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Motivation

Experiments that generate an initial vorticity (w = curlu) knotted in
a trefoil (Scheeler et al.; PNAS, 2014).

Mathematical model: the Navier—Stokes equations on R? with
compactly-supported initial vorticity.

But numerical computations (e.g. Kerr; JEM, 2018) use periodic
boundary conditions.

Heuristic idea: ‘computations in a large enough periodic domain
mimic solutions on R3’.



Consider the Navier—Stokes equations
ou—Au+ (u-V)u+Vp=0, V-u=0

on the periodic domain Qg = (—a, a)® with u(0) = u® € HY(Q.).

The dot “means zero average, i.e. / ud = 0.
The o subscript means divergence free.
Questions

1. If ud — u® € H(R?), does the solution u, converge to u?

2. If u® € C2°(R3) gives rise to a smooth solution on R? for ¢ € [0, 77,
does the same hold on @), when « is large enough?

The answer ‘YES’ to 1. is ‘semi-classical’ (Heywood, 1988); but the
answer YES to 2. depends on sufficiently strong convergence of
U — U, which is what we will discuss here.



Rescaling & inequalities

Given f, defined on @, the rescaled function f(z) = f,(ax) is
defined on @7 and

107 fallLo(@uy = a®P K07 fllogyy,  when  |y|=k.

This can be used to show that certain constants do not depend on «a.

Sobolev inequalities:

lulle@u) < ClVulliz@uy — 1B/6=1/2=3/2-1]
1/2 2
lull o @) < CallVullBig o lAulig., 0= (1/2)/2+(=1/2)/2]]
Calderon-Zygmund: if —~Ap =V - [(u- V)u] with [, p= [, u=0
Ipllr2(@u) < Czllulltog,) — [B/2+2=2x(3/4+1)).

[Rescaling here is p(z) := a?p,(az) and u(z) := qu,(az).]



Reconstructing the velocity from the vorticity

To solve
curlu = w, V-u=0;

take the curl of the first equation to yield

—Au = curlw = u=(—A)"teurlw.

On R? we have an explicit solution

1 xr —
u=curl 'w:i= —— y

47 s m x w(y) dy (1)

(Biot—Savart Law). On @, we can write an explicit solution in terms
of Fourier series (it is better to use an integral formulation like (1)).

Young’s convolution inequality yields bounds on u: since
L€ L3/ if w e LP, p € (1,3), then

[[?

lullpe < Cpllwllze, ==~ —

s}
W =

This bound is valid for every @, and on R? [3/q = 3/p — 1].



On R3 and Q,, we also have ||Vul|z2 = ||| 2.

Since w; = €;j10jur and €;x€itm = 010km — Ojm Ok,

/|W|2 :/Eijk(ajuk)film(alum>
= /[5jl5km = 0jm O] (Ojur) (Orum)

~ [@u) @) - @un)(Ouws) = [ S oyl
7,k

integrating by parts twice in the final term and using the fact that u
is divergence free.

We have a family u, defined on Q.. How do we talk about
‘convergence’ to a solution on R3?



Extension of the function u, from Q, to R?

Set Uo (2) = Vo (z)ub (),
where 1), € C°(R3) with 0 < 9, < 1,

)1 ze(-wa)?
pal) = {0 v ¢ (~(a+ 10+ 1),

|Vipo| < My, and |VZ,| < Ms, uniformly in a.

OO0
OO0
OO0

For a > 1: ||71aHL2(]R3) < elllua||L2(Qa)a

[Viia || 22 rs) < ealluallmr(@a)s ol 2 rs) < eslluallrz(@a)-



Convergence of corresponding velocities

Suppose that w € L(Q, (R?) has compact support; set u = curl 'w. For
every a sufficiently large that supp(w) C Qg define uq = curl;'w.

Then
uallze < Cllwligers,  [[Vuallze = llwllr2,

o, — u weakly in H'(R3), and @, — u strongly in L?(K) for every
compact subset K of R3.

