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Abstract

Consider an operator equation F (u) = 0 in a Hilbert space H or in a Banach
space X. Assume that this equation is solvable, possibly non-uniquely. Let us
call the problem of solving this equation ill-posed (IP) if the operator F ′(u) is
not boundedly invertible, and well-posed (WP) otherwise. This terminology dif-
fers from the standard (Hadamard’s one). A general method, Dynamical Systems
Method (DSM), for solving nonlinear and linear problems, especially ill-posed prob-
lems in H, is presented. This method consists of the construction of a dynamical
system, that is, a Cauchy problem,

u̇ = Φ(t, u), u(0) = u0,

which has the following three properties:
1) it has a unique global solution, i.e., its solution is defined on [0,∞),
2) there exists the limit limt→∞ u(t) = u(∞),
and
3) F (u(∞)) = 0.
The choices of Φ(t, u) are proposed and the DSM is justified for wide classes of

operator equations.
a) arbitrary solvable linear equations of the form Au = f with densely defined

closed linear operator A,
b) for any well-posed nonlinear equations with twice Fréchet differentiable op-

erator F ,
c) for ill-posed nonlinear equations with monotone operators,
d) for ill-posed nonlinear equations with non-monotone operators such that

F ′(y) 6= 0, where F (y) = 0,
d) for operators such that A := F ′(u) satisfies the spectral assumption:

||(A + sI)−1|| ≤ c/s,



where c > 0 is a constant, and s ∈ (0, s0), s0 > 0 is a fixed number, arbitrarily
small, c does not depend on s and u,

e) for monotone operators which are not Fréchet differentiable, but only hemi-
continuous and defined on all of H,

k) in Newton-type schemes the main difficulty is to invert the derivative of the
operator. A novel scheme, based on the DSM, allows one to avoid this inversion.

l) universality of the Newton’s method is established in the following sense: if
F (y) = 0, ||[F ′(y)]−1|| ≤ m, m = const > 0, and ||F ′(u)−F ′(v)|| ≤ ω(||u− v||) for
all u, v ∈ B(y,R), B(y,R) := {u : ||u − y|| ≤ R}, where ω(r) ≥ 0 is a continuous,
strictly monotone growing function, ω(0) = 0, mω(R) < 0.5, then for any w ∈
B(y,R) the Newton method un+1 = un − [F ′(un)]−1F (un), u0 = w, converges to
y, and the DSM Newton method u̇ = −[F ′(u)]−1F (u), u(0) = w converges to y in
the sense that the above conclusions 1)-3) hold.

A global convergence theorem is obtained for the regularized continuous analog
of Newton’s method for monotone operators. Global convergence means that con-
vergence is established for an arbitrary initial approximation, not necessarily the
one which is sufficiently close to the solution.

A general approach to constructing convergent iterative schemes for solving
well-posed nonlinear operator equations is described and convergence theorems are
obtained for such schemes.

Stopping rules for stable solution of ill-posed problems with noisy data are given.
DSM can be used for proving theoretical results, e.g.,
i) sufficient conditions for a nonlinear map to be a global homeomorphism;
ii) a hard implicit function theorem.
Theoretical basis for the DSM is developed in monograph [9], and many

numerical examples of applications of the DSM are included in the monograph
[25] joint with my student, Professor N.S.Hoang. In [25] many theoretical and
numerical results on various versions of the discrepancy principle are given.
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