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Abstract

Consider an operator equation F'(u) = 0 in a Hilbert space H or in a Banach
space X. Assume that this equation is solvable, possibly non-uniquely. Let us
call the problem of solving this equation ill-posed (IP) if the operator F’(u) is
not boundedly invertible, and well-posed (WP) otherwise. This terminology dif-
fers from the standard (Hadamard’s one). A general method, Dynamical Systems
Method (DSM), for solving nonlinear and linear problems, especially ill-posed prob-
lems in H, is presented. This method consists of the construction of a dynamical
system, that is, a Cauchy problem,

= ®(t,u), u(0)=up,

which has the following three properties:

1) it has a unique global solution, i.e., its solution is defined on [0, o),

2) there exists the limit limy_, oo u(t) = u(c0),

and

3) F(u(o0)) = 0.

The choices of ®(¢,u) are proposed and the DSM is justified for wide classes of
operator equations.

a) arbitrary solvable linear equations of the form Au = f with densely defined
closed linear operator A,

b) for any well-posed nonlinear equations with twice Fréchet differentiable op-
erator F',

¢) for ill-posed nonlinear equations with monotone operators,

d) for ill-posed nonlinear equations with non-monotone operators such that
F'(y) # 0, where F(y) =0,
d) for operators such that A := F’(u) satisfies the spectral assumption:

[(A+sI)H| < ¢/s,



where ¢ > 0 is a constant, and s € (0,sp),s0 > 0 is a fixed number, arbitrarily
small, ¢ does not depend on s and u,

e) for monotone operators which are not Fréchet differentiable, but only hemi-
continuous and defined on all of H,

k) in Newton-type schemes the main difficulty is to invert the derivative of the
operator. A novel scheme, based on the DSM, allows one to avoid this inversion.

1) universality of the Newton’s method is established in the following sense: if
Fy) = 0, [[[F'(y)) ]| < m, m = const > 0, and ||F"(u) — F'(v)]| < w(][u—o]]) for
all u,v € B(y,R), B(y,R) := {u : ||lu —y|| < R}, where w(r) > 0 is a continuous,
strictly monotone growing function, w(0) = 0, mw(R) < 0.5, then for any w €
B(y, R) the Newton method u, 11 = u, — [F(un)] " F(uy), up = w, converges to
y, and the DSM Newton method % = —[F'(u)] ™' F(u), u(0) = w converges to y in
the sense that the above conclusions 1)-3) hold.

A global convergence theorem is obtained for the regularized continuous analog
of Newton’s method for monotone operators. Global convergence means that con-
vergence is established for an arbitrary initial approximation, not necessarily the
one which is sufficiently close to the solution.

A general approach to constructing convergent iterative schemes for solving
well-posed nonlinear operator equations is described and convergence theorems are
obtained for such schemes.

Stopping rules for stable solution of ill-posed problems with noisy data are given.

DSM can be used for proving theoretical results, e.g.,

i) sufficient conditions for a nonlinear map to be a global homeomorphism;

ii) a hard implicit function theorem.

Theoretical basis for the DSM is developed in monograph [9], and many
numerical examples of applications of the DSM are included in the monograph
[25] joint with my student, Professor N.S.Hoang. In [25] many theoretical and
numerical results on various versions of the discrepancy principle are given.
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