Proof: uniform bounds on i, + compactness arqguments + take limits
in (Vug, Vo) = (curlw, ¢) [weak form of weak form of —curlu, = w/.

If w € H'(R?) then u, € H*(R?) and i, — u strongly in H'(R3?).

Proof: uniform bounds on 4, + compactness + ‘Leray Lemma’:
uniform decay of u, as x — 00

— Bounds + compactness:
—Au, = curlw = luallm2(Q.) < Cllwlla1(q.)
o, — u weakly in H?(R3) and strongly in H'(K) for every K CC R3.



Leray Lemma

Take {fa}a>ao, f € L*(R3). If

(i) fo — f strongly in L?(K) for every compact subset K of R?; and
(ii) for every n > 0 there exist R(n) and 5(n) such that

/II Ifal?><n  foralla> g,
z|>R

then f, — f in L?(R?).

O[O0 [O[00
OO0 A0
O[0]0] [O]0

Note that if u, € L?(Q4) and R < o — 1 then

/ |iie|? dz < 27/ [ug|? da. (2)
lz|>R z€Qa: |z|>R

OO




To obtain the strong convergence in H!(R?), take ¢ = u,0|g, as the
test function in

<vu067 v¢> = <Cur1wa ¢>7

where
0 lx| <7 0 lz| < r
0= WR‘%: r<|z]<R sothat |[Vo|=<{ 55 r<|z|<R
1 |z| > R. 0 |z| > R.
Therefore
/ |Vtg|? 00 = —/ (Vug) - (Vog)ua +/ (curl w)ug 0q,

and taking r sufficiently large that supp(w) C B(0,7) yields
1
/ Vo |* < THV%HH(QQ)||ua||L2(Qa)
2€Qa: |2|2R -r
K
< ﬁHWHLMHWHL?-

The Leray Lemma now guarantees that Vi, — Vu in L2(R?).



Convergence of Navier—Stokes solutions
Suppose that u® € HL(R?), v € H (Q,), and 40 — u® in H'(R?),
with ||ug||§[1(Qa) < M for all a > «p.

Then there exists a time T'(M) such that the solutions u, (on Q)
and u (on R3) are strong on [0,7] and

G —u in L'(0,T;H (R®), rel[l4).
Key point: strong convergence in H'(R3).

0 —

Particular cases: v, = u® € C°(R?) or u?, = curl;'w, w € C(R?).

[Compactly supported initial velocity or vorticity.
Proof: standard uniform energy estimates + compactness + Leray

Lemma for strong convergence in LP(0,T; L?(R3)), p € [1,00) +
interpolation



Leray approach in L?

Take the inner product [in L?(Q,)] of
Optte, — Aty + (g - V)ug + Vpa =0
with pauq, where g0 = 9|q, -

Then (cf. proof of Proposition 14.3 in Robinson et al., 2016) an
integration by parts yields

1d
2dt Jg,

[ Ojutaituas(i00) + [ JuaPlua: Voot [ palua Ven

o a a

oalual® + / 0alVita?

a4

Integrating from 0 to ¢ and using the definition of g, yields

1 1
5/ INCIEEE Y [l
T€EQq: |z|>R TEQq: |z|>r

1 t
+ —/ / Veta [t + [tal® + [pallual.
R—T’ 0 Qa



After using various inequalities, it follows that for all ¢ € [0,T],

1 1

5 ua(H)]* < 5 Jug|?

2 2 *
T€EQq: |Z|>R TEQq: |z|>T

el fpire [ 9w, 9,
R—r 0 @ L2(Qa)

T 3/4
3/2 1/2
+20/ ||“91||L/2(Qa>Tl/4 </0 V““(S)”QLQ(%)dS) ];

or

r
INCIE | I —_—
~/9L‘EQa: |z|>R “ TEQq: |z|>7 “ R—r

where I' can be chosen to be independent of a.

It follows that for any n > 0 there exist R(n) and S(n) such that
/ waP <y fora>B(n), te[0.7)
€Qa: |z|>R(n)
with 8(n) > R(n) + 1; therefore ((2)) we have

/ |ﬂ(,(t)|2 < 27n for a > B(n).
|z|>R(n)



Since iy, u, are bounded in L>(0,T; L?) we obtain convergence of i,
to u in LP(0,T; L*(R3)) for any p € [1,00) by DCT.

