2 niter

‖uδ−y‖2
‖y‖2 niter

‖uδ−y‖2
‖y‖2

10 3 0.1971 1 0.2627 5 0.2117
20 4 0.3359 1 0.4589 5 0.3551
30 4 0.3729 1 0.4969 5 0.3843
40 4 0.3856 1 0.5071 5 0.3864
50 5 0.3158 1 0.4789 6 0.3141
60 6 0.2892 1 0.4909 6 0.3060
70 7 0.2262 1 0.4792 8 0.2156
80 6 0.2623 1 0.4809 7 0.2600
90 5 0.2856 1 0.4816 7 0.2715

100 7 0.2358 1 0.4826 7 0.3405
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