The strong convergence in H'! now comes ‘for free’.

Since 1, — u strongly in LP(0,7T; L?(R?)) and 4, is uniformly
bounded in L2(0,T; H2(R?)), the Sobolev interpolation inequality

1/2 1/2
1 llerr ey < Ol oy 113 e,

implies that

T T
~ r ~ r/2 ~ r/2
[ e =l dt < € [ =l e = ey

T 1—(r/4) T r/4
~ 4/(4— ~
: </o I = ull ey dt) </o e = s e dt) |

For r € [1,4) this implies that @, — u in L"(0,T; H'(R?)) as claimed.



‘Transfer of regularity’ from R? to Q,

Theorem

Suppose that ud € HX(Qu) and u® € HX(R?), with @5 — u® in
HY(R3). Suppose in addition that there exists T* > 0 such that the
equations on R3 with initial condition u® admit a solution

u € L=([0,T*); H'(R3)) N L?(0, T*; H*(R?)).

Then for a sufficiently large the equations on the periodic domain @,
with initial data u® have a smooth solution

uo € L0, T HY(Qa)) N L*(0,T*; H*(Q,))

and iiq — u in L"(0,T*; HY), r € [1,4), as a — oo.

The simplest particular cases of the theorem are when
ud, = u’ € H)(R?) for all « sufficiently large or when u
for some wy € HL(R?).

0 _

a —

-1
curl,, “wo



Since u € L>([0, T*]; H'(R?)) there exists M > 0 such that
Hu(t)”%{l(Rg) < M for all t € [0,T%].

There exists a uniform time 7 such that any solution with «(0) = vy,
where HUOH%,I(]RS) < 2M, exists at least on the time interval [0, 7].

Set N = 2T* /7.

We have shown that @, — u in L"(0,7; H}(R3)) as a — o0o: so
o (t) — u(t) in H*(R3) for almost every ¢ € (0,7); choose one such ¢
with ¢ > 7/2 and call this ¢;.

Choose a; such that ||t (t1)] g1 @s) < 2M for all @ > ay. Since
[wa(t)l[ 1 (Qa) < N[t (t)]lar es),

this bound is enough to ensure that, uniformly for o > «a, the
solutions on @, starting from wu,(¢1) exist on the time interval
[t1,t1 + 7] D [1,37/2].



We now repeat the argument.

Since @ (t1) — u(t1) in HY(R3), we know that @, — u in
L"(ty,t1 +7; HY(R?)) as a — oo.

Again, the convergence in H'(R?) for almost-every time means that
there exists to € (t1,¢1 + 7) with t3 > t; +7/2 > 7 such that

o (t2) — u(tz) in H(R3); in particular, there exists ap > a such
that [ua (t2)||g1(Q.) < 2M for all a > as.

Continue in this way, noting that at each step the interval of existence
of the solutions on Q, (for @ > a,) increases by at least 7/2. After N
steps the entire interval [0, 7%] has been covered, showing that the
solution on @, starting at uQ is strong on [0, 7] for all a > ay.



Conclusion

The results here justify the use of ‘large periodic boxes’ to compute
solutions on R3. J

- What about expanding Dirichlet domains? (Main issue is the
pressure. )

- What about error bounds, i.e. rates of convergence? [A hard
problem! Interesting to look at simpler problems, e.g. —Au = f.]

- Can the ‘transfer of regularity’ results be strengthened? [The results
proved here are u’-by-u°.] Ideal results would relate ‘well-posedness’
in different settings: e.g. does well-posedness on the torus imply
well-posedness on R? (cf. Tao, 2013)?

[Would regularity of the Euler equations imply regularity of the
Navier—Stokes equations? Constantin, 1986, obtains a ‘transfer of
regularity’ result like that here (for sufficiently small viscosity), but
his includes error bounds.]



